(J BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY

Investigations towards the stereoselective organocatalyzed
Michael addition of dimethyl malonate to a racemic
nitroalkene: possible route to the 4-methyl-

pregabalin core structure

Denisa Vargova, Rastislav Baran and Radovan Sebesta’

Full Research Paper

Address:

Department of Organic Chemistry, Faculty of Natural Sciences,
Comenius University in Bratislava, Mlynska dolina, llkovi¢ova 6,
SK-842 15 Bratislava, Slovakia

Email:
Radovan Sebesta” - radovan.sebesta@uniba.sk

* Corresponding author
Keywords:

kinetic resolution; Michael addition; organocatalysis; pregabalin;
squaramide

Abstract

Beilstein J. Org. Chem. 2018, 14, 553-559.
doi:10.3762/bjoc.14.42

Received: 31 July 2017
Accepted: 18 February 2018
Published: 05 March 2018

Associate Editor: M. Rueping

© 2018 Vargova et al.; licensee Beilstein-Institut.
License and terms: see end of document.

Chiral derivatives of y-aminobutyric acid are widely used as medicines and can be obtained by organocatalytic Michael additions.

We show here the stereoselective synthesis of 4-methylpregabalin stereoisomers using a Michael addition of dimethyl malonate to a

racemic nitroalkene. The key step of the synthesis operates as a kinetic resolution with a chiral squaramide catalyst. Furthermore,

specific organocatalysts can provide respective stereoisomers of the key Michael adduct in up to 99:1 er.

Introduction

Asymmetric organocatalysis has considerably broadened possi-
bilities for stereoselective synthesis of bioactive compounds
[1-3]. In particular, stereoselective conversions of nitro com-

pounds served in many syntheses of pharmaceuticals [4].

Derivatives of y-aminobutyric acid are an important class of
medicines targeting problems with the central nervous system,
such as pains, seizures, or epilepsy. Several mono- and dialkyl
substituted derivatives, known as gabapentinoids, are currently

used in clinical praxis. Important members of this class such as

phenibut, gabapentin, or pregabalin have anticonvulsant, anxi-
olytic, and analgesic mode of actions [5]. Pregabalin (Figure 1)
is one of the most widely used medicines for the treatment of
neuropathic pains and partial seizures. It is also known that the
(S)-enantiomer is approximately 10 times more active than the
(R)-enantiomer. Medicinal properties of alkyl derivatives of
pregabalin were also investigated. Wustrow and co-workers
showed that the presence of another stereogenic center in the
molecule and its configuration have a dramatic effect on the ac-

tivity of these compounds [6]. This study also showed that
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4-methylpregabalin (1, Figure 1) has higher activities than
pregabalin (Figure 1). Methylpregabalin and related amino
acids have also been investigated as treatments for ocular disor-
ders [7]. However, the syntheses of this type of compounds
were long and relied on the use of Evans chiral auxiliaries or
chiral starting materials.

CO,H COzH
)\LNHZ NH;
pregabalin 4-methylpregabalin (1)

Figure 1: Structures of pregabalin and methylpregabalin.

Various GABA derivatives were synthesized using asymmetric
organocatalysis. Stereoselective Michael addition, one of the
most important organocatalytic reactions [8] usually serves as a
key stereoinduction transformation. Earlier studies, performed
by Hayashi and Wang employed iminium activation to perform
the enantioselective addition of nitromethane to enals for syn-
theses of baclofen and pregabalin [9,10]. Later, hydrogen-bond-
ing activation proved to be more general for obtaining Michael
adducts via the addition of 1,3-dicarbonyl compounds to
nitroalkenes. Chiral thioureas and squaramides, particularly
those with the bifunctional mode of action, served as excellent
catalysts in numerous Michael additions, as well as other reac-
tions [11-14]. In this way, chiral thioureas, and squaramides
were used to synthesize various GABA derivatives [15-19].
Interestingly, hydrogen-bonding activation of this kind of
Michael additions worked well also in aqueous media [20,21].
Other green chemistry concepts such as reusable media [22],
immobilized catalysts [23], or flow set-ups have also been used
with success for the synthesis of GABA derivatives [24].

Pregabalin is currently manufactured using enzymatic kinetic
resolution [25], but an organocatalytic procedure based on
chiral phase-transfer-catalysis of the Michael addition was also
reported [26].
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In this context, we decided to develop a synthesis of 4-methyl-
pregabalin from a simple and achiral starting material and build
its chirality centers using asymmetric catalysis. This paper de-
scribes the synthesis of 4-methylpregabalin from ethyl
3-methylbutanoate using an organocatalytic Michael addition as
the stereoinduction step.

