Design, synthesis and discovery of 2(1H)-quinolone derivatives for the treatment of pulmonary fibrosis through inhibition of TGF- β /smad dependent and independent pathway

Linlin Xue, Dexin Deng, Shoujun Zheng, Minghai Tang, Zhuang Yang, Heying Pei, Yong Chen, Tao Yang, Kongjun Liu, Haoyu Ye, Lijuan Chen

PII: S0223-5234(20)30226-9

DOI: https://doi.org/10.1016/j.ejmech.2020.112259

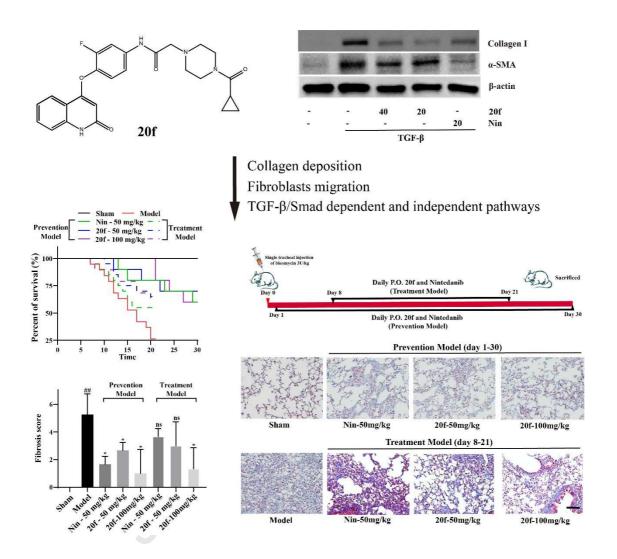
Reference: EJMECH 112259

To appear in: European Journal of Medicinal Chemistry

Received Date: 21 January 2020

Revised Date: 18 March 2020

Accepted Date: 18 March 2020


Please cite this article as: L. Xue, D. Deng, S. Zheng, M. Tang, Z. Yang, H. Pei, Y. Chen, T. Yang, K. Liu, H. Ye, L. Chen, Design, synthesis and discovery of 2(1H)-quinolone derivatives for the treatment of pulmonary fibrosis through inhibition of TGF-β/smad dependent and independent pathway, *European Journal of Medicinal Chemistry* (2020), doi: https://doi.org/10.1016/j.ejmech.2020.112259.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Masson SAS.

Graphical abstract

1	Design, synthesis and discovery of 2(1H)-quinolone derivatives for
2	the treatment of pulmonary fibrosis through inhibition of
3	TGF-β/Smad dependent and independent pathway
4	Linlin Xue ¹ , Dexin Deng ¹ , Shoujun Zheng, Minghai Tang, Zhuang Yang, Heying Pei,
5	Yong Chen, Tao Yang, Kongjun Liu, Haoyu Ye * , Lijuan Chen *
6	
7	State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan
8	University and Collaborative Innovation Center, Chengdu, 610041, China
9	* Corresponding authors. Lab of Natural Product Drugs, Cancer Center, West China
10	Medical School, West China Hospital, Sichuan University, Chengdu 610041, PR
11	China.
12	E-mail addresses: haoyu_ye@scu.edu.cn (H. Ye), chenlijuan125@163.com (L. Chen).
13	¹ Both authors contributed equally to this study.
14	
15	
16	ABSTRACT:
17	Idiopathic pulmonary fibrosis (IPF) is a progressive, life-threatening and
18	interstitial lung disease with the median survival of only 3 to 5 years. However, due to
19	the unclear etiology and problems in accurate diagnosis, up to now only two drugs
20	were approved by FDA for the treatment of IPF and their outcome responses are
21	limited. Numerous studies have shown that TGF- β is the most important cytokine in

22 the development of pulmonary fibrosis and plays a role through its downstream

23	signaling molecule TGF-binding receptor Smads protein. In this paper, compounds
24	bearing 2(1H)-quinolone scaffold were designed and their anti-fibrosis effects were
25	evaluated. Of these compounds, 20f was identified as the most active one and could
26	inhibit TGF- β -induced collagen deposition of NRK-49F cells and mouse fibroblasts
27	migration with comparable activity and lower cytotoxicity than nintedanib in vitro.
28	Further mechanism studies indicated that 20f reduced the expression of fibrogenic
29	phenotypic protein α -SMA and collagen \Box by inhibiting the TGF- β /Smad dependent
30	pathways and ERK1/2 and p38 pathways. Moreover, compared with the nintedanib,
31	20f (100 mg/kg/day, p.o) more effectively alleviated collagen deposition in lung tissue
32	and delayed the destruction of lung tissue structure both in bleomycin-induced
33	prevention and treatment mice pulmonary fibrosis models. The immunohistochemical
34	experiments further showed that 20f could block the expression level of
35	phosphorylated Smad3 in the lung tissue cells, which resulted in its anti-fibrosis
36	effects in vivo. In addition, 20f demonstrated good bioavailability (F = 41.55% vs
37	12%, compare with nintedanib) and an appropriate elimination half-life ($T_{1/2} = 3.5$ h),
38	suggesting that 20f may be a potential drug candidate for the treatment of pulmonary
39	fibrosis.

40

41 Keywords:

42 Pulmonary fibrosis; Collagen accumulation; Bioisosteres; TGF-β/Smad pathway;
43 Anti-fibrosis effects.

45 **1. Introduction**

Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial 46 47 pneumonia [1]. Like other interstitial lung diseases, the characteristic of idiopathic pulmonary fibrosis is progressive scarring or fibrosis that is distributed and deposited 48 between the interstitial spaces of the lungs [2-3], hindering normal gas exchange and 49 decreased lung capacity and leading to clinical symptoms such as unexplained 50 exertional dyspnea, chronic dry cough, or Velcro like crackles on examination with 51 the median survival time of three to five years from diagnosis [4]. Although the 52 53 pathogenesis of IPF has not been elucidated, it is generally believed that early stage is pneumonia and lung injury, and the late stage is the deposition of extracellular matrix 54 (collagen fiber). 55

The treatment of pulmonary fibrosis progresses really slowly due to the unclear 56 etiology and problems in accurate diagnosis. Except lung tissue transplantation, 57 considering the characteristics and possible pathogenesis of IPF, drugs with various 58 mechanisms had also been applied to the clinical treatment, such as antifibrotic agents 59 (nintedanib, 1, and pirfenidone 2), antioxidants (N-Acetylcysteine, 3 [5]), 60 corticosteroids (Prednisone, 4 [6]), immunomodulatory cytokines (Interferon 61 gamma-1ß [7]), anticoagulants (Warfarin, **5** [8]), anti-gastroesophageal reflux agent 62 (Proton pump inhibitors and antacid medication [9]), and anti-pulmonary 63 hypertension drug (Sildenafil, 6 [10]) et al. (Figure 1). Up to now, only nintedanib (1) 64 and pirfenidone (2) were approved by FDA for the treatment of IPF. The former was a 65 multi-tyrosine kinase inhibitor mainly targeting VEGFR, FGFR and PDGFR, and 66

could consistently and significantly slow disease progression by reducing the annual 67 rate of decline in forced vital capacity by approximately 50% versus placebo in IPF 68 69 patients [11-13]. However, due to its poor oral bioavailability and metabolic instability [14], as well as side effects caused by off-target effects, nintedanib in 70 clinical application also has limitations. Similar things happened to pirfenidone, an 71 inhibitor for TGF- β production and TGF- β stimulated collagen production. Although 72 clinical trials have demonstrated that it could reduce the decline in lung function in 73 IPF patients, there are concerns about the adverse drug reactions. Post-marketing 74 surveillance in Japan revealed that 24.3% of patients discontinued pirfenidone therapy 75 because of adverse drug reactions [15]. Hence, efficient and also safety drugs were 76 urgently needed for IPF treatment. 77

78 In recent years, the study of multiple cytokines in the lung has made important progress in the study of the mechanism of pulmonary fibrosis. Among the cytokines 79 involved in pulmonary fibrosis, transforming growth factor TGF- β is the most deeply 80 studied and plays an important role in the onset and progression of the disease [16]. 81 TGF-β1 plays an important role in regulation of inflammatory processes, ECM 82 production, and stem cell differentiation as well as T-cell regulation and 83 differentiation. Therefore, it is considered to be directly related to fibrosis. Inhibition 84 of the binding of TGF-B to its receptor and the function of related Smad proteins 85 become a critical strategy for anti-fibrosis recently. Except pirfenidone, the safety and 86 scientific validity of Epigallocatechin-3-gallate (EGCG, 7), a fibroblast specific 87 inhibitor of LOXL2 and TGF-\beta1 signaling, has now been evaluated in patients with 88

pulmonary fibrosis in the phase III clinical study in 2019 (NCT03928847).
Isoalatolactone derivative 8 exhibited promising efficacy in a bleomycin-induced
pulmonary fibrosis mice model through inhibition of TGF-β/Smad3 pathway [17].
Cynnamoyl anthranilate analogue FT011 (9) inhibited TGF-β1 and PDGF-BB
induced collagen production *in vitro*, and subsequent research showed that it also
reduced the fibrotic scar in the diseased kidney [18].

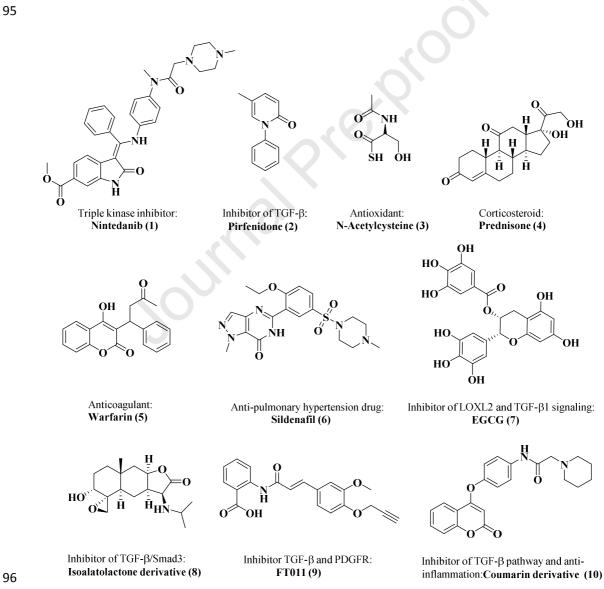
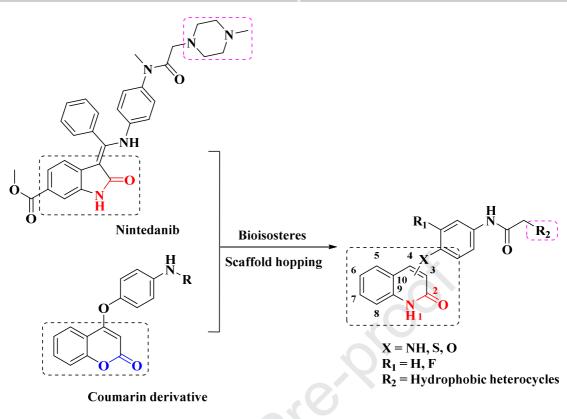



Figure 1. Compounds reported for the treatment of idiopathic pulmonary fibrosis.

In our previous reports, compound 10, a 4-substituated coumarins derivative, 99 was found to be a promising, potential, orally active candidate for the treatment of 100 fibrotic disease by its inhibition of TGF-B/Smad3 pathway and anti-inflammation 101 efficacy [19]. However, the anticoagulant effect of coumarin scaffold may increase 102 patient mortality during the treatment of pulmonary fibrosis, such as warfarin (5) [20]. 103 Herein, considering that quinolone scaffold is widely used in the pharmaceutical field 104 [21, 22], as well as the poor druggability of nintedanib due to its indolinone scaffold, 105 bioisosteres and scaffold hopping [23] strategies were applied to design a new series 106 of compounds bearing 2(1H)-quinolone scaffold (Figure 2). Hydrophobic 107 heterocycles were also introduced to the terminal of 2(1H)-quinolone scaffold to 108 explore its effects on biological activity. Finally, both in vivo and in vitro experiments 109 were conducted to verify the anti-fibrotic effect and toxicity of these compounds, as 110 well as the underlying mechanism. 111

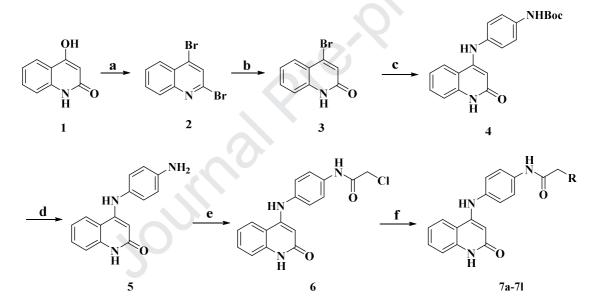
112

114

Figure 2. Design a novel series of compounds with anti-fibrotic effects by bioisosteres andscaffold hopping.

118

119 2. Chemistry


Considering the poor druggability of nintedanib and disadvantages of coumarin scaffold, we designed a series of compounds bearing 2(H)-quinolinone scaffold with different terminal substituent to improve its druggability. To be specific, we considered the influence of several factors on its *in vitro* activity: different hydrophobic groups at the terminal, different linker atoms between 2(H)-quinolinone and benzene ring, electron-withdrawing substituents in benzene ring, and different substitution locations in 2(H)-quinolinone.

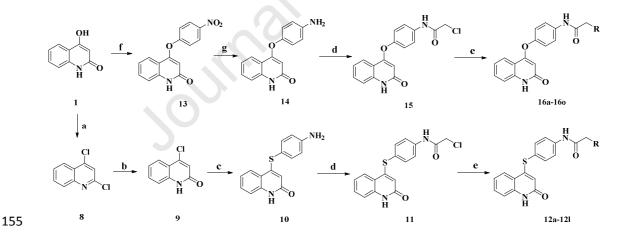
127 4-Hydroxy-2(H)-quinolinone (1) was halogenated to obtain 2,

4-dibromoquinoline (2), and 4-bromoquinolin-2(1H)-one (3) was got by hydrolysis 128 reaction. The important intermediate 4 comprised NH-linker was synthesized though 129 130 Buchwald-Hartwig reaction catalyzed by **Xantphos** and $Pd_2(dba)_3$. T-butyloxycarboryl was removed under acidic conditions, and then the exposed amino 131 group was reacted with chloroacetyl chloride to obtain important intermediate 6. 132 Specific methods were shown in Scheme 1. 133

134

135 Scheme 1. General procedure for the synthesis of compounds 7a-7l.

136


Reagents and conditions: (a) TBAB, P₂O₅, toluene, 100⁻, 6 h, 42%; (b) hydrobromic acid,
1,4-dioxane, 90⁻, 4 h, 75%; (c) 4-(tert-butoxycarbonylamino)aniline, Xantphos, Pd₂(dba)₃,
t-BuOK, dioxane, 130⁻, 24 h, 66%; (d) trifluoroacetic acid, rt, overnight, 92%; (e) chloroacetyl
chloride, Et₃N, DMF, 0-25⁻, 4 h, 95%; (f) RNH₂, Et₃N, DMF, rt, overnight, 45-84%.

142 It was simpler to synthesize compound **12a-12l** when the linker atom was sulfur 143 atom. 4-Hydroxy-2(H)-quinolinone (**1**) was reacted with POCl₃ and heated to $100\Box$ to

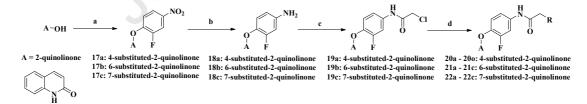
get 2,4-dichloroquinoline (8), and 4-chloroquinolin-2(1H)-one (9) was obtained by 144 hydrolysis reaction as the same method for 4-bromoquinolin-2(1H)-one (3). Lower 145 reactivity intermediate 9 was stirred with K₂CO₃ and 4-aminobenzenethiol in DMF at 146 130 to obtain 4-((4-aminophenyl)thio)quinolin-2(1H)-one (10). Compound 16a-16o 147 with oxygen atom as the linker atom also started from 4-Hydroxy-2(H)-quinolinone 148 (1), which was then stirred with 1-fluoro-4-nitrobenzene and K_2CO_3 in DMF at 100 149 to get 4-(4-nitrophenoxy) quinolin-2(1H)-one (13). Under the catalysis of iron powder 150 and concentrated hydrochloric acid, nitro group was reduced to get intermediate 14 151 for subsequent reaction. Specific methods were shown in Scheme 2. 152

- 153
- 154

Scheme 2. General procedure for the synthesis of compounds 12a-12l and 16a-16o.

156 Reagents and conditions: (a) POCl₃, $100\Box$, 6 h, 65%; (b) hydrochloric acid, 1,4-dioxane, $90\Box$, 4 h,

157 73%; (c) 4-aminothiopenenol, K₂CO₃, DMF, 130□, 6 h, 58%; (d) chloroacetyl chloride, Et₃N,
158 DMF, 0□, 4 h, 0-25□; (e) RNH₂, Et₃N, DMF, rt, overnight, 62-90%; (f) 4-fluoronitrobenzene,
159 K₂CO₃, DMF, 100□, 6 h, 72%; (g) Fe, HCl, MeOH / H₂O = 9/1, 85□, 4 h, 90%.


160

161 The introduction of fluorine atom to the drug structure has been reported to

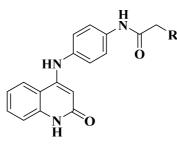
162	beneficially change its activities. A series of compounds containing fluorine atom on
163	the benzene ring were synthesized to verify its biological activity in vitro. Due to the
164	strong electrophilicity of 3,4-difluoronitrobenzene, it was stirred with
165	4-Hydroxy-2(H)-quinolinone (1) and K_2CO_3 in DMF at room temperature without
166	heating to obtain 4-(2-fluoro-4-nitrophenoxy)quinolin-2(1H)-one (17). Subsequent
167	route to synthesize compounds 20a-20o (Scheme 3) was similar to that of compound
168	16a-16o.

In order to explore the effect of the substituent position of the 2-hydroxyquinoline skeleton on its activity, we then tried to connect the substituents at the C-6 and C-7 positions and synthesized compounds **21a-21c** and **22a-22c**. Specific and subsequent routes to synthesize these compounds are shown in **Supporting Information (Scheme S1).**

- 174
- 175 Scheme 3. General procedure for the synthesis of compounds 20a-20o, 21a-12c, and 22a-22c.

176

177 Reagents and conditions: (a) 3,4-fifluoronitrobenzene, K₂CO₃, DMF, rt, overnight; (b) Fe, HCl,
178 MeOH/H₂O = 9/1, 85□, 4 h; (c) chloroacetyl chloride, Et₃N, DMF, 0□, 4 h, 95%; (d) RNH₂, Et₃N,
179 DMF, rt, overnight.


180

181 **3. Results and discussion**

182 **3.1** Anti-fibrotic activity of compounds on NRK-49F cells *in vitro*.

