

View Article Online View Journal

ChemComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: D. Enders, P. Chauhan, S. Mahajan and G. Raabe, *Chem. Commun.*, 2014, DOI: 10.1039/C4CC09730K.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

RSCPublishing

COMMUNICATION

Chemical Communications

Cite this: DOI: 10.1039/x0xx00000x

1,4-/1,6-/1,2-addition **Organocatalytic** one-pot sequence for the stereocontrolled formation of six consecutive stereocenters

Pankaj Chauhan, Suruchi Mahajan, Gerhard Raabe and Dieter Enders*

Accepted 00th January 2014 DOI: 10.1039/x0xx00000x

Received 00th January 2014,

www.rsc.org/

Published on 22 December 2014. Downloaded by UNIVERSITY OF NEBRASKA on 02/01/2015 01:14:46.

An unprecedented stereoselective organocatalytic one-pot 1,4-/1,6-/1,2-addition sequence between β-dicarbonyl compounds, β-nitroalkenes and 4-nitro-5-styrylisoxazoles sequentially catalyzed by low loading of a squaramide catalyst and an achiral base has been developed. The protocol opens an efficient entry to isoxazole bearing cyclohexanes with six consecutive stereogenic centers including one tetrasubstituted carbon in good yields and excellent diastereo- and enantioselectivities.

Over the last ten years, asymmetric organocatalytic cascade reactions have emerged as a powerful strategy for the synthesis of complex molecules bearing multiple stereogenic centers in a highly stereocontrolled fashion.1 These one-pot organocatalytic reactions were successfully employed for the creation of cyclohexane ring systems bearing up to six stereocenters.² Most of these triple cascade reactions are governed by more common 1,4-/1,4-/1,2 addition sequences. Another important class of addition reactions involving the enantioselective 1,6-addition to control the formation of a remote stereocenter is more challenging and less explored in comparison to the other addition variants.³ Moreover, organocatalytic cascade reactions using all possible types of addition reactions, i.e. 1,4-/1,6-/1,2-addition reactions, are not known so far. Hence we took the challenge to develop a new stereoselective one-pot organocascade sequence using 1,4-/1,6-/1,2-additions (Scheme 1). Previous work: This work:

Scheme 1. Enantioselective strategies for the construction of cyclohexane rings bearing multiple stereogenic centers.

In addition, the isoxazole core is present in various important naturally occurring and synthetic bioactive molecules (Figure 1). For

Figure 1. Enantiopure drugs and bioactive natural products bearing an isoxazole ring.

example, compounds A-D are β -lactamase-resistant antibiotics,⁴ while an isoxazole containing natural product E is a powerful neurotoxin, which is used as a brain-lesioning agent⁵. A synthetic androgenic steroid danazol D bearing an isoxazole ring suppresses the production of gonadotrophins and also has some weak androgenic effects.⁶ Moreover, isoxazoles serve as precursors for the synthesis of various synthetically useful organic compounds.⁷ Thus, the development of efficient asymmetric methods for the synthesis of isoxazole ring containing molecules can provide a new series of potentially bioactive molecules.

Recently, organo- and metal-catalyzed 1,6-additions to 4-nitro-5-styrylisoxazoles emerged as an efficient method to generate enantiopure isoxazole derivatives bearing one or two stereocenters.^{8,9} However, the 4-nitro-5-styrylisoxazoles remained less explored substrates in stereoselective cascade reactions.9d,g Very recently, Jørgensen's group utilized 4-nitro-5-styrylisoxazoles in trienaminemediated asymmetric [4+2] cycloaddition reactions to afford cyclohexene products bearing three vicinal stereocenters.¹⁰ Herein we report a novel cascade reaction involving a 1,4-/1,6-/vinylogous 1,2-addition sequence to access enantiopure cyclohexane rings bearing as many as six contiguous stereogenic centers, sequentially catalyzed by low loading of a cinchona derived squaramide¹¹ and an achiral base.

