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Abstract: Various alkoxy-substituted heterocyclic stannanes pro-
vide access to the corresponding substituted ‘pyridone’ moieties via
Stille cross-coupling. Both pyridyl and a series of diazinyl stan-
nanes are prepared, and options for unmasking (via demethylation
or debenzylation) of the pyridone unit are evaluated.
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2-Pyridones and the related diazines (e.g., pyrazinone and
pyrimidinone) are important motifs (Figure 1) found in bi-
ologically active compounds, such as pyridovericin (1)
(kinase inhibitor),1 dragmacidin D (2) (indication: Parkin-
son’s and Alzheimer’s disease),2 raltegravir (3) (antiretro-
viral),3 and lamivudine (4) (antiretroviral).4

Consequently, and due to a number of physiochemical at-
tributes, including polarity, low molecular weight (high
heteroatom index), and in particular the condensed array
of hydrogen bond donor/acceptor functionality, the ability
to incorporate an intact mono and diaza ‘pyridone’ into a
more complex scaffold is of interest, alongside methods
for elaborating these core heterocyclic units.5

Our interest in substituted 2-pyridones stems from recent
synthetic studies linked to cytisine (an α4β2 nicotinic par-
tial agonist)6 and, more pertinently, the development of
core-modified variants in which alkoxystannanes 5a and
6a served as effective precursors to substituted (via Stille-
based couplings) pyridones and pyrazinones, respectively
(Figure 2).7,8

While Suzuki couplings with electron-deficient heteroaryl
boronates are often difficult and 2-pyridyl organoboro-
nates readily undergo protodeboronation,9 the corre-
sponding stannanes 5a and 6a are both readily accessible
and exhibit a higher degree of stability (when stored at
5 °C), and provide a new and versatile set of ‘pyridone’
(both mono and diaza) building blocks.

In this communication, we describe the synthesis of a se-
ries of stannanes 5–8, together with the application of
these reagents to: (i) Stille cross-coupling, and (ii) subse-
quent dealkylation (via demethylation or debenzylation)
to generate 6-arylated variants of 2-pyridones, 2-pyrazi-
nones and 2-pyrimidinones, and 2-aryl 4-pyrimidinones.
We report on the accessibility of the stannane reagents
and, using a selected group of substrates, explore the
scope and limitations of this chemistry.

Figure 1  Biologically active mono and diaza ‘pyridones’

Figure 2  Heterocyclic stannanes as ‘pyridone’ precursors

In general, access to heteroaryl stannanes is achieved ei-
ther by lithiation and subsequent (or in situ) quenching
with R3SnCl,8 nucleophilic aromatic substitution using
R3SnLi, or transition-metal-catalyzed stannylation using
R6Sn2.

10 Procedures for the synthesis of 6-methoxy
stannanes 5a and 6a have been reported.7,8,11 Furthermore,
pyrimidine variant 7 has been described by Plé, via nu-
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cleophilic aromatic substitution of chloride 9 with (tribu-
tylstannyl)lithium (Bu3SnLi) (Scheme 1).

We were unable to reproduce the 70% yield reported by
Plé, and at best we isolated pyrimidine 7 in 7% yield. Con-
sequently, a more robust protocol has been developed and
iodination of 9 to give 10 (89%) followed by slow addi-
tion of n-butyllithium (n-BuLi) to a mixture of 10 and tri-
butyltin chloride (Bu3SnCl) in tetrahydrofuran at –78 °C
provided stannane 7, reliably, in 70% isolated yield after
flash chromatography. It should be noted that, although
commercially available, 7 was (in our hands) the least sta-
ble reagent of those discussed here; even under nitrogen at
5 °C, stannane 7 degraded after 14 days.

Scheme 1  Synthesis of pyrimidinyl stannane 7

The 2-methoxypyrimidinyl stannane 8 was prepared from
commercially available pyrimidine 11 via iodide 12,12

lithiation of which followed by an in situ quench gave
stannane 13. Oxidation of 13 gave sulfone 14,12 which un-
derwent subsequent displacement with sodium methoxide
to give 8 in 39% overall yield on a 3 g scale (Scheme 2).

Scheme 2  Synthesis of 2-methoxy-4-(tributylstannyl)pyrimidine (8)

The benzyloxy variants 5b and 6b were synthesized as
shown in Scheme 3. Halides 15 and 17 were transformed
into 1613 and 18, respectively. Lithiation of 16 followed
by in situ quenching with Bu3SnCl gave stannane 5b, and
6b was obtained via chloride displacement in 18 with (tri-
butylstannyl)sodium (Bu3SnNa). Stannanes 5b and 6b
were both stable over extended periods of time when
stored at 5 °C.