Fibrosis is characterized by excessive collagen deposition between the cells of 183 diseased tissues. Thus, the *in vitro* screening cell model was established to determine 184 the deposited collagen amount between cells. According to our previous published 185 and other reports [19, 24, 25], TGF-B-induced NRK-49F cells (rat fibroblast cells) 186 produce a large amount of intercellular collagen deposition that is similar to the 187 characteristic of fibrosis. Thus, we adopted it as an effective and convenient in vitro 188 screening model for anti-fibrotic evaluation. The inhibition rates of collagen 189 deposition for all synthesized compounds were subsequently tested on TGF- β -induced 190 191 NRK-49F cells at a concentration of 10 µM. Simultaneously, the survival rates (SR) of NRK-49F cells were also tested by MTT assay to verify their in vitro toxicities. 192 Compounds 7a-71 with different terminal substituent were synthesized initially 193

under the inspiring of nintedanib, which own same nitrogen atom as linker atom. As 194 shown in Table 1, most of compounds had weaker collagen deposition inhibition 195 effects in compared with nintedanib. However, we found that nintedanib exhibited 196 significantly toxicity to NRK-49F cells judging from low survival rate of NRK-49F 197 cells (40% survival rate (SR)). Interestingly, 7i showed relatively strong collagen 198 deposition inhibition effect and low toxicity to NRK-49F cells among them (73% 199 inhibition rate (IR)). Whether the Boc group with a large steric hindrance at the 200 terminal of its structure resulted in its activity improvement still needed further 201 confirmation. 202

Cpd	R	IR (%)	SR (%)	Cpd	R	IR (%)	SR (%)
7a	\sqrt{N}	59.91 ± 7.61	72.49 ± 3.82	7g	N N	38.97 ± 0.31	72.55 ± 3.47
7b	\sqrt{N}	24.42 ± 2.68	75.40 ± 1.12	7h	N N	50.20 ± 2.12	83.49 ± 1.65
7c		40.86 ± 2.99	81.91 ± 3.66	7i	XN Boc	73.34 ± 2.85	67.52 ± 4.96
7d	VN.	20.08 ± 6.43	82.55 ± 0.33	7j		49.99 ± 1.47	83.55 ± 6.48
7e	XN_N_	38.93 ± 1.31	78.04 ± 3.33	7k	YN~	44.24 ± 6.94	82.58 ± 2.22
7f		45.95 ± 5.34	64.78 ± 2.66	71	\bigvee^{H}	28.71 ± 5.19	83.71 ± 0.94
				nin	ıtedanib	95.47 ± 2.65	40.02 ± 2.46

206 Inhibitory effects against TGF- β -induced total collagen accumulation in NRK-49F cells at a 207 concentration of 10 μ M. Cell survival rate is calculated by MTT assay. The results are the means \pm 208 SD of at least three independent experiments.

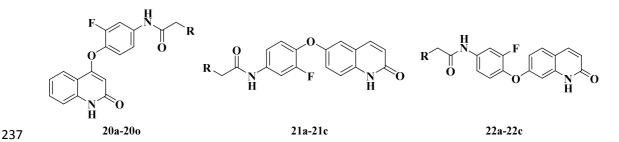
205

Bioisosteric replacement and scaffold hopping are two techniques widely applied in structural optimization of lead compounds to reduce toxicity and improve activity. To be specific, when the linker atoms nitrogen atom in compounds **7a-7l** was substituted by sulfur atom or oxygen atom, the effects of linker atoms on biological activity were evaluated and discussed. The results were listed in **Table 2**.

s N R	

		12a-12l			16a		
Cpd	R	IR (%)	SR (%)	Cpd	R	IR (%)	SR (%)
12a	\sqrt{N}	80.88 ± 2.39	87.05 ± 5.13	16a	×N)	68.05 ± 6.38	82.21 ± 2.74
12b	\sqrt{N}	28.37 ± 7.65	93.46 ± 2.63	16b	χ ^N ⊂	27.42 ± 5.41	78.46 ± 1.95
12c	√ ^N O	53.38 ± 4.78	77.44 ± 3.37	16c	VN O	59.27 ± 3.89	95.74 ± 4.54
12d	VNV VNV	28.59 ± 8.17	115.78 ± 4.55	16d	YN,	31.52 ± 7.86	79.92 ± 6.73
12e	XN X	39.97 ± 7.03	86.69 ± 3.93	16e	XN X	43.66 ± 4.42	80.18 ± 1.33
12f	XN N	56.57 ± 0.88	77.95 ± 1.93	16f	$\mathbf{x}_{\mathbf{N}}^{\mathbf{N}}$	78.33 ± 3.57	92.17 ± 2.11
12g	N N	39.38 ± 3.02	101.31 ± 4.3	16g	N N	50.02 ± 11.41	96.28 ± 5.24
12h	N N	51.14 ± 2.05	80.31 ± 4.37	16h	N N	43.92 ± 4.78	81.22 ± 2.61
12i	XN Boc	72.37 ± 6.87	71.25 ± 4.26	16i	NN Boc	76.24 ± 4.15	75.60 ± 4.72
12j		52.97 ± 2.21	83.92 ± 3.41	16j	XN X	73.23 ± 5.47	92.67 ± 2.31
12k	Y ^N	58.62 ± 9.83	85.49 ± 5.88	16k	XN~	86.07 ± 2.02	96.26 ± 2.44
121	× ^H √	51.09 ± 7.84	87.69 ± 8.85	161	× ^H √	25.36 ± 3.25	89.24 ± 2.64
16m		58.11 ± 2.23	95.14 ± 1.09	160		41.73 ± 8.79	91.69 ± 3.34
16n		46.02 ± 5.45	96.04 ± 3.82	ninted	lanib	95.47 ± 2.65	40.02 ± 2.46

Table 2. Collagen accumulation IR and cell SR of 12a-12l and 16a-16o.


	urn		D	n	ro	
JU	um	al			IU	U.

- 218 Inhibitory effects against TGF- β -induced total collagen accumulation in NRK-49F cells at a 219 concentration of 10 μ M. Cell survival rate is calculated by MTT assay. The results are the means \pm 220 SD of at least three independent experiments.
- 221

As shown in **Table 2**, compared with **7a-7l**, the collagen inhibition rate and cell 222 survival rate among 12a-12l and 16m-16o have been improved to some extent when 223 the NH-linker was replaced by S-linker or O-linker, respectively. Among them, 224 compound 12a in S-linker series and 16k in O-linker series showed good collagen 225 inhibition rate (80% and 86%) and low toxicity (13% and 4%). Compounds 7i, 12i 226 and 16i with the terminal Boc group demonstrated relatively acceptable in vitro 227 anti-fibrotic activities (73%, 72% and 76%). However, when the terminal Boc group 228 was removed (16m), it exhibited poor in vitro activity (58%), suggesting that a 229 hydrophobic group with a large spatial position at the terminal might be beneficial for 230 anti-fibrotic activity in vitro. In order to verify our suspicions, compound 16f and 16j 231 with similar steric hindrance groups and less susceptible to metabolism were 232 subsequently synthesized. Results showed that hydrophobic group with a large spatial 233 position at the terminal did play crucial parts in collagen accumulation inhibition. 234

235

Table 3. Collagen IR and cell SR of 20a-22o, 21a-21c, and 22a-22c.

Cpd	R	IR (%)	SR (%)	Cpd	R	IR (%)	SR (%)
20a	\sqrt{N}	49.49 ± 6.52	96.43 ± 2.47	201	₹ ^H	50.57 ± 5.93	99.35 ± 1.12
20b	\sqrt{N}	38.27 ± 4.76	87.18 ± 3.07	20m	√ ^{NH}	60.27 ± 2.16	93.31 ± 2.29
20c		47.28 ± 7.12	90.77 ± 1.71	20n	X ^H Co	53.92 ± 7.32	90.8 ± 1.44
20d	YN	45.94 ± 2.55	104.93 ± 3.04	200		49.07 ± 4.19	89.61 ± 7.28
20e		73.87 ± 5.12	98.95 ± 0.82	2 <mark>1</mark> a	$\mathbf{x}_{\mathbf{N}}^{\mathbf{N}}$	34.57±3.54	95.19 ± 3.13
20f	$\mathbf{x}_{\mathbf{N}}^{\mathbf{N}}$	87.53 ± 3.05	97.52 ± 2.26	2 <mark>1</mark> b	XN Boc	57.43±3.59	85.62 ± 2.31
20g	N N N	42.73 ± 6.36	108.38 ± 3.04	21c	YN NK	61.53±3.21	83.32 ± 4.24
20h	N N	60.74 ± 6.01	98.59 ± 3.56	2 <mark>2</mark> a		56.59±2.67	98.23 ± 3.25
20i	NN Boc	89.13 ± 3.97	86.18 ± 5.65	2 <mark>2</mark> b	XN Boc	76.37±2.78	89.65 ± 2.36
20ј	YN, Y	78.04 ± 3.94	93.11 ± 4.78	2 <mark>2</mark> c	XN X	67.72±5.45	89.77 ± 3.41
20k	×N~	58.81 ± 6.03	106.12 ± 2.32	nir	ntedanib	95.47 ± 2.65	40.02 ± 2.46

238 Inhibitory effects against TGF- β -induced total collagen accumulation in NRK-49F cells at a 239 concentration of 10 μ M. Cell survival rate is calculated by MTT assay. The results are the means \pm 240 SD of at least three independent experiments.

Next, compounds with fluorine atom substitution on benzene ring were designed for both biological activity bioavailability improvements. As shown in **Table 3**, most compounds with fluorine substitution demonstrated better anti-fibrotic effects and lower cytotoxicity than their corresponding compounds **16a-16o**. **20m** possessed weaker anti-fibrotic activity and less cytotoxicity than compound **20i** owning Boc 247 group (similar to compounds **16i** and **16m**).

Finally, **21a-21c** and **22a-22c** were synthesized to investigate the anti-fibrosis effect of substitution at different positions on the 2(1H)-quinolone. **21a-21c** owning substitution at C-6 position showed significant decrease in anti-fibrotic activity *in vitro*, which is similar to compounds **22a-22c** substituted at C-7 position. Compounds **252 20f**, **20i** and **20j** with excellent bioactivity *in vitro* and low toxicities were further selected as candidate compounds for further in vitro experiments.

In general, the initial structure-activity relationship could be concluded as 254 255 follows: firstly, the linker atom affects the cytotoxicity of these compounds. Compounds with oxygen atom as the linker demonstrated the lowest cytotoxicity than 256 those with nitrogen atom and sulfur atom. Secondly, hydrophobic groups with larger 257 steric hindrance at the end of the piperazine ring contributed greatly to the 258 anti-fibrotic activities but caused greater cytotoxicities such as 7i, 12i, and 16i. Then, 259 the introduction of fluorine atom on the benzene ring was beneficial to enhance 260 anti-fibrotic activity and reduce cytotoxicity to some extent. Finally, substitution at 261 C-6 and C-7 position decreased anti-fibrotic activity and showed a little cytotoxicity 262 effect to NRK-49F cells. However, compounds 12a with tetrahydropyrrole and 16k 263 with diethylamine due to some certain exceptions also exhibited excellent anti-fibrotic 264 activity in vitro, which was inconsistent with the basic structure-activity relationship. 265 Taken together, five compounds of 12a, 16k, 20f, 20i, and 20j with potential 266 anti-fibrosis activities were selected for further determination of IC₅₀ values with 267 potential anti-fibrosis activities. As exhibited in Table 4, those five compounds 268

```
269 showed an order of magnitude of inhibitory activity with nintedanib against
270 TGF-β-induced total collagen accumulation in NRK-49F cells with IC<sub>50</sub> range
271 between 3.89 and 6.12 \muM.
```

273 Table 4. IC₅₀ values against TGF-β-induced total collagen accumulation in NRK-49F cells.

Entry	$IC_{50}\left(\mu M\right)$	Entry	$IC_{50}(\mu M)$
12a	5.33 ± 0.35	16k	5.27 ± 0.42
20f	$3.89~\pm~0.46$	20i	6.12 ± 0.32
20j	$4.47~\pm~0.52$	nintedanib	1.10 ± 0.13

The results are the means \pm SD of at least three independent experiments.

Collagen fibers between cells were straightforward visualized through Sirius Red staining. It was found that **12a**, **16k**, **20i**, **20j** and **20f** could significantly reduce the production of filamentous collagen (**Figure 3**). Moreover, it's also worth noting that the cell number of TGF- β -induced NRK-49F cells left after treatment of these compounds was much higher than that of nintedanib, which was consistent with MTT results, indicating that **12a**, **16k**, **20i**, **20j** and **20f** were safer than nintedanib.

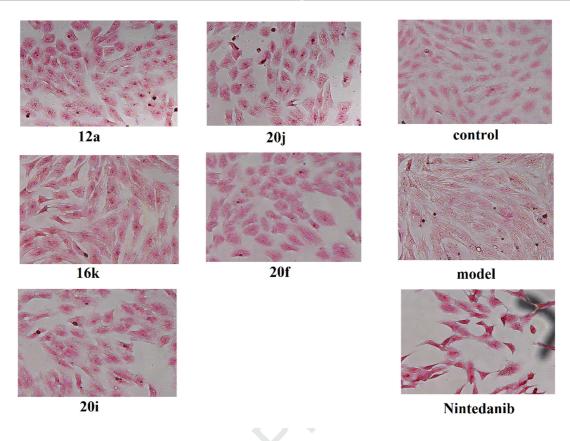
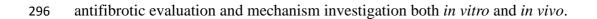


Figure 3. Picro-Sirius Red (PSR) staining for the total collagen accumulation induced by TGF-β
in NRK-49F cells.


286

283

287 3.2 12a, 16k, 20f, 20i and 20j inhibited TGF-β-induced fibroblasts migration

Fibroblasts migration to the fibrotic lessions stimulated by concomitant cytokines (like TGF- β 1) plays an important role in pulmonary fibrosis [26], so inhibiting fibroblasts migration can delay the process of pulmonary fibrosis.

Accordingly, the effects of selected compounds on cell migration was accessed by wound healing assays. The results indicated that **12a**, **16k**, **20f**, **20i**, **20j** and nintedanib could inhibit TGF- β -induced migration of mouse fibroblast L929 cells at different level with a concentration of 10 μ M, while **20f** exhibited the best anti-migration capacity (**Figure 4**). Hence, **20f** was finally chosen as further

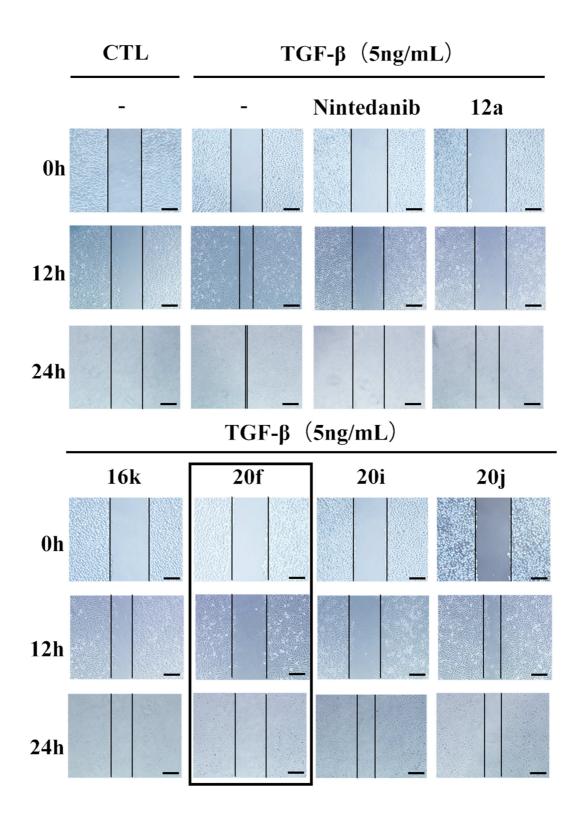
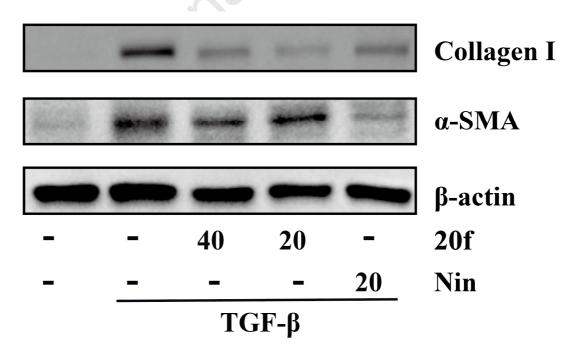


Figure 4. Wound healing assay were performed to access the inhibition effects of fibroblast
migration by 12a, 16k, 20f, 20i, 20j and nintedanib. L929 cells were treated with/without TGF-β


300 (5 ng/mL) and compounds (10 μ M). Data were collected after 12 and 24 hours.

301 3.3 20f inhibited protein expression of collagen I and α-SMA in TGF-β-induced 302 NRK-49F Cells.

 α -Smooth muscle actin (α -SMA) in myofibroblasts [27] and excessive collagen I 303 deposition [28] in extracellular matrix were hallmarks of fibrosis. Therefore, the 304 abilities of 20f to suppress protein expression of α -SMA and collagen I were 305 investigated *in vitro*. As shown in **Figure 5**, the protein expression levels of α -SMA 306 and collagen I were obviously over-expressed in TGF-\beta-induced NRK-49F cells, 307 whereas treatment with 20f or nintedanib significantly inhibited their expressions, 308 suggesting that both **20f** and nintedanib inhibited α -SMA expression and collagen 309 accumulation in the response to TGF- β stimulation. 310

311

312

Figure 5. Protein expression levels of Collagen I and α -SMA were probed through western blot.

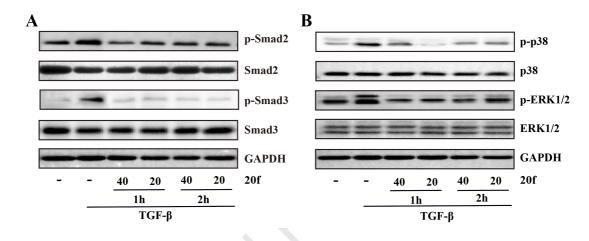
314 NRK-49F cells were treated with/without TGF- β (5 ng/mL) and compound **20f** (20 and 40 μ M)

315 for 24 h. β -actin was used as a loading control.

316 3.4 20f exhibited anti-fibrotic activity by inhibiting TGF-β/Smad2/3-dependent

317 and independent pathways.

Since activation of Smad pathway is the primary downstream signaling pathway of TGF- β and Smad proteins have been implicated in bleomycin-induced lung fibrosis [29], the expression of total and phosphorylated Smad2 and Smad3 were further detected by immunoblot to test the hypothesis that **20f** might block the primary step of TGF- β signaling via the regulation of Smads.


As shown in **Figure 6A**, TGF- β stimulation significantly increased the phosphorylation levels of Smad2 and Smad3, whereas treatment with **20f** significantly reduced this phosphorylation in a dose dependent manner. However total Smad2 and Smad3 proteins were constitutively expressed and were not affected by TGF- β or **20f** treatment.

Smad3-independent pathway including the ERK1/2 [30] and p38 MAP kinase 328 [31] has also been reported in TGF- β -induced fibrosis [32]. Activated ERK1/2 and 329 p38 in turn conveys the signal to the Smad2/3 via phosphorylation and active the 330 Smad signaling pathway. Therefore, the TGF-B/Smad2/3-independent pathway was 331 further explored. NRK-49F cells were cultured with or without TGF- β in the presence 332 or absence of **20f** for indicated times. As shown in **Figure 6B**, TGF- β stimulation 333 obviously increased the phosphorylation level of ERK1/2 and p38, whereas 334 cotreatment with **20f** significantly inhibited their phosphorylation levels of ERK1/2 335 and p38. Both total p38 and ERK1/2 were constitutively expressed and were not 336

affected by TGF- β or **20f** treatment.

On the basis of these observations, it could be concluded that **20f** ameliorated fibrosis by inhibiting both TGF/Smad2/3-dependent and independent pathways, including Smad2, Smad3, ERK and p38 phosphorylation.

341

342

Figure 6. (A) Effects of **20f** on TGF-β-induced phosphorylation of Smad2 and Smad3 in NRK-49F cells. NRK-49F cells were treated with/without **20f** (20 and 40 μ M) for 1 and 2 hours and then treated with TGF-β (5 ng/mL) for 1h. (B) Effects of **20f** on TGF-β-induced phosphorylation protein expression of p38 and ERK1/2 in NRK-49F cells. NRK-49F cells were treated with/without **20f** (20 and 40 μ M) for 1 and 2 hours and then treated with TGF-β (5 ng/mL) for 1h. GAPDH was used as a loading control.

