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ABSTRACT: The iridium-catalyzed asymmetric hydrogenation of 2-aryl allyl phthalimides to afford enantioenriched β-aryl-β-
methyl amines is presented. Recently developed Ir-MaxPHOX catalysts are used for this enantioselective transformation. The
mild reaction conditions and the feasible removal of the phthalimido group makes this catalytic method easily scalable and of
great interest to afford chiral amines. The importance of this new methodology is exemplified by the formal synthesis of (R)-
Lorcaserin, OTS514, and enantiomerically enriched 3-methyl indolines.

The biological activity of many pharmaceutical compounds
and agrochemicals is intrinsically related to their absolute

molecular configuration.1 The asymmetric synthesis of chiral
compounds is, therefore, an essential field in organic chemistry.
In particular, chiral β-aryl propanamines are extremely
interesting candidates as precursors of pharmaceuticals and
active molecules:2 for example, Lorcaserin, an anorectic drug
that has been typically synthesized by chiral resolution;3

OTS514, a marketed inhibitor of a serine-threonine kinase that
is often overexpressed and transactivated in several types of
cancer;4 and LY-392098, a potent positive allosteric modulator
of 2-amino-3-(5-methyl-3-hydroxyisoxazol-4-yl)-propanoic
acid (AMPA) receptor.5 Moreover, we can envision the
synthesis of several drug intermediates such as 3-methylindo-
lines in few steps from β-aryl propanamines (Figure 1).
Among the strategies to obtain enantioenriched β-aryl

propanamines, catalytic asymmetric hydrogenation provides

one of the most practical and powerful approaches due to its
operational simplicity, high reactivity, and atom economy.6

However, most of the syntheses found in the literature are
performed by means of chiral resolution or by using
stoichiometric agents.7 To the best of our knowledge, there
are only few examples in which enantioenriched β-aryl
propanamines can be obtained by metal-catalyzed enantiose-
lective hydrogenation.8 In 2005, Zhang and co-workers
reported the asymmetric hydrogenation of 2-alkyl allyl
phthalimides using a Ru−C3−tunephos catalyst.8a However,
the scope of this reaction was focused on alkyl groups, and the
single example of 2-aryl allyl phthalimide gave only 55% ee of
the corresponding β-methylpropanamine. More recently, our
group reported the hydrogenation of N-sulfonyl allyl amines
using the iridium complex of Pfaltz’s catalyst Ubaphox.8d

Iridium complexes bearing chiral P,N ligands9 have been
successfully applied in the asymmetric hydrogenation of a wide
range of unfunctionalized or minimally functionalized olefins.10

Our group has developed several P-stereogenic chiral ligands.11

Recently, we designed a family of P,N-ligands (MaxPHOX)
that were coordinated to iridium.12 These catalysts can be
obtained from protected tert-butyl methyl phosphinous acid
and commercially available amino acids and amino alcohols.
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Figure 1. Examples of biologically active compounds containing a
chiral β-methyl amine.

Letter

pubs.acs.org/OrgLettCite This: Org. Lett. XXXX, XXX, XXX−XXX

© XXXX American Chemical Society A DOI: 10.1021/acs.orglett.9b03865
Org. Lett. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
M

E
L

B
O

U
R

N
E

 o
n 

N
ov

em
be

r 
8,

 2
01

9 
at

 1
8:

39
:3

9 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

pubs.acs.org/OrgLett
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.orglett.9b03865
http://dx.doi.org/10.1021/acs.orglett.9b03865


These iridium complexes have three chiral centers, so up to
four diastereoisomers (catalysts 1−4, Figure 2) can be

obtained. Moreover, the substituent of the oxazoline ring can
be easily modified. This variety of structures facilitates the fine-
tuning of the catalyst. This strategy has allowed us to find an
excellent catalyst for the enantioselective hydrogenation of
cyclic enamides12a and N-aryl12b and N-alkyl12c imines.
Moreover, these catalysts also proved to be extremely efficient
in the isomerization of cyclic allyl carbamates, yielding high
levels of enantioselectivity.12d

