

CHEMISTRY & SUSTAINABILITY

CHEM5USCHEM

ENERGY & MATERIALS

Accepted Article

Title: Condition Screening for Sustainable Catalysis in Single-Electron Steps by Cyclic Voltammetry: Additives and Solvents

Authors: Andreas Gansäuer, Theresa Liedtke, Tobias Hilche, and Sven Klare

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: ChemSusChem 10.1002/cssc.201900344

Link to VoR: http://dx.doi.org/10.1002/cssc.201900344

WILEY-VCH

www.chemsuschem.org

FULL PAPER

Condition Screening for Sustainable Catalysis in Single-Electron Steps by Cyclic Voltammetry: Additives and Solvents

Theresa Liedtke,^[+] Tobias Hilche,^[+] Sven Klare,^[+] and Andreas Gansäuer*

Abstract: Our cyclic voltammetry-based screening method for Cp_2TiX -catalyzed reactions is extended to the screening of other solvents for bulk electrolysis of the catalyst and radical arylation. It was found that CH_3CN is a solvent that can be used for both processes without additives. Furthermore, in THF, squaramide **L2** is more efficient than our previously best supramolecular halide binder, Schreiner's thiourea **L1**. The results extend the usefulness of our time and resource efficient screening method for the reaction design in catalysis in single-electron steps.

Introduction

Understanding the mechanism of a catalytic reaction and its key steps is an essential prerequisite for increasing product formation and developing more sustainable reaction conditions. We recently reported a cyclic voltammetry-based screening method for catalysis in single-electron steps^[1,2] that enabled us to develop highly sustainable conditions for the arylation of epoxide-derived radicals by the exact knowledge and characterization of the catalytically active titanocene-species.^[3] Our concept is based on the 'before' analysis of the nature and relative proportions of the catalytically active titanocene-species in solution^[4] at various potential reaction conditions. The technique used to this end is cyclic voltammetry (CV).^[5] Moreover, our CV analysis represents a minimum waste screening technique for the titanocene-catalyzed arylation reaction of epoxides^[6] and potentially of other titanocene-catalyzed reactions.^[7]

Our approach relies on the precise knowledge of the E_qC_r -mechanism^[8] of the generation of the active catalyst Cp_2TiCI that is essential for a catalyst design and reaction condition screening by CV (Scheme 1).

Mechanism of the electrochemical reduction of titanocene complexes.

In particular, we have gained insight into the feasibility of the quasi-reversible electrochemical reduction of the titanocene

Dr. T. Liedtke,^[+] T. Hilche,^[+] S. Klare,^[+] Prof. Dr. A. Gansäuer Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn (Deutschland) E-mail: andreas.gansaeuer@uni-bonn.de

[+] These authors contributed equally.

Supporting information for this article is given via a link at the end of the document.

complex (E_q) to the anionic [Cp₂TiX₂]⁻ species which can undergo a reversible ligand dissociation (C_r) to form Cp₂TiX, the catalytically active species.^[4] For efficient catalysis, a C_requilibrium shifted to Cp₂TiX is critical. In THF, this goal was achieved with the aid of thiourea-derived additives, especially Schreiner's thiourea L1.^[9] Thioureas are well known H-bond donors and CV reveals that they act as reversible abstractors of X⁻ from [Cp₂TiX₂]⁻ via H-bonding.^[10] This abstraction does not only increase the concentration of Cp₂TiX. However, it also enables bulk electrolysis of precatalyst Cp₂TiX₂ in THF, presumably by preventing a deactivation of the electrode. Without additives, no bulk electrolysis of Cp₂TiX₂ in THF was possible.

Herein, we further validate the adaptability of our CV-screening method by identifying reaction conditions for an 'additive-free' electrochemical activation of Cp_2TiCl_2 in other solvents than THF and a new additive for the bulk electrolysis of Cp_2TiX_2 in THF and CH_3CN . The solutions obtained are tested in radical arylations.^[6] The results on the identification of solvents will be discussed first.