349

350 **3.5 Pharmacokinetic experiment of 20f.**

The plasma concentration–time curves for **20f** after a single dose in rats were shown in **Figure S1** (**Supporting Information**). The plasma concentrations of **20f** rapidly reached peak, and gradually declined after oral administration. As shown in **Table 5**, the oral bioavailability of **20f** was determined to be 41.55% (n = 5), much better than nintedanib (approximately 12% in rats [20]).

		20f				
Compound	Intravenous injection	Oral administration				
dose (mg/kg)	5	5				
$\mathbf{t_{max}}\left(\mathbf{h}\right)$	0.08	4.33				
t _{1/2} (h)	4.39	3.5				
AUC _{0-t} (µg/L*h)	13149.76	5463.86				
F (%)		41.55				

356 Table 5. Pharmacokinetic parameters for 20f in SD rat

357

358 **3.6 Effects of 20f on Bleomycin-induced pulmonary fibrosis model.**

To further verify anti-fibrotic potency of 20f in vivo, two bleomycin induced 359 lung fibrosis models (one for prevention model and the other one for treatment model) 360 were employed in our study. Mice challenged with BLM (3 U/kg) at day 0 were 361 treated with **20f** (50 or 100 mg/kg) and nintedanib (50 mg/kg) at day 1 for prevention 362 model and the whole administration process last for 30 days. For treatment model, 363 every experimental setting was the same except that both compounds were 364 administrated only from day 8 to day 21 (Figure 7A). Survival rates, hydroxyproline 365 (an indicator of collagen deposition) level, histologic analysis (Masson's trichrome 366 staining, hematoxylin and eosin (H&E) staining and immunocytochemistry) were 367 further performed to evaluate anti-fibrosis effects of 20f. 368

As shown in **Figure 7B**, in prevention model, **20f** (50 or 100 mg/kg) demonstrated comparable survival rate with nintedanib (50 mg/kg). However, in treatment model, **20f** (50 mg/kg) showed better survival rate than nintedanib. BLM

372	induction resulted in a large amount of collagen to deposit in lung tissue in model
373	group, which was consistent with the hydroxyproline result (Figure 7C and 7D).
374	Both 20f and nintedanib could inhibit collagen deposition and reduce hydroxyproline
375	content in lung tissue in prevention model. However, when treatment started at day 8
376	(treatment model), there was no significant difference in the reduction of collagen
377	deposition in nintedanib group in comparison with model group. In contrast, 20f still
378	showed a significant blocking effect on collagen accumulation, particularly at high
379	doses (100 mg/kg) (Figure 7D).

380

mg/kg) (Figure 7D).

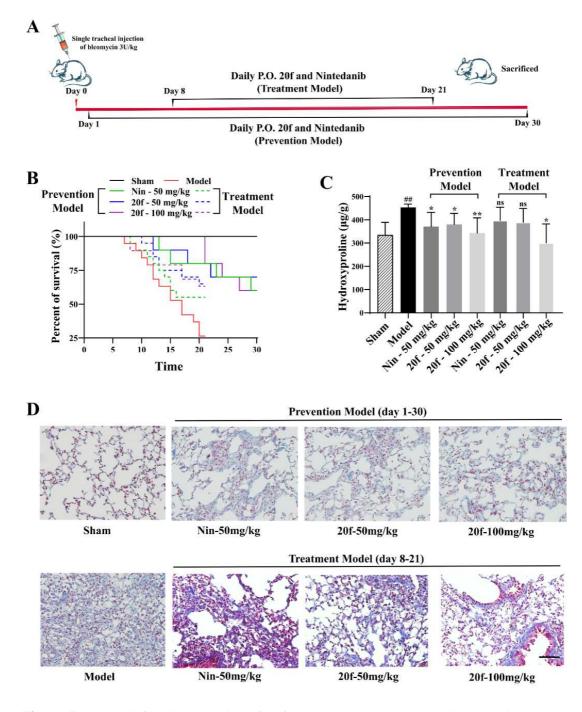
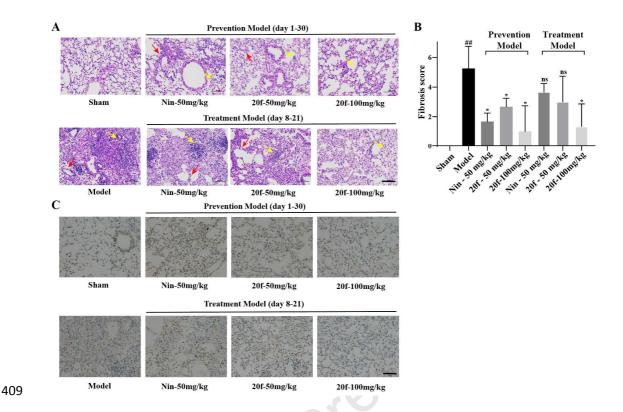


Figure 7. The anti-fibrotic potencies of 20f *in vivo*. C57BL/6 male mice were intratracheal instillated with BLM (3 U/kg) to induce pulmonary fibrosis, and the lungs were harvested at the end of experiment for the following analyses. (A) Dosing schedule of prevention model (day 1-30) and treatment model (day 8-21). (B) Survival curves of **20f** and nintedanib for pulmonary fibrosis. (C) Hydroxyproline contents in lung tissues of each group were measured as described in the methods section. (D) Representative images demonstrating masson's trichrome of lung tissues


388	from experimental groups as indicated in Experiment section. Scale bars, 100 $\mu\text{m}.$ Data were
389	presented as means (SD of the group. $*p < 0.05$, $**p < 0.01$, compared with the BLM treatment.
390	BLM, bleomycin; Nin, nintedanib.)
391	
392	Both the Ashcroft scores and H&E staining were also used to evaluate the
393	anti-fibrosis effects of 20f. Results demonstrated that the lung tissues were fiercely
394	damaged in mice instilled with BLM (Figure 8A and 8B), whereas administration
395	with 20f and nintedanib notably protected the alveolar tissue structure (red arrow) and
396	ameliorated the infiltration of inflammatory cells (yellow arrow) in prevention model
397	(Figure 8A, upper panel). However, in the treatment model, delayed treatment with
398	nintedanib at day 8 failed to ameliorate fibrosis, 20f (100 mg/kg) still exhibited the
399	ability to protect structure of lungs (Figure 8A, lower panel). These findings

implicated that 20f showed potentially promising therapeutic effects in both 400 prevention and treatment models of pulmonary fibrosis. 401

To further validate the mechanism of 20f in vivo, the phosphorylation level of 402 Smad3 in lungs tissues was tested. As depicted in Figure 8C, BLM-induced mice 403 elevated level of Smad3 phosphorylation in lung tissues. Relative to nintedanib, oral 404 administration of 20f could more effectively suppress Smad3 phosphorylation level, 405 which was in accordance with the immunoblot results in Figure 6.

407

406

Figure 8. (A) Representative images demonstrating hematoxylin and eosin (H&E) staining of lung tissues from experimental groups as indicated in experiment section. (B) Ashcroft scores of lung tissues from experimental groups as indicated in experiment section. (C) Representative images demonstrating p-Smad3 staining of lung tissues from experimental groups as indicated in experiment section. Scale bars, 100 μ m. Data were presented as means (SD of the group. *p < 0.05, **p < 0.01, compared with the BLM treatment. BLM, bleomycin. Nin, nintedanib.)

Taken together, **20f** exhibited beneficial therapeutic effects, specifically in survival rate improvement, collagen deposition decrease in lung tissue, as well as the lung tissue protection. Further immunohistochemical experiments showed that **20f** also inhibited phosphorylated expression level of Smad3, which was downstream of TGF- β pathway, and eventually contributed to its anti-fibrosis effect.

423 **4. Conclusion**

In this study, a series of compounds bearing 2(1H)-quinolone scaffold inspired 424 425 by bioisosteres and scaffold hopping strategies were designed and synthesized, and then their anti-fibrotic effects were evaluated in vitro. 20f was further selected to 426 perform the mechanism studies due to its excellent collagen deposition inhibition in 427 NRK-49F cells, low cytotoxicity, as well as decent anti-migration activity in L929 428 cells. Mechanism studies showed that **20f** significantly suppress the expression of 429 fibrogenic phenotypic protein (such as α -SMA and collagen \Box) in vitro by western 430 blot analysis. Additionally, it also decreased the phosphorylation level of Smad 2/3, 431 ERK and p38, indicating that TGF- β /Smad signaling pathway played crucial roles for 432 collagen deposition reduction. Moreover, **20f** (50 and 100 mg/kg/day, p.o.) effectively 433 alleviated collagen deposition in lung tissue and delayed the destruction of lung tissue 434 structure in both prevention and treatment models. It was worth noting that 20f 435 demonstrated better survival rate than nintedanib. Subsequent immunohistochemical 436 437 experiments further showed that the expression level of phosphorylated Smad3 in the lung tissue cells significantly declined after treatment with 20f. All these phenomena 438 and results illustrated **20f** effectively alleviated lung damage induced by intratracheal 439 instillation of bleomycin in mice, and these beneficial effects should attribute to its 440 inhibition of TGF-\u00df/Smad dependent and in-dependent pathway as well as its low 441 cytotoxicity. Considering the excellent bioavailability (F = 41.55%) and suitable 442 eliminated half-life time ($T_{1/2} = 3.5$ h), **20f** could be a potential drug candidate for the 443 treatment of IPF. 444

446 **5. Experimental**

447 **5.1 Chemistry.**

All the chemical solvents and reagents used in this study were analytically pure 448 without further purification and commercially available. TLC was performed on 0.20 449 mm silica gel 60 F₂₅₄ plates (Qingdao Ocean Chemical Factory, Shandong, China). 450 Visualization of spots on TLC plates was done by UV light and I₂. NMR data were 451 measured for ¹H NMR at 400 MHz and for ¹³C NMR at 101 MHz on a Bruker Avance 452 400 spectrometer (Bruker Company, Germany) using TMS as an internal standard. 453 Mass spectra (MS) were obtained by a Q-TOF Priemier mass spectrometer 454 (Micromass, Manchester, UK). Purification of the final compounds were performed 455 with reverse phase high-performance liquid chromatography (RP-HPLC). All final 456 compounds were purified to \geq 95% chemical purity as determined by HPLC with UV 457 detection at 254 nm. Further details on the analytical conditions used for individual 458 compounds may be found in the Supporting Information. 459

procedure for synthesis Phenylenediamine 460 General of derivative. 2,4-dibromoquinoline (2). 4-hydroxyquinolin-2(1H)-one (4.83 g, 0.03 mol) and TBAB 461 (19.32 g, 0.06 mol) were dissolved in methylbenzene (400 ml) in an oven-dried round 462 bottom flask. Then P₂O₅ (17.04 g, 0.12 mol) was added dropwise to the reaction 463 mixture in 1 hour. At the same time, the reaction mixture was heated to $100\square$ and 464 stirred at 100 for another 6 h. After the reaction was finished monitored by TLC, the 465 solution was cooled to room temperature and alkalify to pH 9 with ice NaHCO₃ 466

saturated solution. The organic phase was separated and dried over anhydrous Na₂SO₄, 467 then evaporated under vacuum to obtain an oil-like black product. Petroleum ether (200 468 ml) was added to the crude product and stirred about 30 minutes. The mixture was 469 filtered, then the filter liquor was collected and dried in vacuum to obtain compound 2 470 as a yellow solid (3.61 g, 42% yield) without further purification. MS (ESI^{+}) : $[M + H]^{+}$ 471 calculated for C₉H₅NBr₂, 284.8789; found, 285.8901. 472

4-bromoquinolin-2(1H)-one (3). Compound 2 (3.5 g, 0.012 mol) was dissolve in 473 1,4-dioxane (30 ml) in a round bottom flask and heated. Hydrobromic acid which 474 consisted of 60% water (30 ml) then was added to the mixture after it was heated to 475 90 \square . The reaction mixture was stirred at 90 \square after the reaction was finished 476 monitoring by TLC. Then the cloudy mixture was filtered to give a yellow filter cake 477 until it was cooled to room temperature. The resulted solid was washed with 478 1,4-dioxane and water, and dried under vacuum to afford a yellow solid (2.46 g, yield 479 90%). MS (ESI⁺): $[M + H]^+$ calculated for C₉H₆NBrO, 222.9633; found, 223.9712. ¹H 480 NMR (400 MHz, DMSO- d_6) δ 12.06 (s, 1H), 7.82 (dd, J = 8.1, 1.0 Hz, 1H), 7.61 (ddd, 481 J = 8.4, 7.3, 1.3 Hz, 1H), 7.36 (d, J = 8.2 Hz, 1H), 7.33 – 7.28 (m, 1H), 7.03 (d, J = 1.5482 483 Hz, 1H).

(4-((2-oxo-1,2-dihydroquinolin-4-yl)amino)phenyl)carbamate 484 *tert-butyl* (4). Compound 3 (2.24 g, 0.01 mol), potassium tert-butoxide (2.80 g, 0.025 mol) and 485 tert-butyl (4-aminophenyl) carbamate (2.49 g, 0.012 mol) were suspended in dry 486 1,4-dioxane (50 ml). Then a solution of Pd₂(dba)₃ (0.915 g, 1 mmol) and Xantphos 487 (2.02 g, 3.5 mmol) in dry 1,4-dioxane (10 ml), were added to the mixture and the 488

489	round-bottom flask was sealed off with nitrogen. The resulting suspension was stirred
490	at 100 °C under nitrogen for 16 h. The mixture was filtered to give a brown filter liquor,
491	then removed under reduced pressure to afford a crude product which was purified by
492	silica gel column chromatography (DCM/MeOH=12:1) to afford 2.32 g (yield 66%) of
493	the desired product as a brown solid. MS (ESI ⁺): $[M + H]^+$ calculated for $C_{20}H_{21}N_3O_3$,
494	351.1583; found, 352.1665. ¹ H NMR (400 MHz, DMSO- d_6) δ 10.95 (s, 1H), 9.41 (s,
495	1H), 8.52 (s, 1H), 8.10 (d, J = 7.9 Hz, 1H), 7.57 – 7.45 (m, 3H), 7.29 – 7.23 (m, 1H),
496	7.23 – 7.13 (m, 3H), 5.46 (d, <i>J</i> = 0.9 Hz, 1H), 1.49 (s, 9H).

4-((4-aminophenyl)amino)quinolin-2(1H)-one (5). Compound 4 (2.2 g, 6.26 497 mmol) was put in a round-bottom flask and trifluoroacetic acid (20 ml) was slowly pour 498 into the flask. The reaction mixture was stirred at room temperature overnight. The 499 solution was removed under reduced pressure to afford an oil-like crude product. 500 NaHCO₃ saturated solution (50 ml) was then added to the crude product, which was 501 then extracted with DCM (20 ml) three times, washed with brine and dried over 502 Na₂SO4. The solvent was removed by evaporation under vacuum to a brown solid as 503 compound 5 (1.51 g, yield 92%). MS (ESI⁺): $[M + H]^+$ calculated for C₁₅H₁₃N₃O, 504 251.1059; found, 252.1143. ¹H NMR (400 MHz, DMSO- d_6) δ 10.82 (s, 1H), 8.32 (s, 505 1H), 8.09 (d, J = 7.8 Hz, 1H), 7.46 (dd, J = 11.3, 4.1 Hz, 1H), 7.28 – 7.21 (m, 1H), 506 7.18 – 7.08 (m, 1H), 6.94 (d, J = 8.6 Hz, 2H), 6.67 – 6.60 (m, 2H), 5.25 (s, 1H), 5.14 507 (s, 2H). 508

509 2-chloro-N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)amino)phenyl)acetamide (6).
510 Chloroacetyl chloride (0.80 g, 7.17 mmol) was added dropwise to a mixture of

511	compound 5 (1.5 g, 6 mmol) and triethylamine (1.21 g, 12 mmol) in freshly distilled
512	DMF (50 ml) in an oven-dried round bottom flask at 0-5°C for 30 minutes and at room
513	temperature for further 3 h. After the reaction monitored by TLC was over, water (150
514	ml) was add to the reaction mixture under stirring, and the suspended mixture was
515	filtered to give a brown solid as compound 6 (1.86 g, yield 95%). MS (ESI ⁺): $[M + H]^+$
516	calculated for $C_{17}H_{14}N_3O_2Cl$, 327.0775; found, 328.0852. ¹ H NMR (400 MHz,
517	DMSO- d_6) δ 11.02 (s, 1H), 10.89 (s, 1H), 8.71 (s, 1H), 8.19 (d, $J = 8.1$ Hz, 1H), 7.72 (d,
518	<i>J</i> = 8.6 Hz, 2H), 7.50 (t, <i>J</i> = 7.6 Hz, 2H), 7.33 – 7.27 (m, 3H), 7.16 (t, <i>J</i> = 7.5 Hz, 1H),
519	5.58 (s, 1H), 4.35 (s, 2H).

General procedure for synthesis of compounds **7a-71**. Compound **6** (1.0 equiv) with catalytic equivalent KI was dissolved in freshly distilled DMF in an oven-dried round bottom flask. Different aliphatic amines (3.0 equiv) was added dropwise. The reaction mixture was stirred at room temperature for about 4 hours. After the reaction monitored by TLC was over, water was added to the reaction mixture under stirring, and the suspended mixture was filtered. The crude residue was purified by column chromatography on silica gel to obtain the final products.

