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ABSTRACT: A precisely designed chiral squaramide derivative is shown to promote the highly enantioselective addition of 
trimethylsilyl bromide (TMSBr) to a broad variety of 3-substituted and 3,3-disubstituted oxetanes. The reaction provides 
direct and general access to synthetically valuable 1,3-bromohydrin building blocks from easily accessed achiral precursors. 
The products are readily elaborated both by nucleophilic substitution and through transition-metal-catalyzed cross-coupling 
reactions. The enantioselective catalytic oxetane ring opening was employed as part of a 3-step, gram-scale synthesis of preto-
manid, a recently-approved medication for the treatment of multi-drug-resistant tuberculosis. Heavy-atom kinetic isotope 
effect (KIE) studies are consistent with enantiodetermining delivery of bromide from the H-bond-donor (HBD) catalyst to the 
activated oxetane. While the nucleophilicity of the bromide ion is expected to be attenuated by association to the HBD, overall 
rate acceleration is achieved by enhancement of Lewis acidity of the TMSBr reagent through anion-abstraction. 

Chiral anion-binding catalysis has emerged as a powerful 
strategy for enantioselective additions to cationic interme-
diates through their non-covalent association to catalyst-
bound spectator anions.1,2 In most applications identified to 
date, the chiral catalyst-anion complex mediates stereoin-
duction in the addition of an external nucleophile (Figure 
1A). An interesting variation to the anion-binding catalysis 
concept arises when the catalyst-bound anion also acts as 
the nucleophile in the enantiodetermining bond construc-
tion.3,4 At least in principle, such an approach can provide 
more precise control over stereoselectivity through specific 
association of both nucleophile and electrophile to the chi-
ral catalyst. However, H-bonding from the catalyst would 
also be expected to attenuate the reactivity of the nucleo-
phile relative to an uncatalyzed, racemic pathway.5 This fun-
damental reactivity challenge can be circumvented if the 
catalyst also promotes the generation of the reactive ion-
pair, as demonstrated elegantly by Gouverneur3f,g in the 
specific context of phase-transfer reactions of alkali metal 
fluorides (Figure 1B). Following the recent discovery that 
H-bond donors such as chiral squaramides can activate silyl 
triflates via anion binding to promote enantioselective 
transformations,6 we were drawn to an alternative and pos-
sibly general approach to catalysis of nucleophile delivery 
by applying the anion-binding principle to activation of 
Lewis acids bearing nucleophilic counterions. Anion ab-
straction from the promoter should result in enhanced 
Lewis acidity, providing a general platform to access highly-
reactive, cationic, electrophilic intermediates ion paired 
with a catalyst-bound nucleophilic anion (Figure 1C).  

A. catalysis of SN1-type substitution via anion abstraction

B. phase-transfer catalysis of substitution via nucleophile delivery
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Figure	1. (A) Conventional approach to anion-binding ca-
talysis in which the catalyst binds a spectator anion. (B) 
Alternative reactive mode in anion-binding catalysis 
involving delivery of the bound anionic nucleophile to a 
cationic electrophile. Hydrogen bonding attenuates the 
reactivity of the nucleophile, but rate acceleration has been 
achieved via phase-transfer catalysis. (C) Catalyst-pro-
moted ionization of an anionic nucleophile from a neutral 
Lewis acid-nucleophile complex allows for H-bond donor 
catalyzed anion delivery. 

 
 
We chose to explore the anion-binding effect on nucleo-

phile-bearing Lewis acids in the context of additions of 
TMSBr to prochiral oxetanes (Fig. 2A). Enantioselective 
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ring-opening of 3-substituted oxetanes provides a route to 
valuable 3-carbon chiral building blocks from simple, syn-
thetically-accessible precursors.7 Several examples of enan-
tioselective openings of 3-susbtituted oxetanes with intra-
molecular nucleophiles have been identified.8,9 However, 
more generally applicable highly enantioselective reactions 
involving intermolecular nucleophilic addition are limited 
to two pioneering examples from Sun and coworkers in-
volving chiral phosphoric acid-catalyzed addition of mer-
captobenzothiazole and HCl.10 Here we report the 
successful application of a chiral squaramide catalyst to 
promote the ring-opening addition of TMSBr to prochiral 
oxetane substrates with unprecedented substrate scope.  
 