Results and Discussion

Solvent Screening and Arylation after Bulk Electrolysis in $\ensuremath{\mathsf{CH}}_3\ensuremath{\mathsf{CN}}$

Solvent Screening

For the solvent screening two issues are essential. First, the solvent employed must not solvate Cl⁻ well enough to shift the C_r-equilibrium completely to the side of Cp₂TiCl. In this case no resting state is available to the catalyst. Second, the generation of Cp₂Ti⁺ in the presence of a protic solvent, such as H₂O or CH₃OH, is to be avoided, because complexes of Cp₂Ti⁺ with these solvents have been shown to be excellent hydrogen atom donors^[11] that can intercept radicals and prevent the radical arylation. It should be noted that the titanocene catalyzed 5-exo cyclizations is about one order of magnitude faster than the arylation.^[12]

Therefore, we have chosen the following aprotic solvents: CH₃CN (ϵ = 37.5), DMF (ϵ = 37.0), acetone (ϵ = 20.7), pyridine (ϵ = 12.4), and CH₂Cl₂ (ϵ = 8.9) ranging from 'polar' to 'unpolar'.^[13] The cyclic voltammograms of the reduction of Cp₂TiCl₂ in these solvents and in THF^[3] are shown in Figure 1.

As screening criterion^[3] for an attractive solvent for bulkelectrolysis and for the radical arylation, we chose the presence of the oxidation waves due to $[Cp_2TiCl_2]^2$ and Cp_2TiCl . For the success of the bulk-electrolysis and the radical arylation it is important that the latter wave has a higher intensity than the former. This was found to be essential for preventing electrode deactivation and reflects an E_qC_r -mechanism with the C_r -

FULL PAPER

equilibrium shifted towards the catalytically active Cp₂TiCl. This requirement has led to the discovery of the conditions for bulk-electrolysis in THF by adding Schreiner's thiourea L1.^[3]

Figure 1. Cyclic Voltammograms of Cp_2TiCl_2 in different organic solvents with 0.2 M Bu₄NPF₆ at a scan rate of 2 Vs⁻¹.

Of the solvents with low permittivity ($\epsilon < 21$) only pyridine showed a voltammogram fulfilling our criterion. In CH₂Cl₂, and acetone only minor amounts of Cp₂TiCl were detected. The situation is different for CH₃CN and DMF, the solvents with a permittivity ϵ of about 37.

In DMF, three waves were observed that we attribute to $[Cp_2TiCl_2]^-$, Cp_2TiCl -DMF, and Cp_2TiCl . The assignment of Cp_2TiCl -DMF is based on the redox-potential that lies between those of the other two species and is in agreement with an earlier study of titanocenes with a pending hemilabile amide ligand.^[14] Moreover, Daasbjerg has shown that the even better donor HMPA also coordinates to Cp_2TiCl .^[4c] Thus, while the catalyst's resting state and the active catalyst are formed, DMF complexes the catalyst strongly and will inhibit substrate binding.

Acetonitrile (CH₃CN), on the other hand, seems a highly attractive solvent for bulk-electrolysis and radical arylation. On the oxidative sweep, the voltammogram in CH_3CN shows two

waves that are due to $[Cp_2TiCl_2]$ and Cp_2TiCl with the wave pertaining to Cp_2TiCl having a substantially higher intensity. This assessment was further supported by the addition of NBu₄Cl (TBAC). In this case, the wave originating from the oxidation of $[Cp_2TiCl_2]$ increases in intensity whereas the second wave (oxidation of Cp_2TiCl_3) is depleted. Thus, only the active catalyst

and minor amounts of its resting state are formed during the CV experiment. This meets our criterion for the CV-screening.