527 N-(4-((2-0x0-1,2-dihydroquinolin-4-yl)amino)phenyl)-2-(pyrrolidin-1-yl)aceta-m528 *ide* (7*a*). Yield: 62%; white solid; MS (ESI⁺): [M + H]⁺ calculated for C₂₁H₂₂N₄O₂, 529 362.1743; found, 363.1821; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.96 (s, 1H), 9.74 (s, 530 1H), 8.55 (s, 1H), 8.10 (d, *J* = 7.8 Hz, 1H), 7.70 (d, *J* = 8.8 Hz, 2H), 7.49 (t, *J* = 7.3 Hz, 531 1H), 7.26 (t, *J* = 8.8 Hz, 3H), 7.17 (t, *J* = 7.6 Hz, 1H), 5.54 (s, 1H), 3.25 (s, 2H), 2.60 (d, 532 *J* = 5.3 Hz, 4H), 1.80 – 1.72 (m, 4H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 169.18, 163.40,

533	151.01,	139.84,	135.93,	135.55,	130.97,	125.13,	122.82,	121.22,	120.87,	116.13,
534	114.29,	94.12, 60).02, 54.1	9, 23.95						

535	N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)amino)phenyl)-2-(piperidin-1-yl)aceta-mino)phenyl -2-(piperidin-1-yl)aceta-mino)phenyl -2-(piperidin-1-yl)aceta-mino)ph
536	de (7b). Yield: 84%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for C ₂₂ H ₂₄ N ₄ O ₂ ,
537	376.1899; found, 377.1971; ¹ H NMR (400 MHz, DMSO- d_6) δ 10.97 (s, 1H), 9.71 (s,
538	1H), 8.56 (s, 1H), 8.11 (d, <i>J</i> = 7.8 Hz, 1H), 7.69 (d, <i>J</i> = 8.8 Hz, 2H), 7.49 (dd, <i>J</i> = 11.3,
539	4.1 Hz, 1H), 7.27 (t, J = 7.6 Hz, 3H), 7.20 – 7.13 (m, 1H), 5.55 (s, 1H), 3.07 (s, 2H),
540	2.50 (td, $J = 3.9$, 2.1 Hz, 4H), 1.62 – 1.53 (m, 4H), 1.45 – 1.37 (m, 2H). ¹³ C NMR (101
541	MHz, DMSO- <i>d</i> ₆) δ 168.97, 163.41, 150.99, 139.84, 135.76, 135.63, 130.97, 125.15,
542	122.83, 121.23, 120.81, 116.14, 114.30, 94.14, 63.14, 54.58, 25.94, 24.03.
543	$2\-morpholino\-N\-(4\-((2\-oxo\-1,2\-dihydroquinolin\-4\-yl)amino)phenyl) acetamide$
544	(7c). Yield: 80%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for $C_{21}H_{22}N_4O_3$,
545	378.1692; found, 379.1779; ¹ H NMR (400 MHz, MeOD) δ 8.08 (d, J = 7.9 Hz, 1H),

- 546 7.68 (d, J = 8.8 Hz, 2H), 7.57 (t, J = 7.2 Hz, 1H), 7.40 7.26 (m, 4H), 5.86 (s, 1H), 3.82
- $547 \quad -3.74 \ (m, \, 4H), \, 3.20 \ (s, \, 2H), \, 2.65 2.58 \ (m, \, 4H).$

555	2-(4-methylpiperazin-1-yl)-N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)amino)phenyl
556)acetamide (7e). Yield: 66%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for
557	$C_{22}H_{25}N_5O_2$, 391.2008; found, 392.2183; ¹ H NMR (400 MHz, DMSO- d_6) δ 10.96 (s,
558	1H), 9.72 (s, 1H), 8.55 (s, 1H), 8.10 (d, <i>J</i> = 7.9 Hz, 1H), 7.68 (d, <i>J</i> = 8.8 Hz, 2H), 7.49 (t,
559	<i>J</i> = 7.2 Hz, 1H), 7.26 (dd, <i>J</i> = 8.1, 6.2 Hz, 3H), 7.17 (t, <i>J</i> = 7.6 Hz, 1H), 5.54 (d, <i>J</i> = 1.3
560	Hz, 1H), 3.12 (s, 2H), 2.51 (s, 4H), 2.36 (d, <i>J</i> = 24.3 Hz, 4H), 2.18 (s, 3H).
561	2-(4-ethylpiperazin-1-yl)-N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)amino)phenyl)
562	acetamide (7f). Yield: 48%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for
563	$C_{23}H_{27}N_5O_2$, 405.2165; found, 406.2238; ¹ H NMR (400 MHz, DMSO- d_6) δ 10.97 (s,
564	1H), 9.74 (s, 1H), 8.56 (s, 1H), 8.11 (d, <i>J</i> = 8.0 Hz, 1H), 7.69 (d, <i>J</i> = 8.5 Hz, 2H), 7.50 (t,
565	<i>J</i> = 7.4 Hz, 1H), 7.27 (t, <i>J</i> = 7.4 Hz, 3H), 7.18 (t, <i>J</i> = 7.4 Hz, 1H), 5.55 (s, 1H), 3.13 (s,
566	2H), 2.52 (s, 4H), 2.45 (s, 4H), 2.34 (t, <i>J</i> = 14.1, 7.0 Hz, 2H), 1.00 (t, <i>J</i> = 7.1 Hz, 3H).
567	2-(4-acetylpiperazin-1-yl)-N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)amino)phenyl)
568	acetamide (7g). Yield: 80%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for
569	$C_{23}H_{25}N_5O_3$, 419.1957; found, 420.2037; ¹ H NMR (400 MHz, DMSO- d_6) δ 10.98 (s,
570	1H), 9.82 (s, 1H), 8.57 (s, 1H), 8.11 (d, <i>J</i> = 7.7 Hz, 1H), 7.70 (d, <i>J</i> = 8.8 Hz, 2H), 7.55 –
571	7.44 (m, 1H), 7.27 (dd, <i>J</i> = 7.9, 5.2 Hz, 3H), 7.20 – 7.13 (m, 1H), 5.55 (s, 1H), 3.50 (dd,
572	<i>J</i> = 10.1, 5.8 Hz, 4H), 3.18 (s, 2H), 2.58 – 2.52 (m, 2H), 2.50 – 2.46 (m, 2H), 2.00 (s,
573	3H). ¹³ C NMR (101 MHz, DMSO- d_6) δ 168.66, 168.49, 163.39, 150.98, 139.84, 135.77,
574	135.69, 130.98, 125.13, 122.83, 121.23, 120.95, 116.13, 114.29, 94.17, 61.92, 52.89,
575	46.07, 21.64.

576 2-(4-(dimethylamino)piperidin-1-yl)-N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)

577	<i>amino</i>)phenyl)acetamide (7h). Yield: 45%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated
578	for C ₂₄ H ₂₉ O ₅ N ₂ , 419.2321; found, 420.2393; ¹ H NMR (400 MHz, DMSO- d_6) δ 10.96 (s,
579	1H), 9.78 (s, 1H), 8.57 (s, 1H), 8.12 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 8.7 Hz, 2H), 7.50 (t,
580	<i>J</i> = 7.6 Hz, 1H), 7.27 (t, <i>J</i> = 7.6 Hz, 3H), 7.18 (t, <i>J</i> = 7.6 Hz, 1H), 5.55 (s, 1H), 3.16 (s,
581	2H), 3.02 – 2.95 (m, 2H), 2.87 – 2.77 (m, 1H), 2.57 (s, 6H), 2.22 (t, <i>J</i> = 11.2 Hz, 2H),
582	1.89 (d, $J = 11.7$ Hz, 2H), 1.73 – 1.60 (m, 2H). ¹³ C NMR (101 MHz, DMSO- d_6) δ
583	168.78, 163.50, 151.07, 139.70, 135.71, 135.63, 131.08, 125.14, 122.92, 121.36,
584	120.94, 116.15, 114.26, 94.08, 62.32, 61.68, 52.23, 40.61, 26.87.
585	tert-butyl 4-(2-oxo-2-((4-((2-oxo-1,2-dihydroquinolin-4-yl)amino)phenyl)amino)
586	<i>ethyl)piperazine-1-carboxylate (7i).</i> Yield: 82%; white solid; MS (ESI^+) : $[M + H]^+$
587	calculated for $C_{26}H_{31}O_5N_4$, 477.2376; found, 500.2272; ¹ H NMR (400 MHz, DMSO- d_6)
588	δ 11.00 (s, 1H), 9.93 (s, 1H), 8.65 (s, 1H), 8.16 (d, J = 8.1 Hz, 1H), 7.71 (d, J = 8.8 Hz,
589	2H), 7.50 (t, <i>J</i> = 7.7 Hz, 1H), 7.28 (dd, <i>J</i> = 11.4, 8.6 Hz, 3H), 7.17 (t, <i>J</i> = 7.3 Hz, 1H),
590	5.56 (s, 1H), 3.39 (s, 4H), 3.19 (s, 2H), 2.51 – 2.47 (m, 4H), 1.41 (s, 9H). ¹³ C NMR (101
591	MHz, DMSO-d ₆) δ 168.53, 163.44, 154.36, 151.04, 139.80, 135.77, 135.68, 130.97,
592	125.09, 122.95, 121.25, 120.89, 116.14, 114.31, 94.09, 79.30, 61.94, 52.89, 28.54.
593	N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)amino)phenyl)-2-((tetrahydro-2H-pyran-4
594	-yl)amino)acetamide (7j). Yield: 57%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for
595	$C_{22}H_{24}N_4O_3$, 392.1848; found, 393.1926; ¹ H NMR (400 MHz, DMSO- d_6) δ 10.96 (s,
596	1H), 9.87 (s, 1H), 8.55 (s, 1H), 8.10 (d, J = 7.8 Hz, 1H), 7.69 (d, J = 8.8 Hz, 2H), 7.49 (t,
597	<i>J</i> = 7.2 Hz, 1H), 7.26 (dd, <i>J</i> = 7.9, 5.2 Hz, 3H), 7.17 (t, <i>J</i> = 7.6 Hz, 1H), 5.54 (s, 1H),
500	

598 3.84 (dt, *J* = 11.4, 3.4 Hz, 2H), 3.33 (s, 2H), 3.28 (dd, *J* = 11.5, 2.1 Hz, 2H), 2.68 – 2.58

599	(m, 1H), 1.77 (d, $J = 12.5$ Hz, 2H), 1.31 (ddd, $J = 14.5$, 11.5, 3.7 Hz, 2H). ¹³ C NMR
600	(101 MHz, DMSO- d_6) δ 170.94, 163.42, 151.01, 139.83, 135.85, 135.53, 130.99,
601	125.26, 122.82, 121.25, 120.52, 116.15, 114.29, 94.11, 66.22, 53.84, 50.16, 33.56.
602	$2\-(diethylamino)\-N\-(4\-((2\-oxo\-1,2\-dihydroquinolin\-4yl)amino)phenyl) acetamide$
603	(7k). Yield: 45%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for $C_{21}H_{24}N_4O_2$,
604	364.1899; found, 365.1974; ¹ H NMR (400 MHz, MeOD) δ 8.13 – 8.08 (m, 1H), 7.69 (d,
605	<i>J</i> = 8.8 Hz, 2H), 7.58 (t, <i>J</i> = 7.7 Hz, 1H), 7.41 – 7.26 (m, 4H), 5.86 (s, 1H), 3.49 (s, 2H),
606	2.88 (q, J = 7.2 Hz, 4H), 1.20 (t, J = 7.2 Hz, 6H).
607	2-(ethy lamino)-N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)amino)phenyl) acetamide
608	(71). Yield: 47%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for $C_{19}H_{20}O_4N_2$,

336.1586; found, 337.1661; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.98 (s, 1H), 10.35 (s, 609

1H), 8.58 (s, 1H), 8.11 (d, *J* = 8.1 Hz, 1H), 7.66 (d, *J* = 8.7 Hz, 2H), 7.51 (t, *J* = 7.6 Hz, 610

- 1H), 7.29 (t, J = 9.0 Hz, 3H), 7.18 (t, J = 7.6 Hz, 1H), 5.58 (s, 1H), 3.80 (s, 2H), 2.94 (q, 611
- *J* = 7.1 Hz, 2H), 1.18 (dd, *J* = 9.0, 5.4 Hz, 3H). 612

613 General *procedure* for synthesis of diphenyl sulfide derivative. 2,4-dichloroquinoline (8). 4-hydroxyquinolin-2(1H)-one (10 g, 0.062 mol) was first put 614 in a round-bottom flask and POCl₃ (40 ml) was slowly pour into the flask in 1 hour 615 under stirring. After stirring for another 30 minutes, the black mixture was heated to 616 $100\square$ and stirred for another 6 hours. When it was cooled to room temperature, the 617 solution was removed under reduced pressure to afford an oil-like black product. Ice 618 NaHCO₃ saturated solution was added to the mixture slowly until no bubbles formed. 619 Ethyl acetate (100 ml) was added subsequently. The organic phase was separated, dried 620

621

over anhydrous Na₂SO₄, and then evaporated. Petroleum ether (200 ml) was added to

622	the crude product and stirred about 30 minutes. The mixture was filtered, then the filter
623	liquor was collected and dried in vacuum to obtain compound 8 as a yellow solid (7.9 g,
624	65% yield) without further purification. MS (ESI ⁺): $[M + H]^+$ calculated for C ₉ H ₅ NCl ₂ ,
625	196.9799; found, 197.9877.
626	4-chloroquinolin-2(1H)-one (9). Compound 8 (7.0 g, 0.035 mol) was dissolve in
627	1,4-dioxane (30 ml) in a round bottom flask and heated. Hydrochloric acid which
628	consist of 60% water (30 ml) then was added to the mixture after it was heated to $90\Box$.
629	The reaction mixture was stirred at $90\Box$ after the reaction was finished monitored by
630	TLC. Then the cloudy mixture was filtered to give a yellow filter cake until it was
631	cooled to room temperature. The resulted solid washed with 1,4-dioxane and water, and
632	dried under vacuum to afford the yellow solid (5.69 g, yield 90%). MS (ESI ⁺): $[M + H]^+$
633	calculated for C ₉ H ₆ NOCl, 179.0138; found, 180.0146. ¹ H NMR (400 MHz, DMSO- d_6)
634	δ 12.05 (s, 1H), 7.81 (dd, J = 8.1, 1.0 Hz, 1H), 7.60 (ddd, J = 8.4, 7.3, 1.3 Hz, 1H), 7.35
635	(d, J = 8.2 Hz, 1H), 7.32 – 7.27 (m, 1H), 7.03 (s, 1H).

4-((4-aminophenyl)thio)quinolin-2(1H)-one. (10). Compound 9 (5,0 g, 0.03 mol), 636 4-aminobenzenethiol (7.0 g, 0.06 mol) and K₂CO₃ (12.42g, 0.09 mol) were put in a 637 round bottom flask, then DMF (200 ml) was added. When the mixture was heated to 638 130, 4-chloroquinolin-2(1H)-one (5.37g, 0.03 mol) was added and stirred for another 639 6 hours. After the reaction was finished monitored by TLC, the mixture was cooled to 640 room temperature and 400 ml water was added to form a suspending mixture. Then 641 solid was collected through a filter. After purified by silica gel column chromatography 642

643	(DCM/MeOH=24:1), brown solid was afforded as compound 10 (4.66 g, yield 58%).
644	MS (ESI ⁺): $[M + H]^+$ calculated for $C_{15}H_{12}N_2OS$, 268.0670; found, 269.0678. ¹ H NMR
645	(400 MHz, DMSO- d_6) δ 11.53 (s, 1H), 7.82 (d, J = 7.6 Hz, 1H), 7.59 – 7.52 (m, 1H),
646	7.33 (d, <i>J</i> = 8.1 Hz, 1H), 7.23 (t, <i>J</i> = 7.7 Hz, 3H), 6.72 (d, <i>J</i> = 8.5 Hz, 2H), 5.74 (s, 2H),
647	5.56 (s, 1H).
648	2-chloro-N-(4 -((2 -oxo-1, 2 -dihydroquinolin- 4 -yl)thio)phenyl)acetamide (11).
649	Compound 11 was prepared as the same method as compound 6; brown solid, yield
650	95%. MS (ESI ⁺): $[M + H]^+$ calculated for $C_{17}H_{13}N_2O_2SCl$, 344.0386; found, 345.0392.
651	¹ H NMR (400 MHz, DMSO- d_6) δ 11.65 (s, 1H), 10.76 (s, 1H), 7.84 (dd, $J = 8.3, 3.2$ Hz,
652	3H), 7.67 – 7.54 (m, 3H), 7.36 (d, <i>J</i> = 8.2 Hz, 1H), 7.26 (t, <i>J</i> = 7.5 Hz, 1H), 5.58 (s, 1H),
653	4.34 (s, 2H).
654	General procedure for synthesis of compounds 12a-12l was same as compounds

654 General procedure for synthesis of compounds 12a-12l was same as compounds 655 7a-7l.

N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)thio)phenyl)-2-(pyrrolidin-1-yl)acetamide 656 (12a). Yield: 71%; white solid; MS (ESI⁺): $[M + H]^+$ calculated for C₂₁H₂₁N₃O₂S, 657 379.1354; found, 380.1424; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.62 (s, 1H), 10.04 (s, 658 1H), 7.87 (dd, *J* = 15.0, 8.2 Hz, 3H), 7.58 (t, *J* = 7.8 Hz, 3H), 7.35 (d, *J* = 8.0 Hz, 1H), 659 7.27 (d, J = 8.0 Hz, 1H), 5.57 (s, 1H), 3.30 (s, 2H), 2.61 (s, 4H), 1.77 (dd, J = 6.5, 3.2 Hz, 660 4H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 169.82, 162.77, 160.67, 152.46, 141.33, 138.48, 661 137.02, 131.70, 123.73, 122.42, 121.39, 120.86, 117.39, 116.33, 115.55, 60.07, 54.16, 662 23.95. 663

664 *N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)thio)phenyl)-2-(piperidin-1-yl)acetamide*

665	(12b). Yield: 75%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for $C_{22}H_{23}N_3O_2S$,
666	393.1511; found, 394.1588; ¹ H NMR (400 MHz, DMSO- d_6) δ 11.63 (s, 1H), 9.99 (s,
667	1H), 7.90 – 7.82 (m, 3H), 7.59 (ddd, <i>J</i> = 10.9, 6.2, 1.6 Hz, 3H), 7.35 (d, <i>J</i> = 7.7 Hz, 1H),
668	7.29 – 7.24 (m, 1H), 5.58 (s, 1H), 3.12 (s, 2H), 2.50 – 2.45 (m, 4H), 1.58 (dt, <i>J</i> = 11.0,
669	5.7 Hz, 4H), 1.42 (d, $J = 5.0$ Hz, 2H). ¹³ C NMR (101 MHz, DMSO- d_6) δ 169.68, 160.69,
670	152.48, 141.15, 138.46, 137.06, 131.72, 123.74, 122.45, 121.35, 120.96, 117.39,
671	116.34, 115.54, 63.18, 54.53, 25.90, 24.02.

6722-morpholino-N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)thio)phenyl)acetamide(12c).673Yield: 68%; white solid; MS (ESI⁺): $[M + H]^+$ calculated for C₂₁H₂₁N₃O₃S, 395.1304;674found, 396.1383; ¹H NMR (400 MHz, DMSO-d₆) δ 11.59 (s, 1H), 10.03 (s, 1H), 7.82675(dd, J = 11.4, 8.6 Hz, 3H), 7.55 (dd, J = 12.6, 8.0 Hz, 3H), 7.31 (d, J = 8.2 Hz, 1H), 7.22676(t, J = 7.6 Hz, 1H), 5.53 (s, 1H), 3.73 – 3.53 (m, 4H), 3.15 (s, 2H), 2.47 (s, 4H). ¹³C677NMR (101 MHz, DMSO-d₆) δ 169.16, 160.70, 152.49, 141.16, 138.46, 137.05, 131.71,678123.74, 122.45, 121.42, 121.03, 117.40, 116.35, 115.52, 66.55, 62.56, 53.62.

679 2-(4-methylpiperidin-1-yl)-N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)thio)phenyl)

680 *acetamide* (*12d*). Yield: 81%; white solid; MS (ESI⁺): $[M + H]^+$ calculated for 681 C₂₃H₂₅N₃O₂S, 407.1667; found, 408.1745; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.63 (s, 682 1H), 9.98 (s, 1H), 7.86 (dd, *J* = 10.6, 8.0 Hz, 3H), 7.62 – 7.55 (m, 3H), 7.35 (d, *J* = 7.7 683 Hz, 1H), 7.29 – 7.23 (m, 1H), 5.57 (d, *J* = 1.1 Hz, 1H), 3.13 (s, 2H), 2.85 (d, *J* = 11.6 Hz, 684 2H), 2.14 (t, *J* = 10.4 Hz, 2H), 1.60 (d, *J* = 10.2 Hz, 2H), 1.36 – 1.21 (m, 3H), 0.92 (d, *J* 685 = 6.1 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 169.71, 160.69, 152.48, 141.15, 686 138.46, 137.05, 131.71, 123.74, 122.45, 121.36, 120.96, 117.40, 116.34, 115.53, 62.80, 687 53.93, 34.26, 30.32, 22.27.

