Enantioselective Aza-Henry Reaction of Imines Bearing a Benzothiazole Moiety Catalyzed by a *Cinchona***-Based Squaramide**

Hai-Xiao He,^a Wen Yang,^a and Da-Ming Du^{a,*}

^a School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, People's Republic of China Fax: (+86)-010-6891-4985; e-mail: dudm@bit.edu.cn

Received: October 31, 2012; Revised: January 24, 2013; Published online: March 20, 2013

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201200957.

Abstract: An efficient enantioselective aza-Henry reaction of nitroalkanes to imines bearing a benzothiazole moiety catalyzed by a *Cinchona*-based squaramide has been developed. In the reaction of imines, the corresponding products were obtained in good to excellent yields (up to 99%) with excellent enantioselectivities (up to >99% *ee*) for most of the aromatic substituted imines. The imines with electron-withdrawing groups gave better yields than those bearing electron-donating groups in the aza-Henry reaction.

Introduction

The aza-Henry reaction is an important and efficient method for carbon-carbon bond formation in organic chemistry.^[1] The resulting β -nitro amines are useful synthetic intermidiates, which can be conveniently converted to vicinal diamines by reduction of the nitro group, or to α -amino acids derivatives through Nef reactions.^[2] In recent years, many studies on the catalytic asymmetric aza-Henry reaction have been reported. Shibasaki et al. reported that heterobimetallic complexes with lanthanide BINOL systems promoted the aza-Henry reaction to give β -nitro amines with high enantioselectivity.^[3] Jørgensen et al. also developed a catalytic asymmetric version of this reaction with bisoxazoline copper(II) complexes.^[4] Trost et al. used dinuclear Zn as a novel catalyst in the addition of nitroalkanes to carbamate-protected imines and α,β -unsaturated imines giving α -amino products in high enantiomeric excess.^[5] Various types of organocatalysts have also been developed in recent years, such as chiral thioureas,^[6] chiral phase-transfer catalysts,^[7] chiral proton catalysts,^[8] chiral phosphoric acid^[9] and other types of catalysts.^[10] However, the substrates of most reports are limited to aldimines or ketoimines using simple amino counterparts.[11] The utilization of heterocyclic imines or imines containing

Moreover, a one-pot three-component enantioselective aza-Henry reaction using 2-aminobenzothiazoles, aldehydes, and nitromethane was also developed. Moderate to good yields and high enantioselectivities were obtained in the one-pot cases (up to $98\% \ ee$).

Keywords: asymmetric catalysis; aza-Henry reaction; benzothiazoles; imines; organocatalysis; squaramides

heterocyclic amino counterparts has been rarely reported.^[12] Among the heterocyclic compounds, benzothiazole is an important heterocyclic moiety found in many natural products and medically important synthetic molecules.^[13] Benzothiazole derivatives often exhibit a wide spectrum of significant biological activities.^[14] In this context, the syntheses of these compounds have attracted more attation, but only a few catalytic asymmetric approaches were reported.^[15]

Despite the successful catalytic systems reported, the development of new and efficient ones for aza-Henry reactions is still in demand. Chiral squaramide catalysts like thiourea catalysts have great potential in catalytic asymmetric reactions. These molecules exhibit a dual donor-acceptor hydrogen bonding ability.^[16] Chiral squaramides as a novel type of good hydrogen-bonding organocatalysts have been successfully applied in various asymmetric reactions.^[17] Recently, our group also reported the chiral squaramide-catalyzed asymmetric Michael addition of nitroalkanes to nitroalkenes.^[17g] In spite of the progress in this area, the application of this class of organocatalysts in aza-Henry reactions has never been reported. We envisioned that Cinchona alkaloid-based squaramides as bifunctional organocatalysts can be used to catalyze the aza-Henry reaction, because both the electrophilic and nucleophilic components in this reaction can be

Figure 1. Activation mode of Cinchona alkaloid-squaramide.

activated by Brønsted acid and Lewis base functionalities of squaramide organocatalysts simultaneously (Figure 1).^[18] The match of these two backbones embedded in the squaramide catalysts is critical for promoting the enantioselectivity. Based on the activation mode and previous related work, the application of *Cinchona*-based squaramides in this reaction was investigated. Herein we would like to report the first highly enantioselective aza-Henry reaction catalyzed by a *Cinchona*-based squaramide organocatalyst (Figure 2).