Bulk-Electrolysis and Radical Arylation

The screening has identified pyridine and CH₃CN as potentially attractive solvents for the bulk-electrolysis of Cp₂TiCl₂. However, when exposed to bulk-electrolysis conditions, extensive decomposition of the Cp₂TiCl₂ derived species was observed in pyridine. It is beyond the scope of this study to provide a mechanistic interpretation of this observation. The use of CH₃CN resulted in a successful reduction. This can also be judged by the color of the solution obtained (see Supporting Information). At first glance, it may seem counterintuitive that the dipolar aprotic solvent CH₃CN is capable of solvating chloride. However, it has been reported that H₂O and CH₃CN can have similar interactions with Cl^{-[15]} Therefore, the shift of the C_r-equilibrium is indeed perfectly reasonable.

Our results of the radical arylation with the electrochemically reduced solutions of Cp_2TiCl_2 in CH_3CN are summarized in Table 1.

Table 1. Catalytic radical arylation by electrochemically reduced Cp_2TiCl_2 in CH_3CN .

The reaction leads to the formation of the desired products in good to high yields. For **P1** the catalyst loading can be reduced to 2 mol%. With respect to sustainability it is worth noting that no additives for the stabilization of the catalytic system are needed.

However, it should be noted that CH_3CN is a relatively toxic solvent because it can be metabolized to HCN.

An advantage of using CH_3CN over our previously described system in THF^{[3]} is that Cp_2TiCl_2 can be employed as catalyst

FULL PAPER

precursor. It is cheaper than $\mbox{Cp}_2\mbox{TiBr}_2$ required for high yielding reactions in THF.

Effect of Additives on the E_qC_r -Mechanism: CV-Screening and Arylation after Bulk-Electrolysis

The results shown above demonstrate that unpolar solvents are not suitable for bulk-electrolysis of Cp₂TiX₂ (X = Cl, Br). In our initial work, we have focused on the use of ureas and thioureas to abstract chloride or bromide from [Cp₂TiX₂]⁻ in THF to allow bulkelectrolysis and to obtain active solutions for the radical arylation at the same time. Here, we investigate, if squaramides that have been used with great success in organocatalysis^[16] and in halide binding and transport^[17] are also useful additives for allowing bulkelectrolysis of Cp₂TiX₂ and radical arylation in THF and how they affect the composition of the Cp₂TiX₂ solutions reduced in CH₃CN.

Halide Binding through Hydrogen Bonding with Squaramides

While Schreiner's thiourea **L1** serves the desired purpose very well with Cp₂TiBr₂ as precatalyst it is less efficient with Cp₂TiCl₂. Therefore, it is interesting to investigate the effect of other additives, in particular those that might lead to an improved activation of Cp₂TiCl₂. To this end, better halide binders than thioureas seemed suitable.

In the comparison of ureas and thioureas, we found that the efficiency of halide abstraction depended on the acidity of the additive. **L2**^[18] has a pK_a value similar to **L1** (**L1**: 8.5, **L2**: 8.4) in dimethylsulfoxide (DMSO)^[19] and is therefore an attractive additive for screening. Gratifyingly, **L2**'s chloride binding is higher by a factor of 16 as judged by its chloride binding constant (K_a^{Cl} , NBu₄Cl in DMSO/0.5% H₂O at 298 K) due to its more rigid coordination geometry.^[17] For our purposes this allows to additionally understand the geometrical effects of complexation of Cp₂TiCl₂ and halide abstraction from [Cp₂TiCl₂]•**L2**. To study these issues, we applied our CV-screening method (Figure 2).

The voltammograms show that the effects of L1 and L2 are markedly different. First, the complex Cp2TiCl2•L2 is more activated towards reduction than $Cp_2TiCl_2 \cdot L1$ ($\Delta E_{\frac{1}{2}} = 160 \text{ mV}$ for Cp₂TiCl₂ vs. Cp₂TiCl₂•L2 compared to $\Delta E_{\frac{1}{2}} = 110 \text{ mV}$ for Cp₂TiCl₂ vs. Cp₂TiCl₂•L1).^[3] This is a clear indication of a stronger complexation of Cp₂TiCl₂. The complexation by L2 is fully reversible because addition of TBAC results in the regeneration of Cp₂TiCl₂ (see Supporting Information). Second, in the CVs no complex between [Cp₂TiCl₂]⁻ and L2 can be observed whereas this is the case for L1. Once again, this underlines the improved chloride abstraction ability of L2. Finally, L2 forms a complex with Cp₂TiCl whereas L1 does not. Cp₂TiCl•L2 has a lower reducing power than Cp₂TiCl ($\Delta E_{\frac{1}{2}}$ = 160 mV for Cp₂TiCl vs. Cp₂TiCl•L2). The complex is not caused by follow-up reactions during the CV experiment because the intensity of its oxidation wave increases with higher sweep rate.^[4]