688	2-(4-methylpiperazin-1-yl)-N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)thio)phenyl)
689	acetamide (12e). Yield: 70%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for
690	$C_{22}H_{24}N_4O_2S$, 408.1620; found, 409.1700; ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) δ 11.67 (s,
691	1H), 10.19 (s, 1H), 7.86 (dd, <i>J</i> = 18.9, 8.2 Hz, 3H), 7.58 (t, <i>J</i> = 8.3 Hz, 3H), 7.38 (d, <i>J</i> =
692	8.2 Hz, 1H), 7.25 (t, <i>J</i> = 7.6 Hz, 1H), 5.57 (s, 1H), 3.17 (d, <i>J</i> = 7.6 Hz, 2H), 2.54 (s, 4H),
693	2.38 (s, 4H), 2.18 (s, 3H).
694	2-(4-ethylpiperazin-1-yl)-N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)thio)phenyl)
695	acetamide (12f). Yield: 68%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for
696	$C_{23}H_{26}N_4O_2S$, 422.1776; found, 423.1850; ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) δ 11.63 (s,

697 1H), 10.02 (s, 1H), 7.86 (t, J = 8.5 Hz, 3H), 7.65 – 7.52 (m, 3H), 7.35 (d, J = 8.1 Hz, 1H),

698 7.26 (t, J = 7.6 Hz, 1H), 5.57 (s, 1H), 3.17 (s, 2H), 2.55 (s, 4H), 2.44 (s, 4H), 2.34 (q, J

- 699 = 7.1 Hz, 2H), 1.00 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 169.35,
- 700 160.70, 152.50, 141.15, 138.44, 137.06, 131.72, 123.74, 122.46, 121.35, 120.99,

701 117.39, 116.35, 115.51, 62.33, 53.22, 52.62, 52.04, 12.42.

7022-(4-acetylpiperazin-1-yl)-N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)thio)phenyl)703acetamide (12g). Yield: 72%; white solid; MS (ESI⁺): $[M + H]^+$ calculated for704 $C_{23}H_{24}N_4O_3S$, 436.1569; found, 437.1685; ¹H NMR (400 MHz, DMSO- d_6) δ 11.63 (s,7051H), 10.09 (s, 1H), 7.86 (dd, J = 14.6, 8.3 Hz, 3H), 7.64 – 7.55 (m, 3H), 7.35 (d, J = 8.2706Hz, 1H), 7.25 (dd, J = 11.3, 4.1 Hz, 1H), 5.57 (s, 1H), 3.51 (dd, J = 10.1, 6.2 Hz, 4H),7073.23 (s, 2H), 2.59 – 2.53 (m, 2H), 2.49 (d, J = 9.3 Hz, 2H), 2.00 (s, 3H).

708 2-(4-(dimethylamino)piperidin-1-yl)-N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)thio)

709	<i>phenyl</i>)acetamide (12h). Yield: 68%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for
710	$C_{22}H_{28}N_4O_2S$, 436.1933; found, 437.2006; ¹ H NMR (400 MHz, DMSO- d_6) δ 11.64 (s,
711	1H), 10.06 (s, 1H), 7.87 (dd, <i>J</i> = 12.9, 8.5 Hz, 3H), 7.64 – 7.54 (m, 3H), 7.36 (d, <i>J</i> = 8.2
712	Hz, 1H), 7.26 (t, <i>J</i> = 7.5 Hz, 1H), 5.57 (s, 1H), 3.18 (s, 2H), 2.96 (d, <i>J</i> = 11.2 Hz, 2H),
713	2.52 (s, 1H), 2.37 (s, 6H), 2.19 (t, J = 11.2 Hz, 2H), 1.82 (d, J = 11.0 Hz, 2H), 1.66 –
714	1.52 (m, 2H). ¹³ C NMR (101 MHz, DMSO- d_6) δ 169.53, 160.72, 152.53, 141.17,
715	138.44, 137.04, 131.72, 123.73, 122.47, 121.42, 121.00, 117.40, 116.36, 115.49, 62.02,
716	52.62, 41.11, 27.54.
717	tert-butyl-4-(2-oxo-2-((4-((2-oxo-1,2-dihydroquinolin-4-yl)thio)phenyl)amino)

- 718 *ethyl)piperazine-1-carboxylate (12i).* Yield: 88%; white solid; MS (ESI⁺): $[M + H]^+$ 719 calculated for C₂₆H₃₀N₄O₄S, 494.1988; found, 495.2078; 1H NMR (400 MHz, 720 DMSO-*d*₆) δ 11.63 (s, 1H), 10.07 (s, 1H), 7.86 (dd, *J* = 10.9, 8.7 Hz, 3H), 7.59 (dd, *J* = 721 12.5, 8.0 Hz, 3H), 7.35 (d, *J* = 8.2 Hz, 1H), 7.26 (t, *J* = 7.6 Hz, 1H), 5.57 (s, 1H), 3.40
- 722 (m, 4H), 3.21 (s, 2H), 2.49 (m, 4H), 1.41 (s, 9H).
- *N*-(4-((2-oxo-1,2-dihydroquinolin-4-yl)thio)phenyl)-2-((tetrahydro-2H-pyran-4yl 723)-amino)acetamide (12j). Yield: 70%; white solid; MS (ESI⁺): $[M + H]^+$ calculated for 724 $C_{22}H_{23}N_3O_3S$, 409.1460; found, 410.1537; ¹H NMR (400 MHz, DMSO- d_6) δ 11.63 (s, 725 1H), 10.16 (s, 1H), 7.85 (dd, J = 13.4, 4.8 Hz, 3H), 7.68 – 7.51 (m, 3H), 7.35 (d, J = 7.8726 Hz, 1H), 7.30 – 7.21 (m, 1H), 5.57 (s, 1H), 3.84 (dt, *J* = 11.4, 3.4 Hz, 2H), 3.38 (s, 2H), 727 3.28 (m, 3H), 2.64 (ddd, J = 14.3, 10.2, 4.0 Hz, 1H), 1.82 – 1.74 (m, 2H), 1.36 – 1.23 (m, 728 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 171.69, 160.68, 152.48, 141.21, 138.47, 137.14, 729 131.70, 123.73, 122.43, 121.09, 120.84, 117.39, 116.34, 115.53, 66.21, 53.78, 50.27, 730

731 33.54.

732	2-(diethylamino)-N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)thio)phenyl)acetamide
733	(12k). Yield: 76%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for $C_{21}H_{23}N_3O_2S$,
734	381.1511; found, 382.1589; ¹ H NMR (400 MHz, DMSO- d_6) δ 11.63 (s, 1H), 9.95 (s,
735	1H), 7.87 (dd, <i>J</i> = 18.0, 8.4 Hz, 3H), 7.63 – 7.54 (m, 3H), 7.35 (d, <i>J</i> = 8.2 Hz, 1H), 7.30
736	– 7.21 (m, 1H), 5.58 (s, 1H), 3.21 (s, 2H), 2.63 (q, <i>J</i> = 7.1 Hz, 4H), 1.04 (t, <i>J</i> = 7.1 Hz,
737	6H). ¹³ C NMR (101 MHz, DMSO- d_6) δ 170.96, 160.68, 152.45, 141.01, 138.48, 137.06,
738	131.71, 123.74, 122.43, 121.33, 121.00, 117.40, 116.34, 115.56, 57.89, 48.26, 12.40.
739	2-(ethy lamino)-N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)thio)phenyl) acetamide
740	(121). Yield: 73%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for $C_{19}H_{19}N_3O_2S$,
741	353.1198; found, 354.1278; ¹ H NMR (400 MHz, DMSO- d_6) δ 11.62 (s, 1H), 10.03 (s,
742	1H), 7.86 (t, <i>J</i> = 9.1 Hz, 3H), 7.67 – 7.54 (m, 3H), 7.35 (d, <i>J</i> = 8.1 Hz, 1H), 7.25 (dd, <i>J</i>
743	= 11.3, 4.1 Hz, 1H), 5.57 (s, 1H), 3.33 (s, 2H), 2.60 (q, J = 7.1 Hz, 2H), 1.06 (t, J = 7.1
744	Hz, 3H). ¹³ C NMR (101 MHz, DMSO- d_6) δ 171.42, 160.68, 152.47, 141.27, 138.47,
745	137.13, 131.70, 123.73, 122.43, 121.11, 120.81, 117.39, 116.34, 115.53, 53.13, 43.79,
746	15.43.

General diphenyl 747 procedure for synthesis ether derivative. of 4-(4-nitrophenoxy)quinolin-2(1H)-one (13). 4-hydroxyquinolin-2(1H)-one (9.66 g, 748 0.06 mol) and K₂CO₃ (12.42 g, 0.09 mol) were put in a round bottom flask, then DMF 749 (200 ml) was added to heat to 100 . 1-fluoro-4-nitrobenzene (4.23 g, 0.03 mol) was 750 dissolve in another 20 ml DMF, and the solution was added to prepared mixture 751 dropwise in half an hour. The reaction mixture was stirring at room temperature for 752

753	another 6 hours. After the reaction was finished monitored by TLC, the mixture was
754	cooled to room temperature and 400 ml water was added to form a suspending mixture.
755	Then solid was collected through a filter. After drying through a vacuum drying oven, a
756	pale yellow solid was afforded as compound 13 (6.11 g, yield 72%). MS (ESI ⁺): $[M +$
757	H] ⁺ calculated for C ₁₅ H ₁₀ N ₂ O ₄ , 282.0641; found, 283.0719. ¹ H NMR (400 MHz,
758	DMSO- d_6) δ 11.75 (s, 1H), 8.37 (d, J = 7.4 Hz, 2H), 7.87 (d, J = 6.6 Hz, 1H), 7.62 (s,
759	1H), 7.55 (d, <i>J</i> = 6.8 Hz, 2H), 7.47 – 7.16 (m, 2H), 5.72 (s, 1H).
760	4-(4-aminophenoxy)quinolin-2(1H)-one (14). Compound 13 (5.66 g, 0.02 mol)
761	and iron Powder (4.48 g, 0.08 mol) was dispersed in 200 ml mixture solution
762	(MeOH/H ₂ O=9/1), then heated to 85 \Box . Concentrated hydrochloric acid (12 mol/L, 20
763	ml) was added to it dropwise at 85 during 20 minutes and stirring for another 4 hours.
764	After the reaction was finished monitored by TLC, the mixture was cooled to room
765	temperature and removed under reduced pressure to afford crude product. Then water
766	(100 ml) was added to it and stirring for 10 minutes. Then solid was collected through a
767	filter. After drying through a vacuum drying oven, a gray solid was afforded as
768	compound 14 (4.54 g, yield 90%). MS (ESI ⁺): $[M + H]^+$ calculated for $C_{15}H_{12}N_2O_2$,
769	252.0899; found, 253.0977. ¹ H NMR (400 MHz, DMSO- d_6) δ 11.60 (s, 1H), 7.95 (d, J
770	= 7.7 Hz, 1H), 7.60 (t, <i>J</i> = 7.4 Hz, 1H), 7.36 (q, <i>J</i> = 8.8 Hz, 5H), 7.25 (t, <i>J</i> = 7.3 Hz, 1H),
771	5.33 (s, 1H).

772 2-chloro-N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)phenyl)acetamide (15). 773 Compound 15 was prepared as the same method as compound 6; brown solid, yield 774 93%. MS (ESI⁺): $[M + H]^+$ calculated for C₁₇H₁₃N₂O₃Cl, 328.0615; found, 329.0711.

775	¹ H NMR (400 MHz, DMSO- d_6) δ 11.55 (s, 1H), 10.47 (s, 1H), 7.97 (d, $J = 8.1$ Hz, 1H),
776	7.74 (d, <i>J</i> = 8.6 Hz, 2H), 7.60 (t, <i>J</i> = 7.7 Hz, 1H), 7.35 (d, <i>J</i> = 8.2 Hz, 1H), 7.26 (dd, <i>J</i> =
777	14.6, 8.0 Hz, 3H), 5.32 (s, 1H), 4.29 (s, 2H).
778	General procedure for synthesis of compounds 16a-16o was same as compounds
779	<i>12a-12o</i> .
780	N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)phenyl)-2-(pyrrolidin-1-yl)acetamide
781	(16a). Yield: 46%; white solid; MS (ESI ⁺): $[M + H]$ + calculated for $C_{21}H_{21}N_3O_3$,
782	363.1583; found, 364.1657; ¹ H NMR (400 MHz, DMSO- d_6) δ 11.54 (s, 1H), 9.87 (s,
783	1H), 7.98 (d, <i>J</i> = 7.9 Hz, 1H), 7.81 (d, <i>J</i> = 8.8 Hz, 2H), 7.60 (t, <i>J</i> = 7.6 Hz, 1H), 7.36 (d,
784	<i>J</i> = 8.2 Hz, 1H), 7.25 (t, <i>J</i> = 8.8 Hz, 3H), 5.31 (s, 1H), 3.27 (s, 2H), 2.61 (s, 4H), 1.76 (s,
785	4H). ¹³ C NMR (101 MHz, DMSO- <i>d</i> ₆) δ 169.37, 163.95, 163.20, 148.76, 139.52, 137.20,
786	132.04, 122.78, 122.19, 122.00, 121.65, 115.84, 114.61, 100.29, 60.04, 54.19, 23.96.
787	N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy) phenyl)-2-(piperidin-1-yl) acetamide
788	(16b). Yield: 65%; white solid; MS (ESI ⁺): $[M + H]$ + calculated for C ₂₂ H ₂₃ N ₃ O ₃ ,
789	377.1739; found, 378.1815; ¹ H NMR (400 MHz, DMSO- d_6) δ 11.54 (s, 1H), 9.83 (s,
790	1H), 7.98 (d, <i>J</i> = 7.9 Hz, 1H), 7.80 (d, <i>J</i> = 8.9 Hz, 2H), 7.60 (t, <i>J</i> = 7.7 Hz, 1H), 7.36 (d,
791	<i>J</i> = 8.2 Hz, 1H), 7.25 (t, <i>J</i> = 7.3 Hz, 3H), 5.32 (s, 1H), 3.10 (s, 2H), 2.48 (s, 4H), 1.64 –
792	1.54 (m, 4H), 1.42 (d, $J = 4.8$ Hz, 2H). ¹³ C NMR (101 MHz, DMSO- d_6) δ 169.17,
793	163.94, 163.19, 148.81, 139.53, 137.05, 132.04, 122.78, 122.18, 122.04, 121.60,
794	115.84, 114.61, 100.31, 63.16, 54.58, 25.92, 24.04.
795	2-morpholino-N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)phenyl)acetamide(16c).

796 Yield: 60%; white solid; MS (ESI+): $[M + H]^+$ calculated for $C_{21}H_{21}N_3O_4$, 379.1532;

797	found, 380.1608; ¹ H NMR (400 MHz, DMSO- d_6) δ 11.59 (s, 1H), 10.03 (s, 1H), 7.82
798	(dd, J = 11.4, 8.6 Hz, 3H), 7.55 (dd, J = 12.6, 8.0 Hz, 3H), 7.31 (d, J = 8.2 Hz, 1H), 7.22
799	(t, $J = 7.6$ Hz, 1H), 5.53 (s, 1H), 3.73 – 3.53 (m, 4H), 3.15 (s, 2H), 2.47 (s, 4H). ¹³ C
800	NMR (101 MHz, DMSO- d_6) δ 168.66, 163.94, 163.20, 148.85, 139.52, 137.05, 132.05,
801	122.78, 122.20, 122.05, 121.70, 115.85, 114.60, 100.30, 66.56, 62.53, 53.67.
802	2-(4-methylpiperidin-1-yl)-N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)phenyl)-
803	acetamide (16d). Yield: 60%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for
804	$C_{23}H_{25}N_3O_3$, 391.1896; found, 392.1976; ¹ H NMR (400 MHz, DMSO- d_6) δ 11.55 (s,
805	1H), 9.82 (s, 1H), 7.97 (d, <i>J</i> = 7.8 Hz, 1H), 7.80 (d, <i>J</i> = 8.8 Hz, 2H), 7.60 (t, <i>J</i> = 7.4 Hz,
806	1H), 7.36 (d, J = 8.2 Hz, 1H), 7.25 (t, J = 7.1 Hz, 3H), 5.32 (s, 1H), 3.11 (s, 2H), 2.85 (d,
807	<i>J</i> = 11.4 Hz, 2H), 2.13 (t, <i>J</i> = 11.0 Hz, 2H), 1.59 (d, <i>J</i> = 11.1 Hz, 2H), 1.36 – 1.21 (m,
808	3H), 0.91 (d, $J = 5.9$ Hz, 3H). ¹³ C NMR (101 MHz, DMSO- d_6) δ 169.19, 163.94,
809	163.20, 148.81, 139.53, 137.05, 132.03, 122.78, 122.18, 122.04, 121.61, 115.84,
810	114.61, 100.30, 62.77, 53.97, 34.28, 30.34, 22.27.

2-(4-methylpiperazin-1-yl)-N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)phenyl)-a 811 cetamide (16e). Yield: 45%; white solid; MS (ESI⁺): $[M + H]^+$ calculated for 812 $C_{22}H_{24}N_4O_3$, 392.1848; found, 393.1922; ¹H NMR (400 MHz, DMSO- d_6) δ 11.54 (s, 813 1H), 9.89 (s, 1H), 7.97 (d, J = 7.3 Hz, 1H), 7.78 (d, J = 8.9 Hz, 2H), 7.64 – 7.56 (m, 1H), 814 7.36 (d, J = 8.2 Hz, 1H), 7.26 (dd, J = 7.5, 4.9 Hz, 3H), 5.31 (s, 1H), 3.19 (s, 2H), 2.63 815 (m, 8H), 2.35 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 168.67, 163.96, 163.25, 816 148.86, 139.48, 136.99, 132.08, 122.77, 122.25, 122.07, 121.66, 115.86, 114.59, 817 100.26, 61.56, 54.28, 51.83, 44.91. 818

819	2-(4-(tert-butyl)piperazin-1-yl)-N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)phen
820	yl)acetamide (16f). Yield: 46%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for
821	$C_{25}H_{30}N_4O_3$, 378.1692; found, 379.1732; ¹ H NMR (400 MHz, MeOD) δ 8.11 (d, $JJ =$
822	7.3 Hz, 1H), 7.77 (d, <i>JJ</i> = 8.9 Hz, 2H), 7.67 – 7.60 (m, 1H), 7.39 (d, <i>J</i> = 8.2 Hz, 1H),
823	7.34 (t, J = 7.7 Hz, 1H), 7.23 (d, J = 9.0 Hz, 2H), 5.57 (s, 1H), 3.30 (s, 2H), 3.16 (s, 4H),
824	2.86 (s, 4H), 1.32 (s, 9H). ¹³ C NMR (101 MHz, DMSO- d_6) δ 171.45, 168.71, 163.94,
825	163.19, 148.87, 139.53, 137.06, 132.05, 122.78, 122.19, 122.05, 121.71, 115.84,
826	114.60, 100.32, 61.93, 45.31, 42.01, 10.69, 7.43.