Results and Discussion

The starting material for the Michael addition was synthesized
from ethyl 3-methylbutanoate (2). This straightforward se-
quence comprised methylation, reduction, nitro-aldol reaction,
and dehydration (Scheme 1). Methylation of the ester 2 in the
alpha position proceeded easily with LDA as a base and methyl
iodide as an alkylating agent. The ester functionality was then
reduced with DIBAL in dichloromethane to afford aldehyde 4
in 90% yield. A base-mediated addition of nitromethane to the
aldehyde 4 provided nitro alcohol 5. The somewhat lower yield
(58%) of the aldol product 5 is likely caused by the reversibili-
ty of the nitro-aldol reaction. The yield of this reaction did not
improve with longer time and unreacted aldehyde was still
present in the reaction mixture. Nitroaldol product 5 was then
dehydrated using the CuCl/DCC protocol [16] to nitroalkene 6.
Overall, this sequence afforded the desired racemic Michael
acceptor 6 in total 36% yield over four steps.

With Michael acceptor 6 in hands, we started to investigate the
1,4-addition of dimethyl malonate catalyzed by hydrogen-bond-
donating organocatalysts (Scheme 2). We have also briefly in-
vestigated Meldrum’s acid as a donor, instead of dimethyl
malonate, but we have obtained a complicated reaction mixture,
which was difficult to purify. Therefore, we have focused our
attention on the Michael addition of dimethyl malonate. An
initial catalyst screening was performed in dichloromethane,
based on our previous experiences with this type of Michael
additions [18]. We have employed a range of squaramide and
thiourea organocatalysts C1-C7 [18,27-34], as well as two
newly synthesized binaphthol-squaramide catalysts (S, R,R)-
C8, and (S,,,S,5)-C8 (Scheme 3). Results of the initial catalyst

screening are summarized in Table 1.

o 1.LDA,-78°C, 1h o
M 2.Mel,~78 °Ctort, 3h DIBAL <
OEt - OEt —— = o
THF CH,Cly, ~78 °C

2 3, 94% 30 min 4, 90%
MeNO,, EtsN o CuCl, DCC
LTS NO, — = N0

rt, 24 h Et,0, t, 24 h

5, 58% 6, 73%

Scheme 1: Synthesis of the nitroalkene 6.
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Scheme 2: Catalyst screening in the Michael addition of dimethyl malonate to nitroalkene 6.
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(Sa,S,S)-C8, 68% using (S,S)-12

Scheme 3: Synthesis of catalysts (S;,R,R)-C8 and (S, S, S)-C8.

The binaphthyl structural motif has already been employed in
the hydrogen-bond-donating organocatalysis [35,36]. However,
the binaphthol moiety possessing an additional hydrogen bond
donor group was not tested in too much depth. Therefore, we
have synthesized two binaphthol-based diastereomeric
squaramide catalysts (S, R,R)-C8 and (S,,S,5)-C8 (Scheme 3).
Starting from (S)-BINOL (8), amine 9 was obtained in five
steps following literature procedures (see Supporting Informa-

tion File 1 for more details) [37-40]. The amine 9 was then at-
tached to a squaramide moiety using dimethyl squarate (10) in
slight excess to ensure monosubstitution. In this way com-
pound 11 was isolated in 80% yield. We have originally envis-
aged the transformation from amine 9 to compound 11 in two
steps. However, under microwave heating conditions, both
couplings of the amino group with squarate, as well as
methoxymethyl (MOM) deprotection was observed. To the best
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Table 1: Catalyst screening in the addition of dimethyl malonate to nitroalkene 6.2

entry catalyst yield of 7 (%)
1 c1 10

2 Cc2 <5

3 C3 0

4 (R,R)-C5 21

5 (S,S)-C5 28

6 Cé6 30

7 (R,R)-C7 22

8 (Sa,R,R)-C8 27

9 (Sa,S,S)-C8 12

drb er®
n.d. n.d.
n.d. n.d.
0 0
74:26 92:8
98:3 6:94
88:12 71:29
77:23 95:5
86:14 90:10
53:47 1:99

aGeneral conditions: nitroalkene 6 (1.4 mmol), dimethyl malonate (1.4 mmol), catalyst (0.07 mmol, 5 mol %) in CH2Cl, (1.5 mL) was stirred at rt
for 4 d; °dr determined by chiral HPLC; Cer for the major diastereomer determined by chiral HPLC.

of our knowledge, there is no report describing methanolysis of
MOM-groups under microwave conditions. This transformat-
ion is perhaps similar to acetal hydrolysis in neat water under
microwave irradiation [41]. Because of this efficient process,
compound 11 was isolated in one synthetic operation in
80% yield from amine 9. In the last step, precursor 11 reacted
with either amine (R,R)-12 or (S,5)-12, to afford diastereoiso-
meric catalysts (S, R,R)-C8, and (S,,S,5)-C8, respectively.

In the Michael addition of dimethyl malonate to the racemic
nitroalkene 6, the cinchona-based catalysts C1-C3 performed
poorly and provided the desired Michael adduct 7 in less than
10% yields (Table 1, entries 1-3). The lower reactivity of the
nitroalkene 6 compared with that of similar Michael acceptors
is probably due to the higher steric hindrance near the f-carbon
caused by branching of the alkyl chain. More relevant results in
the Michael addition were obtained with more reactive, and
likely less hindered, catalysts C5—-C8, which afforded adduct 7
in up to 30% yield (Table 1, entries 4-9).