Besides revealing the important information about the different complexes formed, the CVs also suggest that a bulk-electrolysis of Cp_2TiCl_2 in the presence of L2 should be viable and the solutions obtained should be active catalysts for the radical arylation. This is indeed the case. The bulk-electrolysis can even

be carried out in the presence of 0.5 or 1 eq. of **L2** and requires a potential of -1.3 V (vs. Ag/Ag⁺). With **L1**, at least 1 eq. of the additive and -1.4 V are required. The results of some arylation reactions are summarized in Table 2.

Figure 2. Cyclic Voltammograms of Cp_2TiCl_2 in THF in the presence of L2 with 0.2 M Bu₄NPF₆ at a scan rate of 0.2 and 2 Vs⁻¹.

The arylation reactions with the Cp₂TiCl₂ solutions reduced in the presence of L2 give higher yields than those generated in the presence of L1. With Cp₂TiBr₂. L2 is slightly inferior to L1. however. This is in line with the better halide binding ability of L2. The use of L2 results in a higher concentration of the active catalyst Cp₂TiCl. At the same time, a sufficiently high amount of the resting state is present and, so, a stable and active catalytic system is formed to avoid catalyst deactivation. In the presence of L1 the concentration of Cp₂TiCl is too low. With Cp₂TiBr₂, as precatalyst, the situation is reversed. With L1 the optimal balance of Cp2TiBr and [Cp2TiBr2]-L1 is obtained. With L2, the concentration of [Cp₂TiBr₂]⁻ is too low to allow for a stable catalyst. From the perspective of practicability and sustainability, L2 is therefore the superior additive because it allows the use of the cheaper and more readily accessible catalyst Cp₂TiCl₂. The use of the more expensive Cp₂TiBr₂ is not necessary.

FULL PAPER

Table 2: Catalytic radical arylation by electrochemically reduced Cp₂TiCl₂ and Cp₂TiBr₂ in THF in the presence of **L2**.

Reaction conditions: Catalyst A or B, additive L2, cat/additive = 1/1, 10 mM in THF, isolated yields. [a] $Cp_2TiX_2/LX = 2/1$; [b] T = 25 °C, t = 16 h; [c] $Cp_2TiX_2/LX = 1/2$

Finally, we investigated the influence of L1 and L2 on the reduction of Cp₂TiCl₂ in CH₃CN. In these cases, the interesting problem arises how the additive will affect the already favorable C_r-equilibrium. The CVs of investigations with both ligands are shown in Figure 3.

Compared to the situation in CH₃CN without additives (Figure 1), the CVs show a third oxidation wave at higher potential than Cp₂TiCl that is assigned to the oxidation of Cp₂Ti^{+,[18]} With 1 eq. of L1 and L2, the intensity of this wave is reduced at higher sweep rate (2 Vs⁻¹). This indicates the formation of the cation in a followup reaction during the CV experiment (parent-child reaction).[4] With 3 eq. of L2, the ratio of intensities remains almost constant indicating that Cp2Ti⁺ may indeed be an original component of the solution. This change should not affect the bulk-electrolysis and, indeed, it could be carried out without problems. However, the solutions in the presence of 1 or 3 eq. of the ligands have a distinctly different appearance. With 3 eq. the solution is dark blue which indicates the formation of Cp₂Ti⁺.^[19] This was verified by a CV-analysis of the solutions obtained by bulk-electrolysis (Figure 4). It is clear that with 3 eq. of L1 or L2 the cation is formed almost exclusively, whereas in the presence of 1 eq. of the ligands a mixture of Cp₂TiCl and Cp₂Ti⁺ is obtained.