Results and Discussion

Initially, we selected the addition of nitromethane 2a to imine 1a bearing a benzothiazole moiety as a model reaction. The model reaction proceeded well in CH₂Cl₂ in the presence of 5 mol% catalyst I for 48 h at room temperature to furnish the corresponding adduct 3a with very low enantioselectivity (9% *ee*) albeit with good yield (70%) (Table 1, entry 1). The primary amine catalyst II derived from quinine I also afforded very low enantioselectivity (10% yield,

8% ee) (Table 1, entry 2). Next, several quinine-based organocatalysts were prepared and their capacity to promote the enantioselective aza-Henry reaction was evaluated. Squaramide catalysts III-V all gave product 3a in high yields and excellent enantioselectivities (99% ee). When the C_2 -symmetrical quinine-based squaramide catalyst VI was used, high yield and enantioselectivity (91% yield, 94% ee) were obtained (Table 1, entry 6). In addition, a control experiment with quinine-based thiourea catalyst VII was performed for comparing the catalytic activity. Under otherwise identical conditions, thiourea VII gave the corresponding adduct 3a in 90% yield with 97% ee (Table 1, entry 7). This result indicates that the squaramide catalyst exhibits a slightly higher reactivity and enantioselectivity than the corresponding thiourea. From the above evaluation, squaramide III was identified as the optimal catalyst.

With the optimal catalyst in hand, we investigated the effects of solvent, catalyst loading, and temperature in a search for the optimal conditions. The results are shown in Table 2. Variation of the solvents had a very limited effect on the reaction process. The common solvents such as PhMe, THF, ClCH₂CH₂Cl, CHCl₃, and CCl₄ all afforded high yields (87-92%)and excellent enantioselectivities (99% ee) (Table 2, entries 2-6). This observation demonstrates that the catalytic system for the aza-Henry reaction is well tolerant towrds solvent variation. The solvent CH₂Cl₂ was still the best reaction medium. Noticeably, when the reaction was carried out in neat nitromethane, the product 3a in high yield with excellent enantioselectivity (80% yield, 99% ee) was achieved (Table 2, entry 7). Subsequently, the effect of catalyst loading was investigated. We chose the amount of catalyst **III** with the four gradients ($10 \mod \%$, $5 \mod \%$, $2 \mod \%$,

Figure 2. The screened organocatalysts.

1138 asc.wiley-vch.de

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

_NO₂

	N=CH			
	1a	2a	3a	
Entry	Catalyst	Time [h]	Yield [%] ^[b]	<i>ee</i> [%] ^[c]
1	I	48	70	9
2	II	72	10	8
3	III	48	95	99
4	IV	48	92	99
5	V	48	94	99
6	VI	48	91	94
7	VII	48	90	97

Table 1. Screening of organocatalysts for the enantioselective aza-Henry of nitromethane 2a to imine 1a.^[a]

^[a] Unless noted otherwise, reactions were carried out with imine **1a** (47.6 mg, 0.2 mmol) and nitromethane **2a** (122 mg, 2.0 mmol) in CH₂Cl₂ (2 mL) at room temperature.

^[b] Isolated yield after column chromatographic purification.

^[c] Determined by HPLC analysis using a Daicel Chiralpak IB column.

Table 2. Optimization of reaction conditions for the enantioselective aza-Henry of nitromethane 2a to imine 1a.^[a]

Entry	Solvent	Temperarture [°C]	Time [h]	Loading [mol%]	Yield [%] ^[b]	ee [%] ^[c]
1	CH ₂ Cl ₂	r.t.	48	5	95	99
2	PhMe	r.t.	48	5	92	99
3	THF	r.t.	48	5	87	99
4	$(CH_2Cl)_2$	r.t.	48	5	90	99
5	CHCl ₃	r.t.	72	5	92	99
6	CCl_4	r.t.	48	5	91	99
7	MeNO ₂	r.t.	48	5	80	99
8	CH ₂ Cl ₂	r.t.	48	10	94	99
9	CH ₂ Cl ₂	r.t.	48	2	67	98
10	CH ₂ Cl ₂	r.t.	48	1	60	96
11	CH ₂ Cl ₂	0	72	5	88	94
12	CH ₂ Cl ₂	40	72	5	90	98

[a] Reactions were carried out with imine **1a** (47.6 mg, 0.2 mmol) and nitromethane **2a** (122 mg, 2.0 mmol) in CH₂Cl₂ (2 mL).

^[b] Isolated yield after column chromatographic purification.

^[c] Determined by HPLC analysis using a Daicel Chiralpak IB column

and 1 mol%) (Table 2, entries 8–10). The presence of 10 mol% or 5 mol% catalyst almost gave the same results (Table 2, entry 8). When 2 mol% catalysts were used, the enantioselectivity was decreased to 98% *ee*. On further reduction of the catalyst loading the enantioselectivity was decreased to 96% *ee*. At the same time the yields also decreased obviously (67% and 60% yield, respectively) (Table 2, entries 9 and 10). In the asymmetric reaction, the influence of the temperature cannot be ignored. So the aza-Henry reactions were conducted at 0°C and 40°C, respectively. However, the enantioselectivity at 0°C or 40°C was lower

than the one at room temperature (Table 2, entries 11 and 12). Neither high nor low temperature is favourable for this reaction. So we identified that the optimal reaction conditions were: CH_2Cl_2 , in the presence of 5 mol% catalyst **III**, and at room temperature.