 

 
	Figure	2. A) Model reaction: enantioselective opening of 
oxetanes with TMSBr. B) Catalyst screening data for a series 
of arylpyrrolidino squaramides. 
 

 
The addition of TMSBr to 3-phenyloxetane (1a) was 

selected as a model reaction.11 Squaramide hydrogen-bond-
donor catalysts6,12 bearing a 2-arylpyrrolidino amide were 
identified as particularly effective, with the the aryl 
substituent having a marked effect on enantioselectivity 
and reproducibility (Fig. 2B). Systematic reaction and 
catalyst development (Fig. S1–S5) led to the identification 
of 9-phenanthryl squaramide 3a as the optimal catalyst for 
the synthesis of silylated bromohydrin 2a, catalyzing its 
formation in quantitative yields and with 96-98% e.e. over 
>20 runs.13 

Squaramide 3a was found to catalyze the opening of a 
broad range of 3-subsituted and 3,3-disubstituted oxetanes 
in high levels of e.e. (Figure 3). With 3-aryl oxetanes, both 
electron donating and withdrawing substituents could be 
introduced, with only ortho substitution impacting enanti-
oselectivity adversely (1a–h). Weakly Lewis basic func-
tional groups such as nitriles (1f) and esters (1g) had no 
deleterious effect on the reaction, and aryl ether spectator 
groups remained intact (1h). Oxetanes bearing protected 
alcohol	 and amine functionality (1i–m)	 as well as simple 
saturated alkyl groups (1n‐p) all underwent reaction with 
high enantioselectivity. The reaction could even be ex-
tended successfully to certain 3,3'-disubstituted oxetane 
substrates, which underwent stereoselective ring opening 

to provide products bearing fully substituted stereocenters 
(1q–v) with moderate-to-high enantioselectivity.  
 

 
 
Figure	 3. Isolated yield and enantiomeric enrichments 
measured for the asymmetric oxetane opening at 0.4 mmol 
scale. See SI for details on methods for e.e. determination, 
reproducibility studies, and the assignment of absolute con-
figuration. a Isolated as a 12.5 : 1 ratio of ROTMS to ROH 
product. b 48-hr reaction time. c –25 °C. d 72-hr reaction time. 
e 7.5 mol% 3a. f –65 °C. 

Page 2 of 7

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Alkyl bromide 2a was examined as a model substrate for 
potential product derivatizations (Fig. 4A) and was found to 
undergo facile substitution with azide, cyanide, and thio-
phenolate nucleophiles. Recent advances in transition-
metal-catalyzed cross-coupling chemistry14 provide further 
opportunities for product elaborations; for example, we 
found that 2a engaged effectively in cobalt-catalyzed aryla-
tions.15 Moreover, the polarity of the electrophilic alkyl bro-
mide could be inverted either by copper-catalyzed boryla-
tion,16 or through metal-halogen exchange, allowing 2a to 
function as the nucleophilic partner in a C(sp2)–C(sp3) cross 
coupling.17 Overall, the diverse range of products that can 
be accessed directly from 2a illustrates the synthetic versa-
tility of these chiral bromohydrin building blocks. 
 

 
 

Figure	4. A) Product elaborations: all reported yields are 
for the entire sequence of reactions starting from 1a a) 
standard reaction conditions with 0.4 mmol 1a; b) NaCN; c) 
NaN3; d) NaSPh; e) p-TolMgBr, Co(acac)3, TMEDA; f) B2Pin2, 
CuCl, Xantphos, t-BuOK; g) NaI in MeCN then solvent swap 
to Et2O, t-BuLi, ZnCl2, Pd(dppf)Cl2, R-I. See SI for detailed 
procedures. B) Glycidol- and oxetane-based strategies to C3 
chiral derivatives. C) Gram-scale synthesis of pretomanid: 
Ar = 4-(trifluoromethoxy)phenyl h) 4-(trifluormeth-
oxy)benzyl bromide (1.2 equiv.), NaH (1.2 equiv.), 2-Me-
THF (1.0 M), 60 °C, 12 hr; i) 3a (2 mol%), TMSBr (1.1 
equiv.), t-BuOMe (0.25 M), –80 °C, 24 hr; j) 2-chloro-4-ni-
troimidazole (2.0 equiv.), Et3N (2.1 equiv.), NaI (1.0 equiv.) 
DMF (0.25 M), 115 °C, 24 hr, then cool to 23 °C and add 
MeOH (1.0 M) and NaOH (5.0 equiv.), 30 min.  
 