Figure 3. Cyclic Voltammograms of Cp_2TiCl_2 in CH_3CN in the presence of L1 and L2 with 0.2 M Bu₄NPF₆ at a scan rate of 0.2 and 2 Vs⁻¹.

FULL PAPER

Figure 4: Cyclic Voltammograms of the solutions of Cp_2TiCl_2 in CH_3CN in the presence of L1 and L2 prepared by bulk-electrolysis with 0.2 M Bu_4NPF_6 at a scan rate of 0.2 and 2 Vs⁻¹.

Previous studies have shown that Cp_2Ti^+ in CH_3CN is a less active catalyst than Cp_2TiCl based systems.^[6d] This is because epoxide opening is slower for more electron deficient catalysts.

In CH₃CN this step is even further slowed down by the complexation of Cp₂Ti⁺ by CH₃CN^[20,6d] that efficiently competes with the epoxide substrates. However, Cp₂Ti⁺ is an attractive catalyst for reactions with epoxides containing electron deficient arenes. The electrochemically reduced solutions of Cp₂TiCl₂ in CH₃CN with and without **L2** react accordingly (Table 3).

Table 3: Comparison of catalytic radical arylation by electrochemically reduced Cp_2TiCl_2 in CH_3CN with and without L2.

Reaction conditions: Catalyst A or B, additive L2, cat/additive = 1/1, 10 mM in CH₃CN, isolated yields. [a] without L2; [b] Cp₂TiCl₂/L2 = 1/3

The reactivity of the catalytic systems with added **L2** are reduced compared to the system without additives. However, **P3** that requires Cp_2Ti^+ for its formation can be obtained in the presence of **L2** albeit the yield is low.

Conclusions

In summary, we have demonstrated that our CV-screening method for the identification of conditions for the bulk-electrolysis have been successfully extended to other solvents and supramolecular chloride binders. CH₃CN is a suitable solvent for bulk-electrolysis of Cp₂TiX₂ and radical arylation. Moreover, squaramide **L2** is a better ligand for chloride and bromide abstraction than our previously best ligand Schreiner's thioureas **L1**. In the presence of **L2** even Cp₂TiCl₂ is an excellent and highly sustainable catalyst for the arylation.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (Ga 619/12-1), the 'Evangelisches Studienwerk Villigst' (fellowship to T. L.) and the 'Jürgen Manchot Stiftung' (fellowships to T.H. and S.K.).