Initially, we started our investigation with a squaramide I (1 mol%) catalyzed one-pot three component reaction between ethyl acetoacetate (1a), β -nitrostyrene (2a) and 4-nitro-5-styrylisoxazole

(3a) (Table 1, entry 1). However our attempt to obtain the desired cyclohexane ring failed completely, and only the formation of the Michael adduct was observed.¹² We envisaged that the squaramide catalyst was not enough active to generate a nitronate anion in the corresponding Michael adduct to initiate a domino 1,6-/vinylogous 1,2-addition sequence. Thus, a sequential reaction was performed involving a squaramide I catalyzed Michael addition of the βketoester 1a to the β -nitrostyrene 2a, followed by the addition of 3a and a catalytic amount of DBU (20 mol%) (entry 2). To our delight, the desired cyclohexane 4a was obtained in 46% yield with excellent stereoselectivity (98% ee and >20:1 dr). Further optimization of the reaction conditions by screening different solvents (entries 3-5) and bases (entries 6-11) showed that 30 mol% of DBU in CH₂Cl₂ provides a maximum yield of 62% and excellent stereoselectivity (entry 6). The use of a quinidine derived squaramide catalyst II led to the opposite enantiomer of the cyclohexane ent-4a with a similar yield, ee and dr (entry 12).

^{*a*} Reaction conditions: 0.2 mmol of **1a**, 0.2 mmol of **2a**, 1 mol% of **I**, 0.24 mmol of **3a** and x mol% of base (0.1 M in solvent). ^{*b*} Time in hours for both reaction steps. ^{*c*}Yield of isolated **4a** after column chromatography. ^{*d*}Enantiomeric excess of the major diastereomer (>20:1 dr) determined by HPLC analysis on a chiral stationary phase. ^{*e*}All the reactants were added in one step. ^{*f*}2 Equivalents of **3a** were used. ^{*s*}ee Value of *ent*-**4a** synthesized by using catalyst **II**.

Once equipped with optimized reaction conditions, we evaluated the substrate scope at a 0.5 mmol scale of the β -dicarbonyl compounds and the β -nitrostyrenes (Table 2). The various nitroalkenes bearing electron withdrawing and electron donating groups gave rise to the corresponding isoxazole products **4b-e** in 55-67% yield and excellent stereoselectivities (>20:1 dr and 93-99% ee). The nitroalkenes bearing a heteroaromatic group also worked well in this cascade sequence to provide the desired product **4f** in

61% yield and 91% ee. Further screening of different 4-nitro-5styrylisoxazoles bearing electron withdrawing and electron releasing substituents on the aryl ring as well as heteroaryl group provided a direct access to the corresponding cyclohexanes **4g-m** in good yields and high enantioselectivities (95-99% ee). The methyl acetoacetate and acetyl acetone were also tolerated under this one-pot protocol to give rise to the respective products **4n** and **4o** in good yields and excellent stereoselectivities. Employing a pseudo-enantiomeric amino-squaramide catalyst **II** successfully led to the formation of the enantiomers of **4a-f**, **4h** and **4l** in very good yields (51-69%) and again excellent asymmetric inductions (>20:1 dr and 95-98% ee).

Table 2. Substrate scope .^a

Table 2. Substrate scope .					
$\begin{array}{c} 0\\ Me\\ 1\\ H\\ R^2\\ 2\end{array} \\ \begin{array}{c} 0\\ COR^1\\ I\\ (1 \text{ mol}\%)\\ H\\ R^2\\ 2\end{array} \\ \begin{array}{c} 0\\ OR\\ I\\ CH_2CI_2, \text{ rt}\\ 48 \text{ h} \end{array} \\ \begin{array}{c} 0\\ NO_2\\ OR\\ OR\\ I\\ OR\\$					
4/	\mathbf{R}^1	\mathbb{R}^2	R ³	vield	$ee(\%)^{c}$
ent-4	R	R	R	$(\%)^b$	
4a	OEt	Ph	Ph	61	98
4b	OEt	$4-FC_6H_4$	Ph	64	99
4c	OEt	4-ClC ₆ H ₄	Ph	55	99
4d	OEt	4-MeC ₆ H ₄	Ph	63	93
4 e	OEt	4-MeOC ₆ H ₄	Ph	67	97
4f	OEt	2-Thienyl	Ph	61	91
4g	OEt	Ph	$4-FC_6H_4$	60	98
4h	OEt	Ph	$4-ClC_6H_4$	61	97
4i	OEt	Ph	3-ClC ₆ H ₄	69	97
4j	OEt	Ph	4-MeC ₆ H ₄	73	99
4k	OEt	Ph	2-MeC ₆ H ₄	49	95
41	OEt	Ph	4-MeOC ₆ H ₄	39	96
4m	OEt	Ph	2-Thienyl	50	97
4n	OMe	Ph	Ph	58	97
4o	Me	Ph	Ph	50	96
<i>ent-</i> 4a	OEt	Ph	Ph	69	96
ent-4b	OEt	$4-FC_6H_4$	Ph	63	97
ent-4c	OEt	$4-ClC_6H_4$	Ph	51	95
ent-4d	OEt	4-MeC ₆ H ₄	Ph	64	98
ent-4e	OEt	4-MeOC ₆ H ₄	Ph	66	95
ent-4f	OEt	2-Thienyl	Ph	59	96
ent-4h	OEt	Ph	$4-ClC_6H_4$	60	97
ent-4k	OEt	Ph	$2-MeC_6H_4$	50	96
^a Reaction conditions: 0.5 mmol of 1, 0.5 mmol of 2, 1 mol% of I (entry 1-					