2-(4-(cyclopropanecarbonyl)piperazin-1-yl)-N-(4-((2-oxo-1,2-dihydroquinolin-4-827 yl)oxy)phenyl)acetamide (16g). Yield: 66%; white solid; MS (ESI⁺): $[M + H]^+$ 828 calculated for C₂₅H₂₆N₄O₄, 446.1954; found, 447.1894; ¹H NMR (400 MHz, DMSO-*d*₆) 829 δ 11.54 (s, 1H), 9.93 (s, 1H), 7.97 (d, J = 7.6 Hz, 1H), 7.80 (d, J = 8.1 Hz, 2H), 7.59 (d, 830 J = 7.2 Hz, 1H), 7.35 (d, J = 7.9 Hz, 1H), 7.25 (d, J = 7.4 Hz, 3H), 5.31 (s, 1H), 3.75 (s, 831 2H), 3.55 (s, 2H), 3.21 (s, 2H), 2.58 (s, 2H), 2.50 - 2.44 (m, 2H), 1.97 (s, 1H), 0.81 -832 0.58 (m, 4H). ¹³C NMR (101 MHz, DMSO- d_6) δ 168.70, 168.63, 163.95, 163.22, 833 148.87, 139.52, 137.05, 132.05, 122.78, 122.19, 122.05, 121.72, 115.85, 114.61, 834 100.30, 61.92, 53.32, 46.05, 21.64. 835

836 2-(4-(dimethylamino)piperidin-1-yl)-N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)837 *phenyl)acetamide (16h).* Yield: 41%; white solid; MS (ESI⁺): [M + H]⁺ calculated for 838 $C_{26}H_{28}N_4O_3$, 420.2161; found,421.2237; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.54 (s, 839 1H), 9.84 (s, 1H), 7.97 (d, *J* = 8.0 Hz, 1H), 7.79 (d, *J* = 8.8 Hz, 2H), 7.60 (t, *J* = 7.6 Hz, 840 1H), 7.35 (d, *J* = 8.2 Hz, 1H), 7.25 (t, *J* = 7.2 Hz, 3H), 5.31 (s, 1H), 3.12 (s, 2H), 2.92 (d,

841	<i>J</i> = 11.5 Hz, 2H), 2.51 (m, 1H), 2.26 (s, 6H), 2.16 (t, <i>J</i> = 11.2 Hz, 3H), 1.76 (d, <i>J</i> = 11.7
842	Hz, 2H), 1.54 (dd, $J = 20.4$, 11.4 Hz, 2H). ¹³ C NMR (101 MHz, DMSO- d_6) δ 169.00,
843	163.95, 163.20, 148.84, 139.52, 137.06, 132.06, 122.78, 122.21, 122.05, 121.69,
844	115.86, 114.60, 100.28, 62.08, 50.80, 41.09, 25.55.
845	tert-butyl 4-(2-oxo-2-((4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)phenyl)amino)
846	<i>ethyl)piperazine-1-carboxylate (16i).</i> Yield: 60%; white solid; MS (ESI ⁺): $[M + H]^+$
847	calculated for $C_{26}H_{30}N_4O_5$, 478.2216; found, 479.2274 ; ¹ H NMR (400 MHz,
848	DMSO- d_6) δ 11.54 (s, 1H), 9.90 (s, 1H), 7.97 (d, $J = 8.5$ Hz, 1H), 7.79 (d, $J = 8.9$ Hz,
849	2H), 7.62 – 7.56 (m, 1H), 7.35 (d, J = 8.2 Hz, 1H), 7.25 (dd, J = 8.1, 4.1 Hz, 3H), 5.30 (s,
850	1H), 3.39 (m, 4H), 3.18 (s, 2H), 2.49 (m, 4H), 1.40 (s, 9H). ¹³ C NMR (101 MHz,
851	DMSO- d_6) δ 168.69, 163.94, 163.21, 154.34, 148.86, 139.52, 137.04, 132.03, 122.78,
852	122.18, 122.04, 121.69, 115.85, 114.60, 100.30, 79.27, 62.01, 52.92, 28.54.
853	N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)phenyl)-2-((tetrahydro-2H-pyran-4-yl
854)amino)acetamide (16j). Yield: 45%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for
855	$C_{22}H_{23}N_{3}O_{4}$, 393.1689; found, 394.1782 ; ¹ H NMR (400 MHz, DMSO- d_{6}) δ 11.54 (s,
856	1H), 9.98 (s, 1H), 7.97 (d, <i>J</i> = 7.5 Hz, 1H), 7.78 (d, <i>J</i> = 8.9 Hz, 2H), 7.59 (t, <i>J</i> = 7.2 Hz,
857	1H), 7.35 (d, <i>J</i> = 8.2 Hz, 1H), 7.25 (dd, <i>J</i> = 7.8, 5.5 Hz, 3H), 5.31 (s, 1H), 3.84 (d, <i>J</i> =
858	11.3 Hz, 2H), 3.34 (d, <i>J</i> = 6.9 Hz, 2H), 3.30 – 3.24 (m, 2H), 2.64 (m, <i>J</i> = 10.3, 5.1 Hz,
859	1H), 1.77 (d, <i>J</i> = 11.4 Hz, 2H), 1.31 (dd, <i>J</i> = 19.3, 11.2 Hz, 2H). ¹³ C NMR (101 MHz,
860	DMSO- d_6) δ 163.95, 163.20, 148.91, 139.53, 137.01, 132.06, 122.77, 122.21, 122.06,
861	121.82, 115.87, 114.59, 100.29, 59.98, 52.91, 52.56, 45.91, 25.00.

862 2-(diethylamino)-N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)phenyl)acetamide

863	(16k). Yield: 55%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for $C_{21}H_{23}N_3O_3$,
864	365.1739; found, 366.1816; ¹ H NMR (400 MHz, DMSO- d_6) δ 11.54 (s, 1H), 9.79 (s,
865	1H), 7.97 (d, <i>J</i> = 7.3 Hz, 1H), 7.80 (d, <i>J</i> = 8.9 Hz, 2H), 7.62 – 7.57 (m, 1H), 7.35 (d, <i>J</i> =
866	8.2 Hz, 1H), 7.29 – 7.19 (m, 3H), 5.31 (s, 1H), 3.18 (s, 2H), 2.62 (q, <i>J</i> = 7.1 Hz, 4H),
867	1.04 (t, $J = 7.1$ Hz, 6H). ¹³ C NMR (101 MHz, DMSO- d_6) δ 170.37, 163.93, 163.19,
868	148.85, 139.53, 136.91, 132.03, 122.78, 122.17, 122.05, 121.57, 115.84, 114.61,
869	100.32, 57.81, 48.31, 40.65, 40.44, 40.23, 40.02, 39.82, 39.61, 39.40, 12.38.
870	2-(ethy lamino)-N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy) phenyl) acetamide
871	(161). Yield: 55%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for $C_{19}H_{19}N_3O_3$,
872	337.1426; found, 338.1505; ¹ H NMR (400 MHz, DMSO- d_6) δ 11.56 (s, 1H), 10.45 (s,
873	1H), 7.97 (d, <i>J</i> = 7.3 Hz, 1H), 7.76 (d, <i>J</i> = 8.9 Hz, 2H), 7.68 – 7.55 (m, 1H), 7.36 (d, <i>J</i> =
874	8.2 Hz, 1H), 7.32 – 7.21 (m, 3H), 5.31 (s, 1H), 3.77 (s, 2H), 2.91 (q, J = 7.2 Hz, 2H),
875	1.18 (t, $J = 7.2$ Hz, 3H). ¹³ C NMR (101 MHz, DMSO- d_6) δ 165.87, 163.87, 163.21,
876	149.18, 139.50, 136.55, 132.11, 122.77, 122.39, 122.26, 121.46, 115.87, 114.57,
877	100.33, 49.35, 42.86, 12.23.
878	N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy) phenyl)-2-(piperazin-1-yl) acetamide
879	(16m). Yield: 65%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for $C_{21}H_{22}N_4O_3$,
880	378.1692; found, 379.1721; ¹ H NMR (400 MHz, DMSO- d_6) δ 11.58 (s, 1H), 9.91 (s,
881	1H), 7.97 (d, <i>J</i> = 7.8 Hz, 1H), 7.80 (d, <i>J</i> = 8.7 Hz, 2H), 7.60 (t, <i>J</i> = 7.5 Hz, 1H), 7.36 (d,
882	<i>J</i> = 8.2 Hz, 1H), 7.25 (t, <i>J</i> = 6.9 Hz, 3H), 5.32 (s, 1H), 3.12 (s, 2H), 2.77 (s, 4H), 2.44 (s,
883	4H) 13 C NMR (101 MHz DMSO- d_s) δ 168 92 163 94 163 22 148 82 139 54 137 07

4H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.92, 163.94, 163.22, 148.82, 139.54, 137.07,

884 132.03, 122.78, 122.17, 122.03, 121.64, 115.87, 114.61, 100.31, 62.91, 54.37, 45.87.

885	2-(4-ethylpiperazin-1-yl)-N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)phenyl)-ace
886	<i>tamide (16n).</i> Yield: 38%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for $C_{23}H_{26}N_4O_3$,
887	406.2005; found, 407.2079; ¹ H NMR (400 MHz, DMSO- d_6) δ 11.55 (s, 1H), 9.96 (s,
888	1H), 7.97 (d, <i>J</i> = 7.8 Hz, 1H), 7.78 (d, <i>J</i> = 8.9 Hz, 2H), 7.61 (t, <i>J</i> = 7.7 Hz, 1H), 7.36 (d,
889	<i>J</i> = 8.2 Hz, 1H), 7.26 (t, <i>J</i> = 7.9 Hz, 3H), 5.30 (s, 1H), 3.31 (s, 2H), 3.02 (m, 6H), 2.83 (q,
890	4H), 1.20 (t, $J = 7.1$ Hz, 3H). ¹³ C NMR (101 MHz, DMSO- d_6) δ 171.10, 163.95, 163.22,
891	148.74, 139.52, 137.10, 132.05, 122.78, 122.20, 122.13, 121.31, 115.85, 114.61,
892	100.27, 66.22, 53.83, 50.14, 33.51.

2-(4-ethylpiperazin-1-yl)-N-(4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)phenyl)-ace 893 *tamide* (160). Yield: 53%; white solid; MS (ESI⁺): $[M + H]^+$ calculated for C₂₃H₂₄N₄O₄, 894 420.1798; found, 421.2087; ¹H NMR (400 MHz, DMSO- d_6) δ 11.54 (s, 1H), 9.92 (s, 895 1H), 7.97 (d, J = 7.7 Hz, 1H), 7.79 (d, J = 8.9 Hz, 2H), 7.60 (t, J = 7.2 Hz, 1H), 7.35 (d, 896 *J* = 8.2 Hz, 1H), 7.24 (dd, *J* = 7.9, 4.3 Hz, 3H), 5.31 (s, 1H), 3.51 (d, *J* = 4.1 Hz, 4H), 897 3.20 (s, 2H), 2.57 - 2.53 (m, 2H), 2.48 (d, J = 4.8 Hz, 2H), 2.00 (s, 3H).¹³C NMR (101) 898 MHz, DMSO-*d*₆) δ 168.39, 163.96, 163.22, 148.92, 139.50, 136.97, 132.09, 122.77, 899 122.24, 122.11, 121.72, 115.86, 114.58, 100.28, 60.74, 51.38, 51.25, 50.20, 40.64, 900 40.43, 40.22, 40.01, 39.80, 39.59, 39.38. 901

902 4-(2-fluoro-4-nitrophenoxy)quinolin-2(1H)-one (17a). 4-hydroxy-2 (1H) 903 -quinolinone (3.22 g, 0.02 mol) and K₂CO₃ (4.14 g, 0.03 mol) were dissolved in DMF 904 (200 ml) and stir at room temperature. Subsequently, 3,4-difluoronitrobenzene (4.77 g, 905 0.01 mol) was dissolved in another 20 ml of DMF and added dropwise to the previously 906 stirred reaction solution within half an hour.. After the reaction was stirred overnight at

907	room temperature and then monitored by TLC the next day, 400 ml of pure water was
908	added to it. Then solid was collected through a filter. After drying through a vacuum
909	drying oven, a pale yellow solid was afforded as compound 13 (5.11 g, yield 85%). MS
910	(ESI ⁺): $[M + H]^+$ calculated for C ₁₅ H ₉ FN ₂ O ₄ , 300.0546; found, 301.0623. ¹ H NMR
911	$(400 \text{ MHz}, \text{DMSO-}d_6) \delta 11.76 \text{ (s, 1H)}, 8.45 \text{ (dd, J} = 10.4, 2.7 \text{ Hz}, 1\text{H}), 8.22 \text{ (ddd, J} = 9.0,$
912	2.6, 1.3 Hz, 1H), 7.93 (dd, J = 8.0, 1.0 Hz, 1H), 7.81 – 7.72 (m, 1H), 7.68 – 7.58 (m, 1H),
913	7.40 (d, J = 8.2 Hz, 1H), 7.32 – 7.23 (m, 1H), 5.68 (s, 1H).
914	6-(2-fluoro-4-nitrophenoxy)quinolin-2(1H)-one (17b). Compound 17b was
915	prepared as the same method as compound 17a; brown solid, yield 82%. MS (ESI ⁺): [M
916	+ H] ⁺ calculated for C ₁₅ H ₉ FN ₂ O ₄ , 300.0546; found, 301.0623. ¹ H NMR (400 MHz,
917	DMSO- d_{δ}) δ 11.91 (s, 1H), 8.34 (dd, $J = 10.8, 2.7$ Hz, 1H), 8.09 – 8.02 (m, 1H), 7.88
918	(d, J = 9.6 Hz, 1H), 7.56 (d, J = 1.2 Hz, 1H), 7.43 (d, J = 2.3 Hz, 2H), 7.13 (t, J = 8.7
919	Hz, 1H), 6.56 (d, <i>J</i> = 9.6 Hz, 1H).
920	7-(2-fluoro-4-nitrophenoxy)quinolin-2(1H)-one (17c). Compound 17c was
921	prepared as the same method as compound 17a; brown solid, yield 86%. MS (ESI ⁺): [M
922	+ H] ⁺ calculated for $C_{15}H_9FN_2O_4$, 300.0546; found, 301.0623. ¹ H NMR (400 MHz,

- 923 DMSO- d_6) δ 11.73 (s, 1H), 8.40 (dd, J = 10.7, 2.7 Hz, 1H), 8.13 (ddd, J = 9.1, 2.6, 1.3
- 924 Hz, 1H), 7.92 (d, J = 9.6 Hz, 1H), 7.76 (d, J = 8.5 Hz, 1H), 7.39 (t, J = 8.6 Hz, 1H), 7.04
- 925 -6.97 (m, 2H), 6.46 (d, J = 9.5 Hz, 1H).
- 926 4-(4-amino-2-fluorophenoxy)quinolin-2(1H)-one (18a). Compound 18a was 927 prepared as the same method as compound 14; brown solid, yield 90%. MS (ESI⁺): [M 928 + H]⁺ calculated for $C_{15}H_{11}FN_2O_2$, 270.0805; found, 271.0883. ¹H NMR (400 MHz,

	929	DMSO- d_6) δ 11.60 (s	, 1H), 7.95 (d,	J = 7.7 Hz, 1H),	7.60 (t, $J = 7.4$ Hz,	1H), 7.36 (q, J
--	-----	---------------------------------	-----------------	------------------	------------------------	-----------------

930 = 8.8 Hz, 5H), 7.25 (t, J = 7.3 Hz, 1H), 5.33 (s, 1H).

931 6-(4-amino-2-fluorophenoxy)quinolin-2(1H)-one (18b). Compound 18b was 932 prepared as the same method as compound 14; brown solid, yield 90%. MS (ESI⁺): [M 933 + H]⁺ calculated for C₁₅H₁₁FN₂O₂, 270.0805; found, 271.0883. ¹H NMR (400 MHz, 934 DMSO-*d*₆) δ 11.87 (s, 1H), 7.88 (d, *J* = 9.5 Hz, 1H), 7.45 – 7.35 (m, 2H), 7.31 (d, *J* = 935 6.8 Hz, 2H), 7.25 – 7.12 (m, 2H), 6.52 (d, *J* = 9.4 Hz, 1H).

936 7-(*4-amino-2-fluorophenoxy*)*quinolin-2(1H)-one* (*18c*). Compound 18c was 937 prepared as the same method as compound 14; brown solid, yield 90%. MS (ESI⁺): [M 938 + H]⁺ calculated for C₁₅H₁₁FN₂O₂, 270.0805; found, 271.0883. ¹H NMR (400 MHz, 939 DMSO-*d*₆) δ 11.59 (s, 1H), 7.86 (d, J = 9.5 Hz, 1H), 7.67 (d, J = 8.5 Hz, 1H), 7.33 (dd, 940 J = 15.3, 8.0 Hz, 2H), 7.14 (d, J = 7.4 Hz, 1H), 6.91 – 6.77 (m, 2H), 6.38 (d, J = 9.4 Hz, 941 1H).

942 2-chloro-N-(3-fluoro-4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)phenyl)acetamide

(19a). Compound 19a was prepared as the same method as compound 15; brown solid,
yield 95%. MS (ESI⁺): [M + H]⁺ calculated for C₁₇H₁₂FN₂O₃Cl, 346.0520; found,
347.0599. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.63 (s, 1H), 10.69 (s, 1H), 7.92 (dd, J =
56.5, 9.6 Hz, 2H), 7.62 (s, 1H), 7.47 (s, 2H), 7.37 (d, J = 7.3 Hz, 1H), 7.27 (s, 1H), 5.35
(s, 1H), 4.31 (s, 2H).

948 2-*chloro-N*-(3-*fluoro-4*-((2-*oxo-1*,2-*dihydroquinolin-6*-*yl*)*oxy*)*phenyl*)*acetamide* 949 (19b). Compound 19b was prepared as the same method as compound 15; brown solid, 950 yield 95%. MS (ESI⁺): $[M + H]^+$ calculated for C₁₇H₁₂FN₂O₃Cl, 346.0520; found,

- 951 347.0599. ¹H NMR (400 MHz, DMSO- d_6) δ 11.80 (s, 1H), 11.31 (s, 1H), 7.83 (dd, J =
- 952 17.0, 5.7 Hz, 2H), 7.46 (d, J = 8.7 Hz, 1H), 7.37 (d, J = 8.9 Hz, 1H), 7.25 (dd, J = 8.9,
- 953 2.5 Hz, 1H), 7.18 (dd, *J* = 15.0, 5.7 Hz, 2H), 6.48 (d, *J* = 9.5 Hz, 1H), 4.36 (s, 2H).
- 954 2-chloro-N-(3-fluoro-4-((2-oxo-1,2-dihydroquinolin-7-yl)oxy)phenyl)acetamide
- 955 (19c). Compound 19c was prepared as the same method as compound 15; brown solid,
- 956 yield 95%. MS (ESI⁺): $[M + H]^+$ calculated for C₁₇H₁₂FN₂O₃Cl, 346.0520; found,
- 957 347.0599. ¹H NMR (400 MHz, DMSO- d_6) δ 11.50 (s, 1H), 11.01 (s, 1H), 7.84 (s, 2H),
- 958 7.64 (d, J = 8.3 Hz, 1H), 7.45 (s, 1H), 7.33 (d, J = 8.3 Hz, 1H), 6.80 (dd, J = 40.5, 13.0
- 959 Hz, 2H), 6.36 (d, J = 8.9 Hz, 1H), 4.34 (s, 2H).
- 960 General procedure for synthesis of compounds 20a-20o, 21a-21c and 22a-22c
 961 was same as compounds 16a-16o.
- 962 *N-(3-fluoro-4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)phenyl)-2-(pyrrolidin-1-yl)a*
- 963 *cetamide* (20*a*). Yield: 72%; white solid; MS (ESI⁺): $[M + H]^+$ calculated for
- 964 $C_{21}H_{20}FN_3O_3$, 381.1489; found, 382.1565; ¹H NMR (400 MHz, DMSO- d_6) δ 11.70 (s,
- 965 1H), 10.53 (s, 1H), 7.96 (dd, *J* = 19.8, 5.3 Hz, 2H), 7.62 (d, *J* = 7.1 Hz, 2H), 7.43 (t, *J* =
- 966 8.7 Hz, 2H), 7.27 (s, 1H), 5.34 (s, 1H), 3.44 (s, 2H), 2.70 (s, 4H), 1.78 (s, 4H).

967 N-(3-fluoro-4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)phenyl)-2-(piperidin-1-yl)ac968 *etamide* (20b). Yield: 86%; white solid; MS (ESI⁺): $[M + H]^+$ calculated for 969 $C_{22}H_{22}FN_3O_3$, 395.1645; found, 396.1721; ¹H NMR (400 MHz, DMSO- d_6) δ 11.61 (s, 970 1H), 10.26 (s, 1H), 7.97 (dd, J = 9.0, 6.3 Hz, 2H), 7.62 (dd, J = 12.0, 4.8 Hz, 2H), 7.41 971 (q, J = 8.9 Hz, 2H), 7.27 (t, J = 8.0 Hz, 1H), 5.34 (s, 1H), 3.13 (s, 2H), 2.49 – 2.42 (m, 972 4H), 1.61 – 1.52 (m, 4H), 1.40 (d, J = 4.8 Hz, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ

973	163.03, 162.99, 154.75, 152.30, 139.50, 138.50, 138.40, 135.39, 135.27, 132.20,
974	124.49, 122.70, 122.36, 116.71, 115.98, 114.03, 108.70, 108.47, 99.71, 54.13, 24.90,
975	23.30.