With the optimal reaction conditions established, we explored the scope of this aza-Henry reaction. The results are shown in Table 3. Imines **1a–1f** derived from aromatic aldehydes bearing electron-neutral, electron-withdrawing or electron-donating substitutions reacted smoothly with nitromethane to afford the corresponding adducts in good-to-high yields with

		$R^{1} \stackrel{f_{1}}{\underset{U}{\overset{W}{\overset{W}{\overset{W}{\overset{W}{\overset{W}{\overset{W}{\overset{W}{\overset$				
		1a–t	2a	3a-1	t i i i i i i i i i i i i i i i i i i i	
Entry	\mathbf{R}^1	\mathbb{R}^2	Time [h]	Product	Yield [%] ^[b]	ee [%] ^[c]
1	Н	C ₆ H ₅	48	3a	95	>99
2	Н	$4 - FC_6H_4$	48	3 b	80	99
3	Н	$4-ClC_6H_4$	48	3c	94	99
4	Н	$4-BrC_6H_4$	48	3d	86	98
5	Н	$3-O_2NC_6H_4$	24	3e	99	>99
6	Н	$2-MeOC_6H_4$	48	3f	80	99
7	Н	5-Cl-2-HOC ₆ H ₃	48	3g	97	51
8	Н	$4-(Me)_2NC_6H_4$	48	3h	70	87
9	Н	3,5-Cl ₂ -2-HOC ₆ H ₂	48	3i	91	80
10	Н	3-pyridinyl	48	3j	95	99
11	Н	2-furanyl	48	3k	90	98
12	6-Me	C_6H_5	48	31	94	99
13	6-MeO	C_6H_5	24	3m	90	99
14	6-Cl	C_6H_5	24	3n	91	99
15	6-Me	$3-O_2NC_6H_4$	24	30	98	99
16	6-MeO	$3-O_2NC_6H_4$	24	3р	92	99
17	6-Cl	$3-O_2NC_6H_4$	24	3q	89	97
18	6-Me	$2-MeOC_6H_4$	48	3r	97	99
19	6-MeO	$2-MeOeC_6H_4$	48	3 s	90	99
20	6-Cl	$2-MeOC_6H_4$	48	3t	92	99

Table 3. Substrate scope of the enantioselective aza-	Henry of nitromethane	2a to imines	1 . ^[a]
			_NO₂
N	5 m a 19/ III	∧ .N	Ē

^[a] Reactions were carried out with imine 1 (0.2 mmol) and nitromethane 2a (122 mg, 2.0 mmol) in CH₂Cl₂ (2 mL).

[b] Isolated yield after column chromatographic purification.

^[c] Determined by HPLC analysis.

excellent enantioselectivities (99% ee) (Table 3, entries 1-6). The electronic property of the substituent has a certain effect on the yield. Generally, imines with electron-withdrawing substituents gave higher yields than those with electron-donating substituents. When reactions were performed with imines 1g and 1i bearing a hydroxy group, the desired products were obtained with moderate enantioselectivities (51% ee and 80% ee, respectively) (Table 3, entries 7 and 9). Imine **1h** bearing strong electron-donating substitution, $N(Me)_2$, afforded the corresponding product in 70% yield with 87% ee (Table 3, entry 9). A significant decrease on the enantioselectivity can be attributed to strong hydrogen bond interaction between the OH or $N(Me)_2$ group and squaramide catalyst III. Imines 1j and 1k derived from heteroaromatic aldehydes were also good substrates, and the desired products were obtained in high yields with excellent enantioselectivities (95% yield, 99% ee and 90% yield, 98% ee, respectively) (Table 3, entries 10 and 11). Imines 11-1t with variations (6-Me, 6-MeO, and 6-Cl) on the benzothiazole ring were examined, and excellent vields and excellent enantioselectivities (97-99% ee) were achieved (Table 3, entries 12–20).