Scheme 3  Synthesis of stannanes 5b and 6b

Stille coupling reactions of stannanes 5–8 with a range of
aryl bromides led to adducts 19–24, which are summa-
rized in Schemes 4 and 5. Cross-couplings were conduct-
ed under well-established Stille conditions by heating
stannanes 5–8 with an appropriate aryl bromide, tetra-
kis(triphenylphosphine)palladium(0) [Pd(PPh3)4] (10
mol%), lithium chloride (LiCl) (1.1 equiv) and copper(I)
chloride (CuCl) (1.1 equiv) in tetrahydrofuran for 18
hours.8 Generally, reactions proceeded in good yield, al-
though electron-rich aryl halides were less efficient, and
purification by flash chromatography was sufficient to
give the coupled product with minimal tin contamination.

In both series, couplings to 4-bromoanisole gave signifi-
cantly lower yields (see Schemes 4 and 5) and phenyl-
containing by-products derived from ligand transfer from
triphenylphosphine (Ph3P) were isolated.14 3-Bromopyri-
dine also highlighted a significant reactivity difference:
reaction with pyridyl stannane 5b was efficient, but at-
tempts to couple to the pyrazine variant 6b failed.

Releasing the masked pyridone by acidic hydrolysis (us-
ing HCl) was not successful. Representative substrates
(pyridine 19a and pyrimidine 22a) were used and both
failed to react. Consequently, several alternative proce-
dures for demethylation and debenzylation (Tables 1 and
2) were examined, but in practice we could not identify a
single, generally applicable dealkylation method.

Using pyridine 19a, chlorotrimethylsilane (TMSCl) and
sodium iodide (NaI)15 gave pyridone 25 in 85% yield, but
application of these conditions to 19b and 20a failed to
give the desired products; we observed recovered 19b and
decomposition of 20a. Similarly, lithium iodide (LiI) and
sym-collidine16 gave mixed results: demethylation of
19a,d,e proceeded in moderate yields, however 19c, 20a
and 22a were unreactive. Sodium ethanethiolate (NaS-
Et)17 successfully converted pyridine 19a, pyrazine 20a
and pyrimidine 21a, however, this reagent failed with the
isomeric pyrimidine 22a.

Generally, debenzylation via hydrogenolysis was easier to
affect. Pyridyl substrates 23a,b,d provided the corre-
sponding pyridones in moderate to good yields. The 3-
pyridyl variant 23c was, however, unreactive and is pre-
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sumed to have poisoned the catalyst. Pyrazines 24a and
24d were also (and surprisingly) unreactive. Deben-
zylation using boron tribromide (BBr3) was also a viable
option and converted both 23c and 24a into the desired
products in good yields.

In conclusion, 2-methoxy- and 2-benzyloxy-6-stannylat-
ed pyridines, as well as the corresponding pyrazine and

pyrimidine congeners, are suitable substrates for (general-
ly) efficient Stille cross-coupling reactions. These re-
agents serve as vehicles for the introduction of pyridone,
pyrazinone and pyrimidinone units where the carbonyl
moiety is released via demethylation or debenzylation, al-
beit under substrate-dependent conditions.18

Scheme 4  Stille couplings of stannanes 5–8 with representative aryl bromides. a Reaction of 6a and 4-bromoanisole to give 20b also gave 20a
in 40% yield reflecting competitive aryl ligand exchange from Ph3P. All yields shown are those for isolated products following purification by
chromatography
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Table 1  Demethylation Conditions Evaluated and the ‘Pyridone’ Products

Substrate Conditions Yielda 2-Pyridone

19a

TMSCl (10 equiv), NaI (3 equiv), MeCN, 80 °C, 1.5 h 85%

25

LiI (2 equiv), sym-collidine, reflux, 6 h 51% (28%)

NaSEt (1.2 equiv), DMF, 140 °C, 48 h 63%

19d

LiI (2 equiv), sym-collidine, reflux, 6 h 38% (42%)

26

19e

LiI (2 equiv), sym-collidine, reflux, 6 h 28% (50%)

27

20a

TMSCl (10 equiv), NaI (3 equiv), MeCN, 80 °C, 48 h no reaction

28

LiI (2 equiv), sym-collidine, reflux, 48 h no reaction

NaSEt (1.2 equiv), DMF, 140 °C, 4 h 66%

21a

TMSCl (10 equiv), NaI (3 equiv), MeCN, 80 °C, 48 h no reaction

29

LiI (2 equiv), sym-collidine, reflux, 48 h no reaction

NaSEt (1.2 equiv), DMF, 140 °C, 4 h 75%

a Yields shown in parentheses refer to those of recovered starting material.
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Table 2  Debenzylation Conditions and Debenzylation Products

Substrate 2-Pyridonea Substrate 2-Pyridonea

23a 25 90% 23d 27 80%

23b 30 36% 24a 28 95%

23c 31 52%

– –

a Conditions used for 23a, 23b and 23d: H2 (1 atm), Pd/C (5 mol%), MeOH–EtOAc (0.08 M), r.t., 4–24 h. Conditions used for 23c and 24a: 
BBr3 (1 equiv), CH2Cl2 (0.02 M), r.t., 2–16 h.
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