FULL PAPER

Keywords: arylation • cyclic voltammetry • epoxide • squaramide • titanium

References

- a) A. Gansäuer, S. Hildebrandt, E. Vogelsang, R. A. Flowers II *Dalton Trans.* 2016, *45*, 448-452; b) A. Gansäuer, B. Rinker, M. Pierobon, S. Grimme, M. Gerenkamp, C. Mück-Lichtenfeld, *Angew. Chem. Int. Ed.* 2003, *42*, 3687-3690; *Angew. Chem.* 2003, *115*, 3815-3818; c) A. Gansäuer, B. Rinker, N. Ndene-Schiffer, M. Pierobon, S. Grimme, M. Gerenkamp, C. Mück-Lichtenfeld, *Eur. J. Org. Chem.* 2004, 2337-2351; d) A. Gansäuer, M. Klatte, G. M. Brändle, J. Friedrich, *Angew. Chem. Int. Ed.* 2012, *51*, 8891-8894; *Angew. Chem.* 2012, *124*, 9021-9024; e) D. S. G. Henriques, K. Zimmer, S. Klare, A. Meyer, E. Rojo-Wiechel, M. Bauer, R. Sure, S. Grimme, O. Schiemann, R. A. Flowers II, A. Gansäuer, *Angew. Chem. Int. Ed.* 2016, *55*, 7671-7675; *Angew. Chem.* 2016, *128*, 7801-7805; f) W. Hao, X. Y. Wu, J. Z. Sun, J. N. C. Siu, S. N. MacMillan, S. Lin, *J. Am. Chem. Soc.* 2017, *139*, 12141-12144.
- [2] a) P. F. Kuijpers, M. J. Tiekink, W.P. Breukelaar, D. L. J Broere, N. P. van Leest, J. I. van der Vlugt, J. N. H. Reek, B. de Bruin, *Chem. Eur. J.* **2017**, 23, 7945-7952; b) H. Jiang, K. Lang, H. Lu, L. Wojtas, X. P. Zhang, *J. Am. Chem. Soc.* **2017**, *139*, 9164-9167; c) C. teGrotenhuis, N. van den Heuvel, J. I. van der Vlugt, B. de Bruin, *Angew. Chem. Int. Ed.* **2018**, *57*, 140-145; *Angew. Chem. Int. Ed.* **2018**, *130*, 146-151.
- a) T. Liedtke, P. Spannring, L. Riccardi, A. Gansäuer, Angew. Chem. Int. Ed. 2018, 57, 5006-5010; Angew. Chem. 2018, 130, 5100-5104. Other examples of such screening processes: b) M. N. Hopkinson, A. Gómez-Suárez, M. Teders, B. Sahoo, F. Glorius, Angew. Chem. Int. Ed. 2016, 55, 4361-4366; c) M. Teders, A. Gómez-Suárez, L. Pitzer, M. N. Hopkinson, F. Glorius, Angew. Chem. Int. Ed. 2017, 56, 902-906; Angew. Chem. 2017, 129, 921-925.
- [4] a) R. J. Enemærke, J. Larsen, T. Skrydstrup, K. Daasbjerg, *Organometallics* 2004, 23, 1866-1874; b) R. J. Enemærke, J. Larsen, T. Skrydstrup, K. Daasbjerg, *J. Am. Chem. Soc.* 2004, *126*, 7853-7864; c) R. J. Enemærke, J. Larsen, G. H. Hjøllund, T. Skrydstrup, K. Daasbjerg, *Organometallics* 2005, *24*, 1252-1262.
- [5] a) A. J. Brad, L. R. Faulkner, *Electrochemical Methods. Fundamentals and Applications, 2nd ed.*; Wiley, New York, **2001**; b) A. Jutand, *Chem. Rev.* **2008**, *108*, 2300-2347; c) W. E. Geiger, *Coord. Chem. Rev.* **2013**, 257, 1459-1471.
- [6] a) A. Gansäuer, M. Behlendorf, D. von Laufenberg, A. Fleckhaus, C. Kube, D. V. Sadasivam, R. A. Flowers II, Angew. Chem. Int. Ed. 2012, 51, 4739-4742; Angew. Chem. 2012, 124, 4819-4823; b) A. Gansäuer, C. Kube, K. Daasbjerg, R. Sure, S. Grimme, G. D. Fianu, D. V. Sadasivam, R. A. Flowers II, J. Am. Chem. Soc. 2014, 136, 1663-1671; c) A. Gansäuer, D. von Laufenberg, C. Kube, T. Dahmen, A. Michelmann, M. Behlendorf, R. Sure, M. Seddiqzai, S. Grimme, D. V. Sadasivam, G. D. Fianu, R. A. Flowers II, Chem. Eur. J. 2015, 21, 280-289; d) A. Gansäuer, S. Hildebrandt, A. Michelmann, T. Dahmen, D. von Laufenberg, C. Kube, G. D. Fianu, R. A. Flowers II, Angew. Chem. Int. Ed. 2015, 54, 7003-7006; Angew. Chem. 2015, 127, 7109-7112.
- [7] a) A. Gansäuer, H. Bluhm, M. Pierobon, J. Am. Chem. Soc. 1998, 120, 12849-12859; b) A. F. Barrero, A. Rosales, J. M. Cuerva, J. E. Oltra, Org. Lett. 2003, 5, 1935-1938; c) J. Streuff, Chem. Eur. J. 2011, 17, 5507-5510; reviews: d) J. Streuff, A. Gansäuer, Angew. Chem. Int. Ed. 2015, 54, 14232-14242; Angew. Chem. 2015, 127, 14438-14448; e) M. Castro Rodríguez, I. Rodríguez García, R. N. Rodríguez Maecker, L. Pozo Morales, J. E. Oltra, A. Rosales Martínez, Org. Process Res. Dev. 2017, 21, 911-923; recent examples: f) J. Streuff, M. Feurer, G. Frey, A. Steffani, S. Kacprzak, J. Weweler, L. H. Leijendekker, D. Krakert, D. A. Plattner, H. Dietmar, J. Am. Chem. Soc. 2015, 137, 14396-14405; g) N. Funken, F. Mühlhaus, A. Gansäuer, Angew. Chem. 2016, 128, 12209-12013; h) J. Xuan, Z. Liu, P. Rao, L. Yu, H. Ding, Angew. Chem. Int. Ed. 2017, 56, 8898-8901; Angew. Chem. 2017, 129, 9024-9027; i) L. H. Leijendekker; J. Weweler, T. H. Leuther, J. Streuff, Angew. Chem. Int.