To get a general sense of what this catalyst can do for the aza-Henry reaction, other imines with more typical N-substituents were investigated. The imines derived from benzaldehyde and aniline or p-chloroaniline cannot undergo this aza-Henry reaction, Tsimine 4a gave very low enantioselectivity (15% ee) and Boc-imine 4b afforded the corresponding product 5b in 90% yield with 31% ee. This result indicates that the presence of the N-heterocycle in the imine is necessary for high enantioselectivity. Other nitroalkanes were further investigated. The reaction of nitroethane 2b and imine 1a catalyzed by 5 mol% catalyst III was also effective to provide the corresponding product 6 in 96% yield with excellent enantioselectivities for both diastereomers (99% ee and 99% ee, respectively), albeit with low diastereoselectivity (Scheme 1). When nitropropane 2c was used, the aza-Henry product 7 was obtained in 92% yield with excellent enantioselectivities for one diastereomer (99% ee). The enantioselectivity of another diastereomer cannot be determined owing to the fact that the corresponding two enantiomers cannot be separated with the series of columns in hand.

To determine the absolute configuration of the aza-Henry products, a single crystal of the product 3d

asc.wiley-vch.de

Scheme 1. Further substrate scope of imines and nitroalkanes.

Figure 3. X-ray crystal structure of product 3d.

suitable for X-ray crystallographic analysis was obtained by crystallization from ethanol. As shown in Figure 3, the absolute configuration of **3d** was determined to be (S).^[19] The absolute configurations of other products were assigned by analogy.

Encouraged by the above excellent results, we tried to develop a one-pot three-component enantioselective aza-Henry reaction.^[20] Following the two-component reaction conditions, the asymmetric one-pot aza-Henry reaction was performed with 2-aminobenzothiazole, benzaldehyde, and nitromethane in CH_2Cl_2 at room temperature. The desired product 3a was obtained with excellent enantioselectivity but in low vield (20% vield, 98% ee) (Table 4, entry 1). For improving the yield, the reaction conditions such as solvent, temperature and additives were simply reoptimized (Table 4, entries 2-8). When the reaction temperature was increased to 60°C, the yield was enhanced but with reduction of the enantioselectivity (Table 4, entries 2-4). No good result was obtained when the reaction was performed at 90°C in PhMe (Table 4, entry 5). Then, we tried to evaluate the effect of additives. When 4 Å molecular sieve, anhydrous Na_2SO_4 or $MgSO_4$ was used as additive, the product was obtained with higher yield but lower enantioselectivity (Table 4, entries 6-8). The result (55% yield, 89% ee) achieved in toluene at 60°C was found to be acceptable in consideration of both yield and enantioselectivity (Table 4, entry 2). Under the new optimal conditions, the scope of the one-pot three-component asymmetric aza-Henry reaction was further explored. Aromatic aldehydes 9 with electronwithdrawing or electron-donating substitutions were examined, and moderate to good yields with high enantioselectivies were obtained (Table 4, entries 9-11). 2-Aminobenzothiazoles with different substitutions (6-Me, 6-MeO, and 6-Cl) on the benzothiazole ring also gave comparable results (Table 4, entries 12-14). When the aza-Henry reaction with 2-amino-5chlorobenzothiazole, 2-methoxybenzaldehyde, and nitromethane was performed in toluene in the presence of 5 mol% catalyst III at 60 °C for 90 h, the product 3t was obtained with high yield and excellent enantioselectivity (90% yield, 94% ee) (Table 4, entry 15).

NO₂

Table 4. One-pot three-component enantioselective aza-Henry reaction.^[a]

	R^{1} H^{1} R^{2} R^{2						
		8	9 2a		3		
Entry	\mathbf{R}^1	R ²	Temperature [°C]	Solvent	Product	Yield [%] ^[b]	ee [%] ^[c]
1	Н	C ₆ H ₅	r.t.	CH_2Cl_2	3a	20	98
2	Н	C_6H_5	60	PhMe	3a	55	89
3	Н	C_6H_5	60	CHCl ₃	3a	43	59
4	Н	C_6H_5	60	$(CH_2Cl)_2$	3a	36	73
5	Н	C_6H_5	90	PhMe	3a	57	52
6 ^[d,e]	Н	C_6H_5	60	PhMe	3a	90	76
7 ^[e,f]	Н	C_6H_5	60	PhMe	3a	65	80
8 ^[e,g]	Н	C_6H_5	60	PhMe	3a	75	79
9	Н	$4-ClC_6H_4$	60	PhMe	3c	57	86
10	Н	$3-O_2NC_6H_4$	60	PhMe	3e	50	94
11	Н	2-MeOC ₆ H ₄	60	PhMe	3f	71	91
12	6-Me	C ₆ H ₅	60	PhMe	3 L	61	83
13	6-MeO	C_6H_5	60	PhMe	3 m	46	87
14	6-Cl	C_6H_5	60	PhMe	3n	46	94
15 ^[h]	6-Cl	$2-MeOC_6H_4$	60	PhMe	3t	90	94

^[a] Reactions were carried out with 2-aminobenzothiazole 8 (0.2 mmol), aldehyde 9 (0.3 mmol), and nitromethane 2a (122 mg, 2.0 mmol) for 48 h.