976	N-(3-fluoro-4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)phenyl)-2-morpholino-aceta
977	<i>mide</i> (20c). Yield: 82%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for $C_{21}H_{20}FN_3O_4$,
978	397.1438; found, 398.1525; ¹ H NMR (400 MHz, DMSO- d_6) δ 11.67 (s, 1H), 10.31 (s,
979	1H), 7.97 (ddd, <i>J</i> = 15.4, 10.6, 1.6 Hz, 2H), 7.66 – 7.55 (m, 2H), 7.42 (dd, <i>J</i> = 18.4, 9.1
980	Hz, 2H), 7.31 – 7.21 (m, 1H), 5.34 (s, 1H), 3.70 – 3.58 (m, 4H), 3.20 (s, 2H), 2.57 –
981	2.52 (m, 4H). ¹³ C NMR (101 MHz, DMSO- d_6) δ 169.17, 163.08, 163.04, 154.72,
982	152.28, 139.47, 138.68, 138.58, 135.24, 135.12, 132.20, 124.39, 122.70, 122.37,
983	116.73, 115.98, 114.04, 108.73, 108.50, 99.66, 66.53, 62.34, 53.58.

N-(3-fluoro-4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)phenyl)-2-(4-methyl-piperidi 984 *n-1-yl*)acetamide (20d). Yield: 81%; white solid; MS (ESI⁺): $[M + H]^+$ calculated for 985 $C_{23}H_{24}FN_{3}O_{3}$, 409.1802; found, 410.1879; ¹H NMR (400 MHz, DMSO- d_{6}) δ 11.66 (s, 986 1H), 10.36 (s, 1H), 8.04 – 7.89 (m, 2H), 7.61 (dd, J = 14.2, 7.3 Hz, 2H), 7.42 (dd, J = 987 20.1, 8.7 Hz, 2H), 7.27 (t, J = 7.6 Hz, 1H), 5.34 (s, 1H), 3.17 (d, J = 4.2 Hz, 2H), 2.92 (s, 988 2H), 2.26 (s, 2H), 1.61 (d, J = 11.8 Hz, 2H), 1.30 (dd, J = 21.9, 10.5 Hz, 3H), 0.92 (d, J 989 = 6.0 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 163.04, 163.01, 154.74, 152.30, 990 139.50, 138.61, 138.51, 135.28, 135.16, 132.19, 124.42, 122.70, 122.34, 116.68, 991 115.97, 114.04, 108.68, 108.46, 99.70, 53.73, 33.75, 30.04, 22.14. 992 N-(3-fluoro-4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)phenyl)-2-(4-methyl-piperazi 993

994 n-1-yl)acetamide (20e). Yield: 48%; white solid; MS (ESI⁺): $[M + H]^+$ calculated for

995	$C_{22}H_{23}FN_4O_3$, 410.1754; found, 411.1821; ¹ H NMR (400 MHz, DMSO- d_6) δ 11.67 (s,
996	1H), 10.28 (s, 1H), 7.96 (dd, <i>J</i> = 19.0, 10.6 Hz, 2H), 7.60 (dd, <i>J</i> = 16.8, 8.6 Hz, 2H),
997	7.42 (dd, <i>J</i> = 16.5, 8.4 Hz, 2H), 7.27 (t, <i>J</i> = 7.5 Hz, 1H), 5.34 (s, 1H), 3.19 (s, 2H), 2.55
998	(s, 4H), 2.44 (s, 4H), 2.21 (s, 3H). ¹³ C NMR (101 MHz, DMSO- d_6) δ 169.30, 163.04,
999	154.73, 152.29, 139.50, 138.72, 138.62, 135.21, 135.08, 132.18, 124.39, 122.70,
1000	122.33, 116.66, 115.97, 114.04, 108.65, 108.42, 99.69, 62.01, 54.81, 52.86, 45.96.
1001	2-(4-(cyclopropanecarbonyl) piperazin-1-yl)-N-(3-fluoro-4-((2-oxo-1,2-dihydro-q))))
1002	<i>uinolin-4-yl)oxy)phenyl)acetamide (20f).</i> Yield: 90%; white solid; MS (ESI ⁺): $[M + H]^+$
1003	calculated for $C_{25}H_{25}FN_4O_4$, 464.1860; found, 465.1940; ¹ H NMR (400 MHz,
1004	DMSO- d_6) δ 11.70 (s, 1H), 10.53 (s, 1H), 8.02 – 7.94 (m, 2H), 7.62 (t, $J = 8.0$ Hz, 2H),
1005	7.44 (t, <i>J</i> = 8.7 Hz, 2H), 7.27 (t, <i>J</i> = 7.4 Hz, 1H), 5.34 (s, 1H), 3.74 (s, 2H), 3.53 (s, 2H),
1006	3.27 (s, 2H), 2.59 (s, 2H), 1.98 (s, 1H), 0.71 (m, 4H). ¹³ C NMR (101 MHz, DMSO- <i>d</i> ₆)
1007	δ 171.48, 163.02, 162.77, 154.77, 152.33, 139.49, 138.50, 138.40, 135.37, 135.25,
1008	132.22, 124.47, 122.72, 122.35, 116.76, 115.92, 114.05, 108.81, 108.58, 99.72, 61.68,
1009	45.07, 41.82, 10.69, 7.44.

1010 2-(4-acetylpiperazin-1-yl)-N-(3-fluoro-4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)-p 1011 henyl)acetamide (20g). Yield: 88%; white solid; MS (ESI⁺): $[M + H]^+$ calculated for 1012 $C_{25}H_{25}FN_4O_4$, 438.1703; found, 439.1784; ¹H NMR (400 MHz, DMSO- d_6) δ 11.69 (s, 1013 1H), 10.46 (s, 1H), 7.97 (t, J = 10.6 Hz, 2H), 7.62 (s, 2H), 7.47 – 7.39 (m, 2H), 7.27 (t, 1014 J = 7.5 Hz, 1H), 5.34 (s, 1H), 3.50 (d, J = 3.8 Hz, 4H), 3.26 (s, 2H), 2.56 (s, 2H), 2.50 – 1015 2.46 (m, 2H), 2.00 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 169.20, 168.63, 163.04, 1016 154.72, 152.28, 139.50, 138.72, 138.62, 135.24, 135.11, 132.19, 124.39, 122.70,

1017	122 34 116 70 115 07 114 04 108 71 108 40 00 60 61 73 53 24 46 05 21 64
1017	122.34, 116.70, 115.97, 114.04, 108.71, 108.49, 99.69, 61.73, 53.24, 46.05, 21.64.

1018	2-(4-(dimethylamino)piperidin-1-yl)-N-(3-fluoro-4-((2-oxo-1,2-dihydroquinolin
------	---

- 1019 4-yl)oxy phenyl) acetamide (20h). Yield: 48%; white solid; MS (ESI⁺): $[M + H]^+$
- 1020 calculated for $C_{24}H_{27}FN_4O_3$, 438.2067; found, 439.2140; ¹H NMR (400 MHz,
- 1021 DMSO- d_6) δ 11.67 (s, 1H), 10.39 (s, 1H), 8.02 7.92 (m, 2H), 7.66 7.57 (m, 2H), 7.43
- 1022 (dd, J = 17.8, 8.7 Hz, 2H), 7.27 (dd, J = 11.2, 4.1 Hz, 1H), 5.34 (s, 1H), 3.24 (s, 2H),
- 1023 3.00 (s, 3H), 2.66 (s, 6H), 2.24 (t, *J* = 11.4 Hz, 2H), 2.00 (d, *J* = 10.9 Hz, 2H), 1.77 (dd,
- 1024 J = 11.9, 3.2 Hz, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 169.33, 163.05, 154.72,
- 1025 152.27, 139.49, 138.73, 138.63, 135.22, 135.09, 132.21, 124.39, 122.70, 122.37,
- 1026 116.70, 115.98, 114.03, 108.71, 108.48, 99.67, 62.43, 61.30, 51.83, 39.49, 26.01.

1027 *tert-butyl4-(2-((3-fluoro-4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)phenyl)amino)-*

- 1028 2-oxoethyl)piperazine-1-carboxylate (20i). Yield: 85%; white solid; MS (ESI⁺): [M +
- 1029 H⁺ calculated for C₂₆H₂₉FN₄O₅, 496.2122; found, 497.2205; ¹H NMR (400 MHz,
- 1030 DMSO- d_6) δ 11.63 (s, 1H), 10.08 (s, 1H), 7.95 (dd, J = 30.0, 10.2 Hz, 2H), 7.58 (dd, J =

1031 20.2, 7.5 Hz, 2H), 7.49 – 7.19 (m, 3H), 5.34 (s, 1H), 3.40 (s, 4H), 3.20 (s, 2H), 2.50 (s,

- 1032 4H), 1.41 (s, 9H). ¹³C NMR (101 MHz, DMSO- d_6) δ 169.13, 163.01, 154.77, 154.34,
- 1033 152.33, 139.49, 138.43, 135.33, 132.22, 124.44, 122.73, 122.33, 116.74, 115.92,
- 1034 114.05, 108.79, 108.58, 99.72, 79.27, 61.98, 52.89, 43.72, 28.53.

1035 2-(4-(tert-butyl)piperazin-1-yl)-N-(3-fluoro-4-((2-oxo-1,2-dihydroquinolin-4-yl)o1036 xy)phenyl)acetamide (20*j*). Yield: 79%; white solid; MS (ESI⁺): [M + H]⁺ calculated 1037 for C₂₅H₂₉FN₄O₃, 452.2224; found, 453.2300; ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.69 1038 (s, 1H), 10.33 (s, 1H), 7.95 (dd, *J* = 19.0, 5.3 Hz, 2H), 7.61 (t, *J* = 7.3 Hz, 2H), 7.45 –

1039	7.38 (m, 2H), 7.26 (t, <i>J</i> = 7.5 Hz, 1H), 5.33 (s, 1H), 3.15 (s, 2H), 2.52-2.42 (, 8H), 1.01
1040	(s, 9H). ¹³ C NMR (101 MHz, DMSO- d_6) δ 169.35, 163.03, 154.72, 152.29, 139.51,
1041	138.72, 135.08, 132.19, 124.38, 122.70, 122.34, 116.71, 115.98, 114.04, 108.69, 99.69,
1042	62.17, 53.98, 45.56, 36.27, 26.09.
1043	2-(diethylamino)-N-(3-fluoro-4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)phenyl)-ac
1044	etamide (20k). Yield: 75%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for
1045	$C_{21}H_{22}FN_{3}O_{3}$, 383.1645; found, 384.1722; ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) δ 11.67 (s,
1046	1H), 10.32 (s, 1H), 7.97 (ddd, J = 15.5, 10.6, 1.6 Hz, 2H), 7.67 – 7.58 (m, 2H), 7.48 –
1047	7.37 (m, 2H), 7.27 (dd, <i>J</i> = 11.3, 4.0 Hz, 1H), 5.35 (s, 1H), 2.70 (d, <i>J</i> = 5.8 Hz, 4H), 1.06
1048	(t, $J = 7.1$ Hz, 6H). ¹³ C NMR (101 MHz, DMSO- d_6) δ 163.03, 163.01, 154.76, 152.32,
1049	139.51, 138.49, 138.39, 135.32, 135.20, 132.18, 124.43, 122.70, 122.33, 116.68,
1050	115.97, 114.04, 108.68, 108.45, 99.72, 57.01, 48.27, 11.99.
1051	2-(ethylamino)-N-(3-fluoro-4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)phenyl)
1052	acetamide (201). Yield: 62%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for
1053	$C_{19}H_{18}FN_{3}O_{3}$, 355.1332; found, 356.1407; ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) δ 11.63 (s,
1054	1H), 7.99 (d, <i>J</i> = 7.3 Hz, 1H), 7.92 (dd, <i>J</i> = 13.1, 2.3 Hz, 1H), 7.66 – 7.59 (m, 1H), 7.54
1055	(dd, J = 8.9, 1.4 Hz, 1H), 7.44 (t, J = 8.9 Hz, 1H), 7.37 (d, J = 8.2 Hz, 1H), 7.27 (t, J =
1056	7.4 Hz, 1H), 5.34 (s, 1H), 3.33 (s, 3H), 2.60 (q, <i>J</i> = 7.1 Hz, 2H), 1.06 (t, <i>J</i> = 7.1 Hz, 3H).
1057	N-(3-fluoro-4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy) phenyl)-2-(piperazin-1-yl)achorresponses and the second seco
1058	etamide (20m). Yield: 95%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for
1059	$C_{21}H_{21}FN_4O_3$, 396.1598; found, 397.1874; ¹ H NMR (400 MHz, DMSO- d_6) δ 10.04 (s,

1060 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.91 (d, J = 13.0 Hz, 1H), 7.65 – 7.51 (m, 2H), 7.47 – 7.33

1061	(m, 2H), 7.26 (t, <i>J</i> = 7.6 Hz, 1H), 5.34 (s, 1H), 3.13 (s, 2H), 2.79 (s, 4H), 2.46 (s, 4H).
1062	N-(3-fluoro-4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy) phenyl)-2-((tetrahydro-2H-product)) phenyl) phenyl) phenyl)-2-((tetrahydro-2H-product)) phenyl) phenyl phenyl) phenyl) phenyl phenyl) phenyl
1063	yran-4-yl)amino)acetamide (20n). Yield: 64%; white solid; MS (ESI ⁺): $[M + H]^+$
1064	calculated for $C_{21}H_{21}FN_4O_3$, 411.1594; found, 412.1878; ¹ H NMR (400 MHz,
1065	DMSO- d_6) δ 11.63 (s, 1H), 10.16 (s, 1H), 7.99 (dd, $J = 8.0, 1.0$ Hz, 1H), 7.93 (dd, $J =$
1066	13.1, 2.3 Hz, 1H), 7.65 – 7.59 (m, 1H), 7.54 (dd, <i>J</i> = 8.9, 1.4 Hz, 1H), 7.44 (t, <i>J</i> = 8.9 Hz,
1067	1H), 7.37 (d, <i>J</i> = 8.1 Hz, 1H), 7.27 (dd, <i>J</i> = 11.6, 4.5 Hz, 1H), 5.34 (s, 1H), 3.84 (dt, <i>J</i> =
1068	11.4, 3.4 Hz, 2H), 3.33 (s, 2H), 3.28 (dd, <i>J</i> = 11.5, 2.0 Hz, 3H), 2.64 (ddd, <i>J</i> = 14.3, 10.2,
1069	4.0 Hz, 1H), 1.77 (dd, <i>J</i> = 12.5, 1.7 Hz, 2H), 1.35 – 1.25 (m, 2H).
1070	2-(4-ethylpiperazin-1-yl)-N-(3-fluoro-4-((2-oxo-1,2-dihydroquinolin-4-yl)oxy)-ph
1071	envl)acetamide (200). Yield: 53%; white solid; MS (ESI ⁺): $[M + H]^+$ calculated for
1072	$C_{21}H_{21}FN_4O_3$, 424.1911; found, 425.1987; ¹ H NMR (400 MHz, DMSO- d_6) δ 11.70 (s,
1073	1H), 10.42 (s, 1H), 8.02 – 7.92 (m, 2H), 7.66 – 7.57 (m, 2H), 7.43 (t, <i>J</i> = 9.0 Hz, 2H),
1074	7.30 – 7.23 (m, 1H), 5.34 (s, 1H), 3.36 (s, 4H), 3.23 (s, 2H), 2.63 (m, 6H), 1.06 (m, 3H).
1075	¹³ C NMR (101 MHz, DMSO- d_6) δ 169.21, 163.05, 154.72, 152.28, 139.50, 138.71,
1076	138.61, 135.22, 135.10, 132.19, 124.39, 122.70, 122.35, 116.66, 115.98, 114.04,
1077	108.68, 108.45, 99.68, 61.74, 52.23, 52.04, 51.76, 11.58.

- $1078 \qquad \qquad 2-(4-(cyclopropanecarbonyl)piperazin-1-yl)-N-(3-fluoro-4-((2-oxo-1,2-dihydro-q_{1-1})-yl)-N-(3-fluoro-4-((2-1))-yl)-N-(3-fluoro-4-((2-1))-N-(3-fluoro-4-((2-1))-yl)-N-(3-fluoro-4-((2-1))-N-(3-fluoro-4-(($
- 1079 *uinolin-6-yl)oxy)phenyl)acetamide (21a).* Yield: 90%; white solid; MS (ESI⁺): [M +]
- 1080 HJ^+ calculated for C₂₅H₂₅FN₄O₄, 464.1860; found, 465.1941; ¹H NMR (400 MHz,
- 1081 DMSO- d_6) δ 11.73 (s, 1H), 9.99 (s, 1H), 7.88 7.79 (m, 2H), 7.43 (d, J = 8.9 Hz, 1H),
- 1082 7.32 (d, J = 8.9 Hz, 1H), 7.26 (dd, J = 8.9, 2.6 Hz, 1H), 7.22 7.13 (m, 2H), 6.50 (d, J = 100

- 1083 9.6 Hz, 1H), 3.74 (s, 2H), 3.54 (s, 2H), 3.20 (s, 2H), 2.56 (s, 2H), 2.50 (s, 2H), 1.97 (m,
- 1084 J = 12.6, 7.7, 4.8 Hz, 1H), 0.77 0.69 (m, 4H).
- 1085 *tert-butyl* 4-(2-((3-fluoro-4-((2-oxo-1,2-dihydroquinolin-6-yl)oxy)phenyl)amino)
- 1086 -2-oxoethyl)piperazine-1-carboxylate (21b). Yield: 78%; white solid; MS (ESI⁺): [M +
- 1087 H_{26}^{+} calculated for C₂₆H₂₉FN₄O₅, 496.2122; found, 497.2261; ¹H NMR (400 MHz,
- 1088 DMSO- d_6) δ 11.73 (s, 1H), 9.98 (s, 1H), 7.83 (t, J = 10.4 Hz, 2H), 7.42 (d, J = 8.6 Hz,
- 1089 1H), 7.35 7.22 (m, 2H), 7.17 (dd, *J* = 17.8, 8.7 Hz, 2H), 6.49 (d, *J* = 9.5 Hz, 1H), 3.38
- 1090 (s, 4H), 3.17 (s, 2H), 2.48 (d, J = 4.9 Hz, 4H), 1.40 (s, 9H).
- 1091 2-(4-(tert-butyl)piperazin-1-yl)-N-(3-fluoro-4-((2-oxo-1,2-dihydroquinolin-6-yl)o
- 1092 *xy*)*phenyl*)*acetamide* (21*c*). Yield: 65%; white solid; MS (ESI⁺): $[M + H]^+$ calculated
- 1093 for C₂₅H₂₉FN₄O₃, 452.2224; found, 453.2299; ¹H NMR (400 MHz, DMSO- d_6) δ 11.73
- 1094 (s, 1H), 10.00 (s, 1H), 7.82 (t, J = 12.0 Hz, 2H), 7.47 7.08 (m, 5H), 6.50 (d, J = 9.6 Hz,

1095 1H), 3.48 (s, 2H), 3.32 (s, 2H), 3.09 (s, 4H), 2.70 (s, 2H), 1.34 (s, 9H).