Here, we present the asymmetric hydrogenation of N-
phthalimido 2-aryl allyl amines using an Ir-MaxPHOX catalyst
to obtain chiral β-methyl amines. It is worth noting that, in this
occasion, the best catalyst of the family (2c) had not been
described. To showcase the applicability of this reaction, the
formal enantioselective synthesis of several biologically active
compounds was performed.
On the basis of our studies, N-phthalimido 2-phenyl allyl

amine (5a), which is easily synthesized in three steps from
acetophenone (see Supporting Information), was used as the
model substrate. The family of Ir-MaxPHOX catalysts was then
used for the asymmetric hydrogenation of 5a to afford chiral
amine 6a (Table 1). The standard conditions of the reaction
were as follows: dichloromethane as solvent, 1 bar of H2
pressure, and stirring overnight. The Ir-MaxPHOX catalysts
with an isopropyl in the oxazoline ring 1−4a were first tested
(Table 1, entries 1−4). All of them showed full conversion to
6a. In particular, catalyst 2a gave the best ee (64% ee, Table 1,
entry 2). Of note is the huge difference between the catalysts in
terms of chiral induction achieved by simply modifying the
relative configuration of their chiral centers. We then modified
the oxazoline substituent of 2 into an aromatic group, such as
phenyl (2b) or bulkier group such as tert-butyl (2c). In the first
case, the reactivity was not affected, but the enantioselectivity
was substantially improved (Table 1, entry 5). With 2c, the
enantiomeric excess was enhanced up to 90% without affecting
the conversion (Table 1, entry 6). The synthesis of this ligand
is described in the Supporting Information. Then we studied
the effect of the hydrogen pressure: when increased to 50 barG,
the enantioselectivity was not affected (Table 1, entry 7).
Finally, catalyst loading was decreased to 1 mol % and a

solvent screening was performed at 1 bar of H2. With
dichloromethane the conversion after 12 h was still complete
(Table 1, entry 8); in contrast, with ethyl acetate or THF, the
reactivity decreased to 60% and 5%, respectively (Table 1,
entries 9 and 10). Using dichloromethane the reaction
temperature could be decreased to −20 °C, affording 6a
with an excellent 98% ee and full conversion (Table 1, entry
11).
A mechanistic study of this reaction using D2 revealed that

the hydrogenation occurred exclusively to the allylic bond and
that there was no prior isomerization to the corresponding
enamide (see Supporting Information).
With the optimal conditions in hand, we studied the scope

of the reaction. As seen in Scheme 1, halide-substituted aryl
groups were well-tolerated, with excellent enantioselectivities
in all cases (6b to 6e, Scheme 1). The catalyst loading for the
substrates with bromine (5d) and iodine (5e) had to be
increased to 2 mol % to ensure full conversion. Electron-
donating substituents such as methyl (6f) or isobutyl (6m)
gave 97% and 98% ee, respectively (Scheme 1). We then
expanded the substrates to meta-substituted aryl groups. Again,
and using only 1 mol % of catalyst 2c, chiral amines 6g and 6h
were afforded with excellent enantioselectivities. The asym-
metric hydrogenation ortho-substituted compounds (5i−k)
also gave excellent enantiomeric excesses except in the case of
the methoxy substituent (6i) that decreased to 83% ee. Finally,
an allyl amine with another aryl substituent such as a naphthyl
(5l) also afforded the corresponding amine 6l in 97% ee.
To showcase the applicability of our methodology, here we

disclose a novel, short, and efficient synthesis of (R)-
Lorcaserin, 8 (Scheme 2). We performed a gram-scale
enantioselective synthesis of 6g applying our optimal
conditions and decreasing the catalyst loading to 0.5 mol %.
Compound 6g was achieved with an excellent 98% ee without
recrystallization. Next, we deprotected the phthalimido group
with hydrazine in toluene to afford 7 in excellent yield (93%).
To the best of our knowledge, this is the most efficient catalytic

Figure 2. Ir-MaxPHOX family of catalysts.