^{*a*} Reaction conditions: 0.5 mmol of **1**, 0.5 mmol of **2**, 1 mol% of **I** (entry 1-17) or **II**, 1.0 mmol of **3** and 30 mol% of DBU (0.1 M in CH₂Cl₂). ^{*b*} Yield of isolated product after column chromatography. ^{*c*} Enantiomeric excess of the major diastereomer determined by HPLC analysis on a chiral stationary phase.

The absolute configuration of the products **4a-o** can be assigned as (1S), (2S), (3R), (4S), (5S) and (6R) on the basis of the X-ray crystallographic analysis of **4a** (Figure 2).¹³

To demonstrate the practical and preparative application of this new organocascade 1,4-/1,6-/1,2-addition sequence, we performed a gram-scale reaction between **1a**, **2a** and **3a** using a lower loading (0.5 mol%) of the squaramide **I** (Scheme 2). The desired product **4a** was obtained in 57% yield with unchanged ee and dr values. The enantiomeric purity could be enriched to >99% ee after a single crystallization of the product.

Journal Name

In conclusion, we have developed a novel 1,4-/1,6-/1,2addition cascade sequence catalyzed sequentially by low loading of a cinchona-derived squaramide and a commercially available achiral base to afford a series of highly substituted cyclohexane derivatives bearing six consecutive stereogenic centers in good yields and excellent stereoselectivities. The enantiomeric cyclohexanes are also easily synthesized on a same level of asymmetric induction by employing a pseudoenantiomeric squaramide catalyst. A successful gram-scale reaction documents the preparative utility of this organocascade protocol.

Support from the European Research Council (ERC Advanced Grant 320493 "DOMINOCAT") is gratefully acknowledged. We thank BASF SE for the donation of chemicals.

Notes and references

^{*} Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1, 52074 Aachen (Germany)

E-mail: enders@rwth-aachen.de; Fax: +49 (241) 8092127

† Electronic Supplementary Information (ESI) available: See DOI: 10.1039/c00000x/

- For selected reviews on organocatalytic domino/cascade reactions, see: (a) D. Enders, C. Grondal and M. R. M. Hüttl, Angew. Chem., Int. Ed., 2007, 46, 1570; (b) X. Yu and W. Wang, Org. Biomol. Chem., 2008, 6, 2037; (c) C. Grondal, M. Jeanty and D. Enders, Nature Chemistry, 2010, 2, 167; (d) Ł. Albrecht, H. Jiang and K. A. Jørgensen, Angew. Chem., Int. Ed., 2011, 50, 8492; (e) A. Moyano and R. Rios, Chem. Rev. 2011, 111, 4703; (f) A. Grossmann and D. Enders, Angew. Chem., Int. Ed., 2012, 51, 314; (g) H. Pellissier, Adv. Synth. Catal., 2012, 354, 237; (h) C. M. R. Volla, I. Atodiresei and M. Rueping, Chem. Rev. 2014, 114, 2390; For a recent highlight, see: (i) P. Chauhan and D. Enders, Angew. Chem., Int. Ed., 2014, 53, 1485.
- For a recent review, see: (a) S. Goudedranche, W. Raimondi, X. Bugaut, T. Constantieux, D. Bonne and J. Rodriguez, *Synthesis*, 2013, 45, 1909; For selected examples, see: (b) D. Enders, M. R. M. Hüttl, C. Grondal and G. Raabe, *Nature*, 441, 861; (c) D. Enders, M. R. M. Hüttl, Y. Runsink, G. Raabe and B. Wendt, *Angew. Chem., Int. Ed.*, 2007, 46, 467; (d) D. Enders, M. R. M. Hüttl, G. Raabe and J. W. Bats, *Adv. Synth. Catal.*, 2008, 350, 267; (e) P. G. McGarraugh and S. E. Brenner, *Org. Lett.*, 2009, 11, 5654; (f) Y. Wang, R.-G. Han, Y.-L. Zhao, S. Yang, P.-F Xu and D. J. Dixon, *Angew. Chem., Int. Ed.*, 2009, 48, 9834; (g) K. Jiang, Z.-J. Jia, S. Chen, L. Wu, and Y.-C. Chen, *Chem. Eur. J.*, 2010, 16, 2852; (h) O. Baslé, W. Raimondi, M. M. Sanchez Duque, D. Bonne, T. Constantieux and J. Rodriguez, *Org. Lett.*, 2010, 12,