Ed. 2017, 56, 6103-6106; Angew. Chem. 2017, 129, 6199-6202; j) Y.-Q.
Zhang, E. Vogelsang, Z.-W. Qu, S. Grimme, A. Gansäuer, Angew. Chem.
Int. Ed. 2017, 56, 12654-12657; Angew. Chem. 2017, 129, 12828-12831;
k) X. Wu, W. Hao, K.-Y. Ye, B. Jiang, G. Pombar, Z. Song, S. Lin, J. Am.
Chem. Soc. 2018, 140, 14836-14843; l) L. H. Leijendekker, D. Weweler,
T. M. Leuther, D. Kratzert, J. Streuff, Chem. Eur. J.
10.1002/chem.201805909.

- [8] a) Y. Mugnier, C. Moise, E. Laviron, J. Organomet. Chem. 1981, 204, 61-66; b) E. Samuel, J. Vedel, Organometallics 1989, 8, 237-241.
- [9] a) A. Wittkopp, P. R. Schreiner, *Chem. Eur. J.* 2003, *9*, 407-414; b) P. R. Schreiner, *Chem. Soc. Rev.* 2003, *32*, 289-296.
- [10] a) A. G. Doyle, E. N. Jacobsen, *Chem. Rev.*2007, *107*, 5713–5743; b) K.
 M. Lippert, K. Hof, D. Gerbig, D. Ley, H. Hausmann, S. Guenther, P. R. Schreiner, *Eur. J. Org. Chem.* 2012, *30*, 5919–5927; c) G. Jakab, C. Tancon, Z. Zhang, K. M. Lippert, P. R. Schreiner, *Org. Lett.* 2012, *14*, 1724-1727; d) Y. Takemoto, *Org. Biomol. Chem.* 2005, *3*, 4299-4306; e) S. J. Connon, *Chem. Eur. J.* 2006, *12*, 5418-5427; f) Z. Zhang, P. R. Schreiner, *Chem. Soc. Rev.* 2009, *32*, 1187-1198.
- [11] a) J. M. Cuerva, A. G. Campaña, J. Justicia, A. Rosales, J. L. Oller-López, R. Robles, D. J. Cárdenas, E. Buñuel, J. E. Oltra, *Angew. Chem. Int. Ed.* **2006**, *45*, 5522–5526; *Angew. Chem.* **2006**, *118*, 5648–5652. b) A. G.
 Campaña, R. E. Estévez, N. Fuentes, R. Robles, J. M. Cuerva, E. Buñuel,
 D. Cárdenas, J. E. Oltra, *Org. Lett.* **2007**, *9*, 2195–2198; c) M. Paradas,
 A. G. Campaña, T. Jiménez, R. Robles, J. E. Oltra, E. Buñuel, J. Justicia,
 D. J. Cárdenas, J, M. Cuerva, *J. Am. Chem. Soc.* **2010**, *132*, 12748–12756; d) A. Gansäuer, M. Behlendorf, A. Cangönül, C. Kube, J. M.
 Cuerva, J. Friedrich, M. van Gastel, *Angew. Chem. Int. Ed.* **2012**, *51*, 3266-3270; *Angew. Chem.* **2012**, *124*, 3320-3324.
- [12] A. Gansäuer, M. Pierobon, Synlett 2000, 1357-1359.
- [13] a) THF, DMF, CH₃CN, pyridine: J. M. E. Matos, B. S. Lima-Neto, *J. Mol. Catal. A: Chem.* **2005**, *240*, 233-238; b) acetone, CH₂Cl₂: V. D. Koshevar, *Colloid J.* **2005**, *67*, 734-740.