^[b] Isolated yield after column chromatographic purification.

^[c] Determined by HPLC analysis.

^[d] 4Å molecular sieves (30 mg) were used as additive.

^[e] The reaction time was 72 h.

^[f] Anhydrous Na₂SO₄ (30 mg) was used as additive.

^[g] Anhydrous MgSO₄ (30 mg) was used as additive.

^[h] The reaction time was 90 h.

After obtaining products that are important intermediates for organic synthesis, we paid more attention to their derivatization. Product 10 was obtained from 3a by palladium-catalyzed hydrogen reduction. Next, glutaraldehyde was added to product 10 (Scheme 2), and the novel compound 11 bearing two biologically active heterocycles was obtained in good yield (76%) with retained excellent enantioselectivity (99% *ee*). This demonstrates the synthetic utility of the present asymmetric methodology.

Scheme 2. The synthetic transformation of 3a.

Conclusions

In summary, we have developed an efficient *Cinchona*-based squaramide-catalyzed efficient enantioselective aza-Henry of imines bearing a benzothiazole moiety with nitromethane. The corresponding products were obtained in good to excellent yields with excellent enantioselectivities in most cases. In addition, a one-pot three-component enantioselective aza-Henry reaction using 2-aminobenzothiazoles, aldehydes, and nitromethane was also developed. Moderate to good yields and high enantioselectivities were obtained in one-pot cases. Further studies on squaramide-catalyzed asymmetric reactions and the enantioselective synthesis of other functional chiral molecules are currently underway in our laboratory.

Experimental Section

General Remarks

Commercially available compounds were used without further purification. Solvents were dried according to standard

1142 asc.wiley-vch.de

procedures. Column chromatography was carried out using silica gel (200-300 mesh). Melting points were measured on an XT-4 melting point apparatus and are uncorrected. The ¹H NMR spectra were recorded with Varian Mercury-plus 400 MHz spectrometers, while the ¹³C NMR spectra were recorded at 100 MHz. Infrared spectra were obtained with a Perkin-Elmer Spectrum One FT-IR spectrometer. Mass spectra were obtained on a VG-ZAB-HS (EI) mass spectrometer. The HR-MS (ESI) spectra were obtained with a Bruker APEX IV mass spectrometer. Optical rotations were measured on a WZZ-3 polarimeter at the indicated concentration with units g/100 mL. The enatiomeric excesses (ee) of the products were determined by chiral HPLC analysis using an Aglient HP 1200 instrument (n-hexane/2-propanol as eluent). The squaramide catalysts III-VI were prepared according to literature procedures.[17f,21]

Typical Procedure for the Asymmetric Aza-Henry of Nitromethane to Imines

The reaction was carried out with imine **1a** (47.6 mg, 0.2 mmol), nitromethane **2a** (122 mg, 2.0 mmol), and catalyst **III** (6.3 mg, 0.01 mmol) in CH_2Cl_2 (2 mL) at room temperature for 48 h. The mixture was separated directly by silica gel column chromatography with petroleum ether-ethyl acetate (5:1), and the product was obtained as pure form.

Benzothiazol-2-yl-[2-nitro-1-phenylethyl]amine (3a):Compound 3a was obtained according to the general procedure as a white solid; yield: 57 mg (95%); mp 136-138 °C. The enantiomeric excess was determined by HPLC [Daicel Chiralpak IB column (n-hexane-2-propanol 95:5), flow rate 1.0 mLmin⁻¹, detection at 254 nm]: minor enantiomer $t_{\rm R}$ = 54.8 min, major enantiomer $t_{\rm R} = 59.2 \text{ min}, >99\% ee; [\alpha]_{\rm D}^{25}$ +157.7 (c 0.35, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta =$ 7.57 (t, J=7.0 Hz, 2H, ArH), 7.43–7.36 (m, 5H, ArH), 7.31 (t, J=8.0 Hz, 1H, ArH), 7.13 (t, J=7.8 Hz, 1H, ArH), 5.69 (t, J = 6.2 Hz, 1 H, CH), 5.09 (dd, $J_1 = 13.2$ Hz, $J_2 = 6.8$ Hz, 1 H, CH₂), 4.86 (dd, J_1 =12.8 Hz, J_2 =5.8 Hz, 1 H, CH₂); ¹³C NMR (100 MHz, CDCl₃): $\delta = 165.5$, 151.6, 136.1, 130.7, 129.3, 129.0, 126.5, 126.1, 122.4, 120.9 119.5, 76.3, 56.8; IR (KBr): v=3390, 3135, 3179, 2956, 2913, 2836, 1601, 1556, 1495, 1444, 1376, 1314, 1116, 1092, 753, 702 cm⁻¹; HR-MS (ESI): m/z = 300.08051, calcd. for $C_{15}H_{14}N_3O_2S$ [M+H]⁺: 300.08012.