5246; (i) D. Enders, B. Schmid and N. Erdmann, Synthesis, 2010, 2271; (j) M. Rueping, K. L. Haack, W. Ieawsuwan, H. Sundén, M. Blanco and F. R. Schoepke, Chem. Commun., 2011, 3828; (k) C. Cassani, X. Tian, E. C. Escudero-Adán and P. Melchiorre, Chem. Commun., 2011, 47, 233; (1) A. Zea, A.-N. R. Alba, A. Mazzanti, A. Moyano and R. Rios, Org. Biomol. Chem., 2011, 9, 6519; (m) D. Enders, A. Greb, K. Deckers, P. Selig and C. Merkens, Chem. Eur. J., 2012, 18, 10226; (n) D. Enders, G. Urbanietz, E. Cassens-Sasse, S. Keeß and G. Raabe, Adv. Synth. Catal., 2012, 354, 1481; (o) W. Raimondi, M. M. Sanchez Duque, S. Goudedranche, A. Quintard, T. Constantieux, X. Bugaut, D. Bonne and J. Rodriguez, Synthesis 2013, 1659: (p) X. Zeng, Q. Ni, G. Raabe and D. Enders, Angew. Chem., Int. Ed., 2013, 52, 2977; (q) P. Chauhan, G. Urbanietz, G. Raabe and D. Enders, Chem. Commun., 2014, 50, 6853; (r) P. Chauhan, S. Mahajan, C. C. J. Loh, G. Raabe and D. Enders, Org. Lett., 2014, 16, 2954; (s) P. Sun, C.-Y. Meng, F. Zhoua, X.-S. Li and J.-W. Xie, Tetrahedron, 2014, 70, 9330; (t) J. I. Martínez, L. Villar, U. Uría, L. Carrillo, E. Reyes and J. L. Vicario, Adv. Synth. Catal., 2014, 355, 3627.