- [14] a) A. Gansäuer, D. Worgull, K. Knebel, I. Huth, G. Schnakenburg, *Angew. Chem. Int. Ed.* 2009, *48*, 8882-8885; *Angew. Chem.* 2009, *121*, 9044-9047; b) A. Gansäuer, K. Knebel, C. Kube, M. van Gastel, A. Cangönül, K. Daasbjerg, T.Hangele, M. Hülsen, M. Dolg, J. Friedrich, *Chem. Eur. J.* 2012, *18*, 2591-2599.
- [15] G. Saielli, G. Scorrano, A. Bagno, A. Wakisaka, *ChemPhysChem* 2005, 6, 1307-1315.
- [16] Seminal contribution: a) J. P. Malerich, K. Hagihara, V. H. Rawal, *J. Am. Chem. Soc.* 2008, *130*, 14416-14417; b) coordination geometry: T. Okino, Y. Hoashi, T. Furukawa, X. N. Xu, Y. Takemoto, *J. Am. Chem. Soc.* 2005, *127*, 119-125; for recent reviews see: c) R. I. Storer, C. Aciro, L. H. Jones, *Chem. Soc. Rev.* 2011, *40*, 2330-2346; d) J. Alemán, A. Parra, H. Jiang, K. A. Jørgensen, *Chem. Eur. J.* 2011, *17*, 6890-6899; e) P. Chauhan, S. Mahajan, U. Kaya, D. Hack, D. Enders, *Adv. Synth. Catal.* 2015, *357*, 253-281; f) B.-L. Zhao, J.-H. Li, D.-M. Du *Chem. Rec.* 2017, *17*, 994-1018.
- [17] N. Busschaert, I. L. Kirby, S. Young, S. J. Coles, P. N. Horton, M. E. Light, P. A. Gale Angew. Chem. Int. Ed. 2012, 51, 4426-4430; Angew. Chem. 2012, 124, 4502-4506.
- [18] Synthesis: a) A. Rostami, A. Colin, X. Y. Li, M. G. Chudzinski, A. J. Lough, M. S. Taylor, *J. Org. Chem.* **2010**, *75*, 3983-3992; Recent Application b)
 L. Hu, M. Rombola, V. H. Rawal, *Org. Lett.* **2018**, *20*, 5384-5388.
- [19] a) G. Jakab, C. Tancon, Z. Zhang, K. M. Lippert, P. R. Schreiner, *Org. Lett.* 2012, 14, 1724-1727; b) X. Ni, X. Li, Z. Wang, J.-P. Cheng, *Org. Lett.* 2014, 16, 1786-1789.
- [20] P. A. Seewald, G. S. White, D. W. Stephan, Can. J. Chem. 1988, 66, 1147-1152.

FULL PAPER

FULL PAPER

Catalysis predicted by screening with of solvents and additves with cyclic voltammetry! Ti-X bond activation in CH3CN or in THF with squaramide L enables bulk electrolysis of Cp₂TiCl₂ and sustainable catalysis.

T. Liedtke,^[+] T. Hilche,^[+] S. Klare,^[+] and A. Gansäuer*

Page No. – Page No.

Condition Screening for Sustainable Catalysis in Single-Electron Steps by Cyclic Voltammetry: Additives and Solvents