Benzothiazol-2-yl-[1-(4-fluorophenyl)-2-nitroethyl]amine (3b): Compound 3b was obtained according to the general procedure as a white solid; yield: 50.7 mg (80%); mp 46-48°C.The enantiomeric excess was determined by HPLC [Daicel Chiralpak IB column (n-hexane-2-propanol 90:10), flow rate 1.0 mLmin⁻¹, detection at 254 nm]: minor enantiomer $t_R = 22.5$ min, major enantiomer $t_R = 28.1$ min, 99% ee; $[\alpha]_{D}^{25}$: +54.2 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.58$ (t, J = 8.8 Hz, 2H, ArH), 7.40 (dd, $J_1 = 8.8$ Hz, $J_2 =$ 5.2 Hz , 2H, ArH), 7.32 (t, J=7.6 Hz, 1H, ArH), 7.14 (t, J= 7.6 Hz, 1 H, ArH), 7.08 (t, J=8.4 Hz, 2 H, ArH), 6.30 (s, 1 H, NH), 5.69 (t, J = 6.2 Hz, 1 H, CH), 5.08 (dd, $J_1 = 13.0$ Hz, $J_2 =$ 6.6 Hz , 1 H, CH₂), 4.84 (dd, J_1 =13.2 Hz, J_2 =5.6 Hz , 1 H, CH₂); ¹³C NMR (100 MHz, CDCl₃): δ =165.3, 162.8 (d, ${}^{1}J_{C,F}$ =246 Hz), 151.5, 132.0, 130.6, 128.5 (d, ${}^{3}J_{C,F}$ =8.7 Hz), 126.2, 122.5, 121.0, 119.5, 116.3 (d, ${}^{2}J_{CF}=22.1$ Hz), 78.2, 56.2; IR (KBr): v=3376, 3072, 2924, 1599, 1560, 1530, 1508, 1456, 1444, 1375, 1339, 1224, 1160, 1125, 1016, 972, 919, 834, 752, 726 cm⁻¹; HR-MS (ESI): m/z = 318.07127, calcd. for C₁₅H₁₃FN₃O₂S [M+H]⁺: 318.08012.

Benzothiazol-2-yl-[1-(4-chlorophenyl)-2-nitroethyl]amine (3c): Compound 3c was obtained according to the general procedure as a white solid: yield: 62.4 mg (94%); mp 142-144°C. The enantiomeric excess was determined by HPLC [Daicel Chiralpak IB column (n-hexane-2-propanol 90:10), flow rate 1.0 mL min⁻¹, detection at 254 nm]: minor enantiomer $t_R = 23.7$ min, major enantiomer $t_R = 30.8$ min, 99% ee; $[\alpha]_{D}^{25}$: +99.7 (c 0.61, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.57$ (dd, $J_1 = 14.0$ Hz, $J_2 = 8.0$ Hz, 2H, ArH), 7.35–7.29 (m, 5H, ArH), 7.14 (t, J=7.4 Hz, 1H, ArH), 6.31 (s, 1H, NH), 5.68 (t, J = 5.8 Hz, 1H, CH), 5.06 (dd, $J_1 = 13.0$ Hz, $J_2 =$ 6.6 Hz, 1 H, CH₂), 4.84 (dd, $J_1 = 13.2$ Hz, $J_2 = 5.4$ Hz, 1 H, CH₂); ¹³C NMR (100 MHz, CDCl₃): $\delta = 165.0$, 151.5, 135.0, 134.7, 130.7, 129.5, 128.0, 126.2, 122.6, 121.0, 119.6, 78.1, 56.0; IR (KBr): v=3390, 3072, 2963, 2911, 1594, 1556, 1527, 1502, 1457, 1442, 1431, 1379, 1335, 1271, 1247, 1226, 1185, 1096, 1087, 1010, 918, 861, 823, 755, 740 cm^{-1} ; HR-MS (ESI): m/z = 334.04145, calcd. for $C_{15}H_{13}ClN_3O_2S$ [M+H]⁺: 334.04115.