- 3. For selected reviews and highlights on 1,6-addition reactions, see: (a) A. G. Csaký, G. de la Herrán and M. C. Murcia, Chem. Soc. Rev., 2010, 39, 4080; (b) A. T. Biju, ChemCatChem, 2011, 3, 1847; (c) E. M. P. Silva and A. M. S. Synthesis, 2012, 44, 3109; (d) M. J. Lear and Y. Hayashi, Silva. ChemCatChem, 2013, 5, 3499; (e) I. D. Jurberg, I. Chatterjee, R. Tannert and P. Melchiorre, Chem. Commun., 2013, 49, 4869; for recent examples, see: (f) X. Tian, Y. Liu and P. Melchiorre, Angew. Chem., Int. Ed., 2012, 51, 6439; (g) L. Dell'Amico, Ł. Albrecht, T. Naicker, P. H. Poulsen and K. A. Jørgensen, J. Am. Chem. Soc., 2013, 135, 8063; (h) W.-D. Chu, L.-F. Zhang, X. Bao, X.-Y. Zhao, C. Zeng, J.-Y. Du, G.-B. Zhang, F.-X. Wang, X.-Y. Ma and C.-A. Fan, Angew. Chem., Int. Ed., 2013, 52, 9229; (i) L. Caruana, F. Kniep, T. K. Johansen, P. H. Poulsen and K.A. Jørgensen, J. Am. Chem. Soc., 2014, 136, 15929; (j) K. Akagawa, N. Nishi, J. Sen aand K. Kudo, Org. Biomol. Chem., 2014, 12, 3581.
- (a) R. Sutherland, E. A. P. Croydon and G. N. Rolinson, *Brit. Med. J.*, 1970, 4, 455; (b) G. Miranda-Novales, B. E Leaños-Miranda, M. Vilchis-Pérez and F. Solórzano-Santos, *Ann. Clin. Microbiol. Antimicrob*, 2006, doi:10.1186/1476-0711-5-25.
- (a) O. Isacson, P. Brundin, P. A. T. Kelly, F. H. Gage and A. Björklund, *Nature*, 1984, **311**, 458; (b) A. Becker, G. Grecksch, H.-G. Bernstein, V. Höllt and B. Bogerts, *Psychopharmacology*, **1999**, 144, 333.
- H. C. Neumann, G. O. Potts, W. T. Ryan and F. W. Stonner, J. Med. Chem., 1970, 13, 948.
- 7. P. G. Baraldi, A. Barco, S. Benetti, G. P. Pollini and D. Simoni, *Synthesis*, 1987, 857.
- For selected examples of 4-nitro-5-styrylisoxazoles in non-enantioselective 1,6-addition reactions, see: (a) S. Chimichi, F. D. Sio, D. Donatic, P. S. Fantoni and M. F. A. Adamo, *Tetrahedron Lett.*, 2002, 43, 4157; (b) S. Bruschi, S. Suresh, L. Piras and M. F. A. Adamo, *Tetrahedron Lett.*, 2008, 49, 7406; (c) M. Nagabelli and M. F. A. Adamo, *Tetrahedron Lett.*, 2007, 48, 4703; (d) V. R. Konda and M. F. A. Adamo, *Org. Lett.*, 2007, 9, 303; (e) F. Fini, M. Naabelli and M. F. A. Adamo, *Adv. Synth. Catal.*, 2010, 352, 3163; (f) D. S. Illera, S. Suresh, M. Moccia, G. Bellini, M. Saviano and M. F. A. Adamo, *Tetrahedron Lett.*, 2012, 53, 1808; (g) M. N. Reddy, K. G. Reddy, S. R. Krishna and E. Rajanarendar, *Tetrahedron Lett.*, 2012, 53, 2909.
- For selected examples of 4-nitro-5-styrylisoxazoles in enantioselective 1,6-addition reactions, see: (a) M. Nagabelli and M. F. A. Adamo, Org. Lett., 2008, 10, 1807; (b) A. Baschieri, L. Bernardi, A. Ricci, S. Suresh and M. F. A. Adamo, Angew. Chem., Int. Ed., 2009, 48, 9342; (b) Q.-L. Pei, H.-W. Sun, Z.-J. Wu, X.-L. Du, X.-M. Zhang and W.-C. Yuan, J. Org. Chem., 2011, 76, 7849; (c) H.-W. Sun, Y.-H. Liao, Z.-J. Wu, H.-Y. Wang, X.-M. Zhang and W.-C. Yuan, Tetrahedron, 2011, 67, 3991; (d) C. D. Fiandra, L. Piras, F. Fini, P. Disetti, M. Moccia and M. F. A. Adamo, Chem. Commun., 2012, 48, 3863; (e) J.-L. Zhang, X.-H. Liu, X.-J. Ma and R. Wang, Chem. Commun., 2013, 49, 9329; (f) R. J. Chew, Y. Huang, Y. Li, S. A. Pullarkat and P.-H. Leung, Adv. Synth. Catal., 2013, 355, 1403; (g) X.-L. Liu, W.-Y. Han, X.-M. Zhang and W.-C. Yuan, Org. Lett., 2013, 15, 1246.
- Y. Li, F. J. López-Delgado, D. K. B. Jørgensen, R. P. Nielsen, H. Jiang and K. A. Jørgensen, *Chem. Commun.*, 2014, **50**, 15689.
- For reviews on squaramides, see: (a) J. Alemán, A. Parra, H. Jiang, K. A. Jørgensen, *Chem. Eur. J.*, 2011, **17**, 6890; (b) R. I. Storer, C. Aciro and L. H. Jones, *Chem. Soc. Rev.*, 2011, **40**, 2330.
- (a) J. P. Malerich, K. Hagihara and V. H. Rawal, J. Am. Chem. Soc., 2008, 130, 14416;
 (b) H. Y. Bae, S. Some, J. S. Oh, Y. S. Lee and C. E. Song, Chem. Commun., 2011, 47, 9621;
 (c) Y.-F. Wang, R.-X. Chen, K. Wang, B.-B. Zhang, Z.-B. Lib and D.-Q. Xu, Green Chem., 2012, 14, 893.
- CCDC 1037530 (for 4a) contains the supplementary crystallographic data for this paper (www.ccdc.cam.ac.uk/data_request/cif).

ChemComm Accepted Manuscri