The oxetane-opening methodology presents an interest-
ing alternative to well-established synthetic strategies for 
accessing three-carbon chiral building blocks based on 
glycidol or epichlorohydrin derivatives (Figure 4B).18 In 
particular, the identity of the C2 group can be set in the 
prochiral oxetane substrate, thereby avoiding potentially 
multi-step late-stage functional-group manipulations re-
quired in routes involving epoxide ring-opening. This ad-
vantage is illustrated in the synthesis of the recently ap-
proved tuberculosis drug pretomanid19 (Figure 4C), which 
was prepared previously by Reider, Sorensen and cowork-
ers in an elegant 5-step route from enantioenriched (R)-3-
chloro-1,2-propanediol.20a Readily accessible oxetane 1w 
underwent highly enantioselective ring-opening to yield 
TMS-protected bromohydrin 2w in 98% e.e.21 Gratifyingly, 
2-chloro-4-nitroimadzole, which was identified in the 
Reider and Sorensen synthesis as a non-explosive alterna-
tive to 2,4-dinitroimidazole,20a underwent alkylation by 2w 
with complete regioselectivity followed by SNAr annulation 
to yield the desired product. Both intermediates were 
formed in sufficient purity to be carried forward without 
purification, and only a recrystallization of the final product 
was required to access analytically-pure pretomanid (10) in 
>99% e.e. The synthetic route avoids protecting-group ma-
nipulation steps and provides access to pretomanid in just 
3 steps. 

 

 
 
Figure	5. One-pot competition KIE between 1a and 13C2‐

1a. A primary KIE of 1.126(9) was measured, indicating that 
oxetane silylation must be reversible, supporting enanti-
odetermining bromide delivery. 

 
 
As an initial step toward establishing the basis for exquis-

ite enantiocontrol in oxetane ring-opening reactions with 
squaramide 3a, we endeavored to determine whether bro-
mide delivery was indeed the enantiodetermining step as 
proposed at the outset of reaction development. To address 
this question, the 12C / 13C KIE at the site of bromide attack 
was determined through analysis of starting material recov-
ered at partial conversion from a one-pot competition be-
tween doubly labeled oxetane 13C2-1a and unlabeled isotop-
ologue 1a (Fig. 5).22 If bromide-promoted ring opening 
were substrate-committing, and thus, enantiodetermining, 
a primary KIE consistent with C–O bond cleavage would be 
expected. In contrast, if a step preceding ring opening such 
as oxetane silylation were irreversible then only a small, 
secondary KIE would be anticipated. Irreversible silylation 
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would not necessarily preclude enantiodetermining bro-
mide delivery, but it would allow for the possibility that si-
lylation of 1a was enantiodetermining.23 Subjection of a 
mixture of 1a and 13C2-1a to the catalytic reaction condi-
tions led to the observation of a large, primary KIE (k12/k13 
= 1.126(9)), fully consistent with reversible silylation and 
enantioselectivity-determining bromide delivery (see SI for 
full details of the KIE studies).  

In conclusion, the chiral squaramide-catalyzed addition 
of TMSBr to 3-aryl, 3-alkyl, and 3-heteroatom substituted 
oxetanes as well as certain 3,3-disubstituted oxetanes pro-
vides a general enantioselective synthesis of protected 1,3-
bromohydrin derivatives. The products of these reactions 
can be elaborated through a variety of nucleophilic substi-
tution reactions, and the utility of the method is illustrated 
in the 3-step, gram-scale synthesis of the TB drug preto-
manid. Heavy-atom KIE studies are consistent with enanti-
odetermining bromide delivery by the catalyst to an acti-
vated oxetane. This strategy overcomes the intrinsic deacti-
vation of nucleophiles that accompanies association with an 
H-bond donor and holds promise as a broadly applicable ap-
proach to asymmetric catalysis of addition reactions. 
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