Benzothiazol-2-yl-[1-(4-bromophenyl)-2-nitroethyl]amine (3d): Compound 3d was obtained according to the general procedure as a white solid: yield: 65 mg (86%); mp 133-135°C. The enantiomeric excess was determined by HPLC [Daicel Chiralpak IB column (n-hexane-2-propanol 90:10), flow rate 1.0 mL min⁻¹, detection at 254 nm]: minor enantiomer $t_R = 30.4$ min, major enantiomer $t_R = 36.5$ min, 98% ee; $[\alpha]_{D}^{25}$: +24.4 (*c* 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.60-7.60$ (m, 2H, ArH), 7.52 (d, J = 8.4 Hz, 2H, ArH), 7.34–7.29 (m, 3H, ArH), 7.14 (t, J=7.6 Hz, 1H, ArH), 6.05(s, 1 H, NH), 5.69 (t, J = 5.8 Hz, 1 H, CH), 5.08 (dd, $J_1 =$ 13.2 Hz, $J_2 = 6.4$ Hz , 1H, CH₂), 4.86 (dd, $J_1 = 13.2$ Hz, $J_2 =$ 5.6 Hz , 1H, CH₂); ¹³C NMR (100 MHz, CDCl₃): $\delta = 165.3$, 151.4, 135.2, 132.4, 130.5, 128.2, 126.2, 123.0, 122.5, 121.0, 119.4, 78.0, 56.2; IR (KBr): v = 3383, 3070, 2923, 1632, 1594, 1557, 1525, 1501, 1488, 1442, 1430, 1378, 1335, 1270, 1246, 1225, 1184, 1128, 1070, 1007, 918, 857, 821, 754, 730 cm^{-1} ; HR-MS (ESI): m/z = 377.99115, calcd. for C₁₅H₁₃BrN₃O₂S [M+H]⁺: 377.99064.

Benzothiazol-2-yl-[2-nitro-1-(3-nitrophenyl)ethyl]amine (3e): Compound 3e was obtained according to the general procedure as a yellow solid; yield: 68.5 mg (99%); mp 50-52°C The enantiomeric excess was determined by HPLC [Daicel Chiralpak IB column (n-hexane-2-propanol 90:10), flow rate 0.8 mL min⁻¹, detection at 254 nm]: minor enantiomer $t_R = 44.3$ min, major enantiomer $t_R = 48.9$ min, >99% ee; $[\alpha]_{D}^{25}$: +28.0 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.32$ (s, 1 H, ArH), 8.20 (d, J = 8.0 Hz, 1 H, ArH), 7.79 (d, J = 7.6 Hz, 1H, ArH), 7.60–7.53 (m, 3H, ArH), 7.31 (t, J =7.4 Hz, 1H, ArH), 7.15 (t, J=7.2 Hz, 1H, ArH), 6.41 (s, 1H, NH), 5.90 (br s, 1 H, CH), 5.13 (dd, $J_1 = 13.2$ Hz, $J_2 = 5.6$ Hz, 1 H, CH₂), 4.94 (dd, J_1 =13.4 Hz, J_2 =3.8 Hz, 1 H, CH₂); ¹³C NMR (100 MHz, CDCl₃): 164.6, 151.4, 148.6, 138.7, 132.8, 130.7, 130.3, 126.2, 123.9, 122.8, 121.6, 121.0, 119.7, 77.8, 55.6; IR (KBr): v=3377, 3071, 2962, 1711, 1613, 1598, 1562, 1525, 1455, 1443, 1376, 1347, 1262, 1206, 1099, 1017, 929, 896, 803, 754, 726, 686 cm⁻¹; HR-MS (ESI): m/z =345.06495, calcd. for $C_{15}H_{13} N_4 O_4 S [M+H]^+$: 345.06520.

Benzothiazol-2-yl-[(2-methoxyphenyl)-2-nitroethyl]amine (3f): Compound 3f was obtained according to the general procedure as a yellow solid; yield: 53.1 mg (80%); mp 46–

Adv. Synth. Catal. 2013, 355, 1137-1148

47°C The enantiomeric excess was determined by HPLC [Daicel Chiralpak IB column (n-hexane-2-propanol 90:10), flow rate 1.0 mLmin⁻¹, detection at 254 nm]: minor enantiomer $t_R = 27.9$ min, major enantiomer $t_R = 23.0$ min, 99% ee; $[\alpha]_{D}^{25}$: +121.5 (*c* 1.17, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.57$ (d, J = 8.0 Hz, 2H, ArH), 7.36–7.27 (m, 3H, ArH), 7.10 (t, J=7.4 Hz, 1 H, ArH), 6.95 (t, J=8.0 Hz, 2 H, ArH), 6.43 (s, 1 H, NH) 5.80 (t, J = 6.4 Hz, 1 H, CH), 5.03 (dd, $J_1 =$ 12.4 Hz, $J_2 = 7.2$ Hz, 1 H, CH₂), 4.87 (dd, $J_1 = 12.4$ Hz, $J_2 =$ 6.4 Hz, 1H, CH₂), 3.93 (s, 3H, OCH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 165.7$, 156.9, 151.9, 130.7, 130.3, 129.2, 126.0, 123.5, 122.1, 121.2, 120.8, 119.4, 111.1, 77.2, 55.5, 55.4; IR (KBr): v=3398, 3061, 2937, 2838, 1723, 1599, 1558, 1532, 1490, 1456, 1444, 1376, 1338, 1286, 1245, 1208, 1123, 1020, 930, 854, 790, 752, 726 cm⁻¹; HR-MS (ESI): *m*/*z* = 330.09102, calcd. for $C_{16}H_{16}N_3O_3S [M+H]^+$: 330.09069.