Table 1. Catalyst Screening and Optimization of the
Asymmetric Hydrogenation of 2-(2-Phenylallyl)isoindoline-
1,3-dione 5aa

entry catalyst loading solvent conv. (%)b ee (%)c

1 1a 5 mol % CH2Cl2 >99 6 (S)
2 2a 5 mol % CH2Cl2 >99 64 (R)
3 3a 5 mol % CH2Cl2 >99 20 (S)
4 4a 5 mol % CH2Cl2 >99 32 (R)
5 2b 5 mol % CH2Cl2 >99 69 (R)
6 2c 5 mol % CH2Cl2 >99 90 (R)
7d 2c 5 mol % CH2Cl2 >99 89 (R)
8 2c 1 mol % CH2Cl2 >99 90 (R)
9 2c 1 mol % EtOAc 60 89 (R)
10 2c 1 mol % THF 5 n.d.
11e 2c 1 mol % CH2Cl2 >99 98 (R) (96)f

aSee Supporting Information for experimental details. Reactions were
run in a pressure reactor at 1 barG of H2 pressure.

bDetermined by 1H
NMR. cMeasured by chiral HPLC. dReaction was performed at 50 bar
of H2.

eReaction was performed at ̵ 20 °C. fIsolated yield.
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enantioselective synthesis of intermediate 7, a direct precursor
of (R)-Lorcaserin (8).13

The importance of the methodology developed here can also
be appreciated by using 6d in the formal synthesis of OTS514

(10) (Scheme 3). The enantioenriched phathalimide 6d was
deprotected by ethanolamine at reflux and protected as tert-
butyl carbamate. The resulting N-Boc amine 9 is a known
precursor of 10.4a

Finally, the chiral amines prepared here can be used in the
synthesis of 3-methyl indolines.14 These compounds are
relevant precursors of a number of biologically active
compounds and natural products such as Duocarmycins,14a,15

the potent cytotoxic drug (+)-CC1065,14a,16 and the Akt/PBK
phosphorylation inhibitor 12,17 currently in clinical phases.
Thus, 3-methyl indoline 11 was readily prepared from amine
6k (Scheme 4) by phthalimido deprotection followed by
copper-catalyzed intramolecular Ullmann-type amination.18

In summary, we have described a very efficient enantiose-
lective synthesis of β-aryl propanamines by means of iridium-
catalyzed asymmetric hydrogenation of N-phthalimido 2-aryl
propanamines using the Ir-MaxPHOX complex 2c. Excellent
enantiomeric excess values were obtained for wide range of
compounds (up to 13 examples) using low catalyst loading and
low hydrogen pressure. Several direct synthetic applications of
this novel and effective catalytic method have been disclosed
such as a formal synthesis of (R)-Lorcaserin and OTS514, as
well as a novel approach to enantiomerically enriched 3-methyl
indolines.

Scheme 1. Scope of the Catalytic Hydrogenationa

aSee Supporting Information for experimental details. Reactions were
run in a pressure reactor at 1 bar of H2 pressure. The reaction showed
full conversion for all the examples. Enantiomeric excess was
measured by chiral HPLC. bTwo mol % of catalyst 2c was used.
cThree mol % of catalyst 2c was used.

Scheme 2. Formal Synthesis of (R)-Lorcaserin, 8

Scheme 3. Formal Synthesis of OTS514, 10

Scheme 4. Enantioselective Synthesis of 3-Methyl Indoline
11
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Biosca, M.; Pam̀ies, O.; Dieǵuez, M.; Riera, A.; Verdaguer, X.
Stereospecific SN2@P Reactions: Novel Access to Bulky P-Stereo-
genic Ligands. Chem. Commun. 2015, 51 (99), 17548−17551.
(c) Salomo,́ E.; Orgue,́ S.; Riera, A.; Verdaguer, X. Efficient
Preparation of (S)- and (R)- Tert -Butylmethylphosphine-Borane:
A Novel Entry to Important P-Stereogenic Ligands. Synthesis 2016, 48
(16), 2659−2663. (d) Prades, A.; Nuñ́ez-Pertíñez, S.; Riera, A.;
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