- 1096 2-(4-(cyclopropanecarbonyl)piperazin-1-yl)-N-(3-fluoro-4-((2-oxo-1,2-dihydro-q
- 1097 *uinolin-7-yl)oxy)phenyl)acetamide (22a).* Yield: 92%; white solid; MS (ESI⁺): [M +]

1098 H]⁺ calculated for C₂₅H₂₅FN₄O₄, 464.1860; found, 465.1940; ¹H NMR (400 MHz,

- 1099 DMSO- d_6) δ 11.48 (s, 1H), 10.06 (s, 1H), 7.91 7.81 (m, 2H), 7.64 (d, J = 8.7 Hz, 1H),
- 1100 7.50 (d, J = 8.8 Hz, 1H), 7.30 (t, J = 9.0 Hz, 1H), 6.84 (dd, J = 8.6, 2.3 Hz, 1H), 6.76 (d,
- 1101 J = 2.1 Hz, 1H), 6.36 (d, J = 9.5 Hz, 1H), 3.74 (s, 2H), 3.54 (s, 2H), 3.21 (s, 2H), 2.57 (s,
- 1102 2H), 2.50 2.45 (m, 2H), 2.03 1.91 (m, 1H), 0.78 0.64 (m, 4H).
- 1103 *tert-butyl4-(2-((3-fluoro-4-((2-oxo-1,2-dihydroquinolin-7-yl)oxy)phenyl)amino)-*
- 1104 2-oxoethyl)piperazine-1-carboxylate (22b). Yield: 86%; white solid; MS (ESI⁺): [M +

1105	H] ⁺ calculated for $C_{26}H_{29}FN_4O_5$, 496.2122; found, 497.2205; ¹ H NMR (400 MHz,
1106	DMSO- d_6) δ 11.48 (s, 1H), 10.03 (s, 1H), 7.86 (dd, $J = 11.5$, 5.6 Hz, 2H), 7.64 (d, $J = 11.5$, 7.
1107	8.6 Hz, 1H), 7.49 (d, <i>J</i> = 8.9 Hz, 1H), 7.30 (t, <i>J</i> = 9.0 Hz, 1H), 6.84 (dd, <i>J</i> = 8.6, 2.1 Hz,
1108	1H), 6.76 (s, 1H), 6.36 (d, <i>J</i> = 9.5 Hz, 1H), 3.37 (d, <i>J</i> = 13.9 Hz, 4H), 3.19 (s, 2H), 2.48
1109	(s, 3H), 1.40 (s, 9H).
1110	2-(4-(tert-butyl)piperazin-1-yl)-N-(3-fluoro-4-((2-oxo-1,2-dihydroquinolin-7-yl)o
1111	<i>xy)phenyl)acetamide (22c).</i> Yield: 75%; white solid; MS (ESI^{+}) : $[M + H]^{+}$ calculated
1112	for C ₂₅ H ₂₉ FN ₄ O ₃ , 452.2224; found, 453.2300; ¹ H NMR (400 MHz, DMSO- d_6) δ 11.50
1113	(s, 1H), 10.05 (s, 1H), 7.89 – 7.80 (m, 2H), 7.65 (d, <i>J</i> = 8.7 Hz, 1H), 7.48 (d, <i>J</i> = 8.8 Hz,
1114	1H), 7.31 (t, <i>J</i> = 9.0 Hz, 1H), 6.83 (dd, <i>J</i> = 8.6, 2.4 Hz, 1H), 6.77 (d, <i>J</i> = 2.1 Hz, 1H),
1115	6.36 (d, J = 9.5 Hz, 1H), 3.59 – 3.39 (m, 2H), 3.32 (s, 2H), 3.11 (d, J = 39.2 Hz, 4H),
1116	2.70 (s, 2H), 1.32 (s, 9H).

1117

1118 **5.2 Biology**

1119 Cell culture

Rat kidney interstitial fibroblasts (NRK-49F cell line) were cultured in
Dulbecco's Modified Eagle's Medium (DMEM) medium supplemented with 10% fetal
bovine serum (FBS) and antibiotics (100 µg/ml streptomycin, and 100 U/ml penicillin
G) in a 37□ atmosphere of 95% humidified air and 5% CO₂.

Mouse fibroblast L929 were cultured in minimum Eagle's medium (MEM)
medium supplemented with 10% fetal bovine serum (FBS) and antibiotics (100 µg/ml
streptomycin, and 100 U/ml penicillin G) in a 37□ atmosphere of 95% humidified air

1127 and 5% CO₂.

1128 Collagen accumulation inhibition rate *in vitro*.

The anti-fibrosis activities of the compounds were tested in NRK-49F cells. 1129 NRK-49F cells were subcultured in DMEM medium containing penicillin 10% FBS. 1130 50 U/ml penicillin and streptomycin in 50 ug/ml, and incubated in 5% CO₂ and 37°C 1131 incubators. Then the NRK-49F cells were covered with 96 orifice plates (1×10^4) 1132 cells/hole), cultured with DMEM plus 5% FBS medium for three days. Then the 1133 supernatant was removed and DMEM plus 1% ITS was added for other two days. 1134 Next the supernatant was removed and the DMEM plus 1% ITS medium containing 1135 TGF- β (5 ng/ml) with or without 10 μ M tested compounds to be tested was cultured 1136 for two days. Then removed the supernatant and added 4% paraformaldehyde (100 1137 µl/hole) and fixed cells for thirty minutes at room temperature. Next cells were 1138 washed with PBS twice and 0.1% PSR dye solution (100 µl/hole) was added into cells, 1139 which were then incubated at room temperature for 4 h. Then removed of the dyeing 1140 liquid, added 0.1% acetic acid (100 µl/ hole) three times to clean excess dye, dryed 1141 and photographed cells under a microscope camera. Last, added 0.1 M NaOH (100 µl/ 1142 hole), shaked and dissolved at room temperature for thirty minutes. Determine of each 1143 hole OD under wavelength 540 nm to test which compound could inhibit collagen 1144 deposition. Total collagen accumulation inhibition = (Administration A value - control 1145 A value) / (model A value - control A value) ×100%. All assays were repeated in 1146 triplicate. 1147

1148 Cell Survival Rate Measured by MTT Assay.

1149	The NRK-49F cells were plated in a 96-well plate at a density of 0.5 \times 10^5
1150	cells/ml in a 100 μl suspension and cultured overnight and the experimental group
1151	were added drugs at the concentration of 10 $\mu M.$ After 72 h, 20 μl of 5% (m/v) MTT
1152	solution was added to each well and incubated for 4 hours in the incubator. Then each
1153	well was added 150 μ l DMSO-d6. Finally, the absorbance (A value) of each well was
1154	measured on a microplate reader. Survival rate=Administration A value - Zero A value)
1155	/ (Blank A value - Zero A value) $\times 100\%$. All assays were repeated in triplicate.
1156	Inhibition of L929 Cells Migration Assay

1157 L929 cells were grown on a 35 mm dish to 100% confluence and then scratched 1158 to form a 100 μ m wound using sterile pipette tips. The cells were then cultured in the 1159 presence or absence of TGF- β (5 ng/ml) and compounds (10 μ M) in serum-free media 1160 for 24 h. Images of the cells were taken at 0, 12 and 24 h using a light microscope 1161 (Nikon, Japan).

1162 Western Blot Analysis.

The protein lysates were harvested using RIPA buffer with 1 mM 1163 phenylmethanesulfonyl fluoride (PMSF) and protease inhibitor cocktail, the protein 1164 concentration was determined by a bicinchoninic acid (BCA) kit. Same Proteins (30-1165 40 µg) of each sample were separated on 10%-12% SDS/PAGE gels at 80 V for 20 1166 minutes and then turn to 120 V for 1 h. And proteins were transferred onto PVDF 1167 membranes at 80-100 V for 1.5 h, membranes were blocked in 5% (wt/vol) dried milk 1168 in PBS with 1‰ Tween 20 and then incubated with the indicated primary antibodies 1169 at 4°C overnight. After incubation with HRP-conjugated secondary antibodies, 1170

1171	immunoreactive bands were detected with the SuperLumia ECL Plus HRP Substrate
1172	Kit Solution (K22030, ABBKine). Primary antibodies used were: α -SMA (251411,
1173	ZENBIO), collagen I (14695-1-AP, Proteintech), p-smad3 (AF3363, Affinity),
1174	p-smad2 (18338S, CST), Smad2 (5339S, CST), Smad3 (9523S, CST), p-p38 (ab4822,
1175	abcam), p38 (ab170099, abcam), ERK1/2 (ab17942, abcam), p-ERK1/2 (340767,
1176	ZENBIO), β-actin (AB2001, Abways), GAPDH (AB0037, Abways), secondary
1177	antibodies used were: Goat Anti-Rabbit IgG (H+L) HRP (AB0101, Abways), Goat
1178	Anti-Mouse IgG (H+L) HRP (AB0102, Abways).

1179 Bleomycin-Induced Lung Fibrosis Model.

Male C57BL/6 mice were obtained from Chengdu Dossy Experimental Animals 1180 CO, LTD, and 8-week-old mice were used in all experiments. C57BL/6 mice were 1181 randomly divided into eight groups (n=10 each group). Lung fibrosis was induced in 1182 male C57BL/6 mice by a single intratracheal instillation of 3 U/kg of bleomycin in 1183 0.075 mL of saline, and control mice received an equal volume of saline only. There 1184 are six groups of drug treatments: mice were orally administered daily with nintedanib 1185 (50 mg/kg), 20f (50 mg/kg) and 20f (100 mg/kg) from day 1 to day 30 (prevention 1186 model) or day 8 to day 21 (treatment model). 1187

1188 Hydroxyproline Assay

1189 The collagen contents in right lungs of mice were measured with a conventional 1190 Hydroxyproline assay kit (Nanjing Jiancheng Bioengineering Institute, A030-2). In a 1191 word, the right lungs were dried and acid hydrolyzed, then the residue was filtered

and the pH value was adjusted to 6.5-8.0. The hydroxyproline analysis was performed 1192 using chloramine-T spectrophotometric absorbance. 1193

1194 **Hematoxylin-Eosin** Staining (**H**&E staining), Massion Staining and **Immunohistochemistry Staining** 1195

1196 Left lungs were fixed in 10% formalin for 24 h and embedded in paraffin. Then lung sections (5 µm) were prepared and stained with hematoxylin-eosin staining and 1197 Masson's trichrome staining, and also incubated with the antibody at $4\Box$ overnight for 1198 immunohistochemistry staining. Images were collected using an upright transmission 1199 1200 fluorescence microscope. <^C

1201

Abbreviations 1202

FDA, Food and Drug Administration; TGF- β , transforming growth factor- β ; 1203 ECM, extracellular matrix; α-SMA, α-smooth muscle actin; p.o., per os; VEGFR, 1204 Vascular Endothelial Growth Factor Receptor 2; FGFR, Fibroblast growth factor 1205 receptor-3; PDGFR, Platelet-derived growth factor receptor; LOXL2, lysyl 1206 oxidase-like 2; rt, room temperature; DMF, N, N-Dimethylformamide; TBAB, 1207 tetrabutylammonium bromide; TMS, Tetramethylsilane; SAR, structure-activity 1208 relationship; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; SD, 1209 Standard Deviation; IC₅₀, Inhibitory concentration 1210 50; TLC, thin-layer chromatography; UV, ultraviolet; NMR, nuclear magnetic resonance; MS (ESI), 1211 electrospray ionization mass spectrometry; DMSO, Dimethyl sulfoxide; ITS, 1212 Insulin-Transferrin-Selenium; PVDF, polyvinylidene fluoride; PK, pharmacokinetics. 1213

1214 Acknowledgment

- 1215 The authors greatly appreciate the financial support from Drug Innovation Major
- 1216 Project (2018ZX09721002-001-004), National Natural Science (81874297) and 1.3.5
- 1217 project for disciplines of excellence (ZY2017202), West China Hospital, Sichuan
- 1218 University.
- 1219 **Reference**
- 1220 [1] L. David, M. Fernando. Idiopathic Pulmonary Fibrosis. N. Engl. J. Med. 379
- 1221 (2018) 797-798.
- 1222 [2] D Cécile, M. Toby. Recent advances in understanding idiopathic pulmonary1223 fibrosis. F1000Res. 5 (2016).
- 1224 [3] Z.L. Wang. Advances in understanding of idiopathic pulmonary fibrosis. Chin
- 1225 Med J. 122 (2009) 844-857.
- [4] R. Luca, H.R. Collard, M.G. Jones. Idiopathic pulmonary fibrosis. Lancet. 389(2017) 1941-1952.
- 1228 [5] F.J. Martinez, M.D. Martinez, et al. Randomized trial of acetylcysteine in
 1229 idiopathic pulmonary fibrosis. N. Engl. J. Med. 370 (2014) 2093-2101.
- 1230 [6] G. Raghu, K.J. Anstrom, T.E. King, et al. Prednisone, azathioprine, and
- 1231 N-acetylcysteine for pulmonary fibrosis. N. Engl. J. Med. 366 (2012) 1968–1977.
- 1232 [7] G. Raghu, K.K. Brown, W.Z. Bradford, et al. A placebo-controlled trial of
- 1233 interferon gamma-1b in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med.
- 1234 350 (2004) 125-133.
- 1235 [8] I. Noth, K.J. Anstrom, S.B. Calvert, et al. A placebo-controlled randomized trial of

- warfarin in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 186 (2012)88-95.
- 1238 [9] B.G. Fulton, C.J. Ryerson. Managing comorbidities in idiopathic pulmonary
- 1239 fibrosis. Int. J. Gen. Med. 8 (2015) 309-318.
- 1240 [10] D.A. Zisman, M. Schwarz, K.J. Anstrom, et al. A controlled trial of sildenafil in
- advanced idiopathic pulmonary fibrosis. N. Engl. J. Med. 363 (2010) 620-628.
- 1242 [11] G.J. Roth, A. Heckel, F. Colbatzky, et al. Design, synthesis, and evaluation of
- 1243 indolinones as triple angiokinase inhibitors and the discovery of a highly specific
- 1244 6-methoxycarbonyl-substituted indolinone (BIBF 1120). J. Med. Chem. 52 (2009)
- 1245 4466-4480.
- 1246 [12] I.A. Dimitroulis. Nintedanib: a novel therapeutic approach for idiopathic1247 pulmonary fibrosis. Respir Care. 59 (2014) 1450-1455.
- 1248 [13] L. Richeldi, R.M. Du Bois, G. Raghu, et al. Efficacy and safety of nintedanib in
- idiopathic pulmonary fibrosis. N. Engl. J. Med. 370 (2014) 2071-2082.
- 1250 [14] G.J. Roth, R. Binder, F. Colbatzky, et al. Nintedanib: from discovery to the clinic.
- 1251 J. Med. Chem. 58 (2015) 1053-1063.
- 1252 [15] T. Ogura, A. Azuma, Y. Inoue, et al. All-case post-marketing surveillance of 1371
- 1253 patients treated with pirfenidone for idiopathic pulmonary fibrosis. Respir. Investig.
- 1254 53 (2015) 232-241.
- 1255 [16] E.K. Talmadge, A. Pardo, M. Selman. Idiopathic Pulmonary fibrosis. Lancet. 3781256 (2011) 1949-1961.
- 1257 [17] X.H. Li, C. Lu, S.W. Liu, et al. Synthesis and discovery of a drug candidate for

- 1258 treatment of idiopathic pulmonary fibrosis through inhibition of TGF-β1 pathway. Eur
- 1259 J. Med. Chem. 157 (2018) 229-247.
- 1260 [18] R.E. Gilbert, Y. Zhang, S.J. Williams, et al. A purpose-synthesised anti-fibrotic
- agent attenuates experimental kidney diseases in the rat. PLOS ONE. 7, e47160.
- 1262 [19] D.X. Deng, H.Y. Pei, T.X. Lan, et al. Synthesis and discovery of new compounds
- 1263 bearing coumarin scaffold for the treatment of pulmonary fibrosis. Eur. J. Med. Chem.
- 1264 2019. https://doi.org/10.1016/j.ejmech.2019.111790.
- 1265 [20] I. Noth, K.J. Anstrom, S.B. Calvert, et al. Idiopathic pulmonary fibrosis clinical
- 1266 network (IPFnet). A placebo-controlled randomized trial of warfarin in idiopathic
- 1267 pulmonary fibrosis. Am. J. Respir. Crit. Care. Med. 186 (2012) 88–95.
- 1268 [21] L Sun, Ngoc Tran, C X Liang, et al. Design, synthesis, and evaluations of
- 1269 substituted 3-[(3- or 4-Carboxyethylpyrrol-2-yl)methylidenyl]indolin-2-ones as
- 1270 Inhibitors of VEGF, FGF, and PDGF receptor tyrosine kinases. J. Med. Chem. 42
- 1271 (1999) 5120-5130.
- 1272 [22] G.A. Freeman, C.W. Andrews III, A.L. Hopkins, et al. Design of Non-nucleoside
- 1273 Inhibitors of HIV-1 Reverse Transcriptase with Improved Drug Resistance Properties.
- 1274 J. Med. Chem. 47 (2004) 5923-5936.
- 1275 [23] N. Brown. Bioisosteres and scaffold hopping in medicinal chemistry. Mol.
 1276 Inform. 33 (2014) 458-462.
- 1277 [24] Q. Xu, J.T. Norman, S. Shrivastav, et al. In vitro models of TGF-beta-induced
- 1278 fibrosis suitable for high-throughput screening of antifibrotic agents. AJP: Renal
- 1279 Physiology. 293 (2007) F631-F640.

- 1280 [25] H.B. Xiao, R.H. Liu, G.H. Ling, et al. HSP47 regulates ECM accumulation in
- renal proximal tubular cells induced by TGF-beta1 through ERK1/2 and JNK MAPK
- 1282 pathways. Am. J. Physiol. Renal. Physiol. 303 (2012) F757-F765.
- 1283 [26] J.F. Dhainaut, J. Charpentier, J.D. Chiche. Transforming growth factor-beta: a
- mediator of cell regulation in acute respiratory distress syndrome. Crit Care Med. 31
- 1285 (2003) S258-264.
- 1286 [27] I.A. Darby, O. Skalli, G. Gabbiani. Alpha-smooth muscle actin is transiently
- 1287 expressed by myofibroblasts during experimental wound healing. Lab. Invest. 63
- 1288 (1990) 21-29.
- 1289 [28] G. Gabbiani. The myofibroblast in wound healing and fibro contractive diseases.
- 1290 J. Pathol. 200 (2003) 500-503.
- 1291 [29] N. Venkatesan, L. Pini, M.S. Ludwig. Changes in Smad expression and
- 1292 subcellular localization in bleomycin-induced pulmonary fibrosis. Am. J. Physiol.
- 1293 Lung Cell Mol. Physiol. 287 (2004) L1342-1347.
- 1294 [30] T. Hayashida, M. Decaestecker, H.W. Schnaper. Cross-talk between ERK MAP
- kinase and Smad signaling pathways enhances TGF-beta-dependent responses in
 human mesangial cells. FASEB J. 17 (2003) 1576-1578.
- 1297 [31] N.A. Bhowmick, R. Zent, M. Ghiassi, et al. Integrin beta 1 signaling is necessary
- 1298 for transforming growth factor-beta activation of p38 MAPK and epithelial plasticity.
- 1299 J. Biol. Chem. 276 (2001) 46707-46713.
- 1300 [32] T. Hayashida, M.H. Wu, A. Pierce, et al. MAP-kinase activity necessary for
- 1301 TGF-beta1-stimulated mesangial cell type I collagen expression requires

adhesion-dependent phosphorylation of FAK tyrosine 397. J. Cell. Sci. 120 (2007)

1303 4230-4240.

Journal Prevention

Highlights

- Hybridization of 2(1H)-quinolone skeleton and hydrophobic group of nintedanib.
- Successful application of bioisosteres reduced toxicity of compounds.
- Anti-fibrosis by inhibiting TGF- β /Smad dependent and independent pathways.
- Excellent anti-fibrotic effect under both prevention and treatment model in vivo.

and tree.

Declaration of Interest Statement

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work.

Journal Pre-proof