As the results of the Michael addition in dichloromethane were
not fully satisfactory with neither of the nine tested catalysts,

we have decided to test the reaction in other solvents. Using

catalyst (§,5)-C5, we have evaluated the Michael addition of
dimethyl malonate to nitroalkene 6 in several other solvents
(Table 2). The best results were obtained in toluene. We have
observed a dramatic increase of the yield of compound 7. Its
enantiomeric purity was also the highest (er 99:1) in toluene.
Similarly, high enantiomeric purities were also observed in
acetonitrile and methanol, but yields were lower in these sol-
vents. This transformation likely operates as a kinetic resolu-
tion that creates a further stereocenter. We have also recovered
unreacted nitroalkene 6 with enantiomeric purity of approx.
67:33 er. Given the recent successful Michael additions to
nitroalkenes in aqueous media [20,21], we have also tested the
Michael addition of dimethyl malonate to nitroalkene 6 in brine.
For this experiment, we have employed the more lipophilic
organocatalyst C4, but the desired adduct 7 was formed only in
small amount (14% determined by NMR).

Using quantum chemical calculations, we propose approximate
transition state models for the stereoselective Michael addition
(Figure 2). Geometrical optimizations were performed at HF/6-
31G* level and energies were further refined using M06-2X
functional with 6-311+G** basis set. Solvation effects were

evaluated by using conductor-like C-PCM model with toluene

Table 2: Solvent screening in the addition of dimethyl malonate to nitroalkene 6.2

solvent catalyst yield (%)
CHCly (S,S)-C5 28
toluene (S,S)-C5 75
toluene (Sa,S,S)-C8 36
MeCN (S,S)-C5 29
Me-THF (S,S)-C5 31
MeOH (S,S)-C5 37
brined c4 14

drb ert
98:2 94:6
68:32 >99:1
62:38 84:15
71:29 >99:1
76:24 97:3
73:27 >99:1
n.d. n.d.

8General conditions: nitroalkene 6 (1.4 mmol), dimethyl malonate (1.4 mmol), catalyst (0.07 mmol, 5 mol %) in solvent (1.5 mL) was stirred at rt
for 4 d; Pdr determined by chiral HPLC; Cer for the major diastereomer determined by chiral HPLC; dreaction time 48 h.
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TS-(3R,4R)

Figure 2: Transition state models for the reaction of (R)-6 with dimethyl malonate using catalyst C7 (M06-2X/6-311+G**-C-PCM(toluene)//HF/6-

31G*).

as solvent (see Supporting Information File 1 for more details).
The model envisages dual activation mode originally suggested
by Takemoto [42], and then applied in similar situations
[18,43,44]. In this model, the nitroalkene is bound to the cata-
lyst via a squaramide moiety including an ancillary C-H---O
hydrogen bond [45,46]. The dimethyl malonate anion binds via
the protonated tertiary amide group. The calculations suggest
that using organocatalyst C7 the preferred enantiomers of the
product, within /ike and unlike-diastereomers, have (3R,4R) and
(3S,4R)-configuration. These isomers would result from the
Re-face and Si-attack of dimethyl malonate anion to (R)-enan-
tiomer of the nitroalkene 6.

Enantiomerically enriched Michael adduct 7, which was ob-
tained with catalyst (S,S)-C5, was also used to finish the synthe-

sis of 4-methylpregabalin (1) in an analogy to literature proce-
dures (Scheme 4) [47]. Adduct 7 was transformed to lactone 13
via nitro group reduction with NaBH4/NiCl, followed by spon-
taneous lactamization. In the last step, lactam 13 was hydro-
lyzed and decarboxylated to give 4-methylpregabalin hydro-
chloride (1-HC1). We have measured specific optical rotation
for compound 1 to be [a]p2? —2.6 (¢ 0.95, MeOH). This value
corresponds better with literature data, which for the (3R,4R)-
isomer states [a]pZ® —5.3 whereas for (B3RAS) [0]p2? +14.9.

Conclusion

We have shown that 4-methylpregabalin stereoisomers can be
synthesized from ethyl 3-methylbutanoate. The key step is an
organocatalytic Michael addition of dimethyl malonate to
racemic nitroalkene 6. Using chiral squaramide organocatalyst,

COzMe

COzMe

MeO,C.__CO,Me

NO,

e

/k(\VNoz (S,S)-C5 (5 mol %) )\L
PhMe, 4 d, rt

6

NaBH4
NiCl,-H,0
_—
MeOH, 0 °Cto rt
24 h

Scheme 4: Synthesis of 4-methylpregabalin (1).

:

7, 75%, dr 68:32,

er >99:1
CO5H
e /L/E/GD
EE——
reflux, 24 h ; Nl—g
= Cl
1-HCI, 50%
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the desired Michael adduct 7 was obtained in 75% yield as a
mixture of diastereomers (dr 68:32) with very high enan-
tiomeric purity of the major diastereomer (er 99:1). With the
help of quantum-chemical calculations, we have proposed a
transition state model for the Michael addition.

Supporting Information

Supporting Information File 1

Experimental procedures, characterization data for all
compounds, pictures of NMR spectra and computational
details.

[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-14-42-S1.pdf]
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