2-[1-(Benzothiazol-2-ylamino)-2-nitroethyl]-4-chlorophenol (3g): Compound 3g was obtained according to the general procedure as a yellow solid; yield: 67.7 mg (97%); mp 105-108°C. The enantiomeric excess was determined by HPLC [Daicel Chiralpak AD-H column (n-hexane-2-propanol 70:30), flow rate 1.0 mLmin⁻¹, detection at 254 nm]: minor enantiomer $t_R = 5.3$ min, major enantiomer $t_R =$ 6.6 min, 51% ee; $[\alpha]_D^{25}$: +46.9 (c 0.75, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.65$ (d, J = 8.0 Hz, 1H, ArH), 7.50 (d, J=8.0 Hz, 1H, ArH), 7.33 (t, J=7.8 Hz, 1H, ArH), 7.22-7.16 (m, 2H, ArH), 7.13 (d, J=2.4 Hz, 1H, ArH), 6.80 (d, J=8.4 Hz, 1H, ArH), 6.31 (d, J=8.0 Hz, 1H, NH) 5.79 (br s, 1 H, CH), 5.12 (dd, J₁=13.2 Hz, J₂=7.6 Hz, 1 H, CH₂), 4.96 (dd, $J_1 = 13.2$ Hz, $J_2 = 3.6$ Hz, 1H, CH₂); ¹³C NMR $(100 \text{ MHz}, \text{ CDCl}_3): \delta = 167.0, 153.6, 149.5, 129.7, 129.4,$ 126.7, 126.5, 124.3, 123.2, 122.9, 121.4, 118.4, 116.7, 76.8, 54.3; IR (KBr): v=3423, 3359, 3060, 3029, 2954, 2782, 2710, 2572, 1706, 1603, 1570, 1558, 1539, 1522, 1499, 1490, 1449, 1347, 1328, 1270, 1246, 1204, 1172, 1122, 1106, 1020, 931, 875, 818, 750, 725 cm⁻¹; HR-MS (ESI): m/z = 350.03617, calcd. for $C_{15}H_{13}CIN_3O_3S [M+H]^+$: 350.03607.

Benzothiazol-2-yl-[1-(4-dimethylaminophenyl)-2-nitro-

ethyl]amine (3h): Compound 3h was obtained according to the general procedure as a yellow solid; yield: 47.8 mg (70%); mp 106–108 °C. The enantiomeric excess was determined by HPLC [Daicel Chiralpak IB column (n-hexane-2propanol 90:10), flow rate 0.8 mLmin⁻¹, detection at 254 nm]: minor enantiomer t_R =37.3 min, major enantiomer t_R =44.3 min, 87% *ee*; $[\alpha]_D^{25}$: +111.3 (*c* 0.23, CH₂Cl₂); ¹H NMR (400 MHz, DMSO- d_6): $\delta = 8.70$ (d, J = 7.2 Hz, 1 H, NH), 7.68 (d, J = 7.2 Hz, 1H, ArH), 7.42 (d, J = 8.0 Hz, 1H, ArH), 7.30 (d, J=8.8 Hz, 2H, ArH), 7.25-7.21 (m, 1H, ArH), 7.06–7.01 (m, 1H, ArH), 6.71 (d, J=8.8 Hz, 2H, ArH), 5.65–5.59 (m, 1H, CH), 5.01–4.90 (m, 2H, CH₂), 2.86 (s, 6H, CH₃); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 165.0$, 151.9, 150.1, 132.0, 130.3, 127.6, 125.5, 124.5, 121.3, 120.9, 118.4, 112.2, 79.1, 78.6, 55.4; IR (KBr): v=3399, 3056, 2920, 1722, 1643, 1597, 1530, 1484, 1446, 1379, 1319, 1295, 1267, 1170, 1122, 1067, 968, 808, 741, 720 cm⁻¹; HR-MS (ESI): m/ z = 343.12272, calcd. for $C_{17}H_{19}N_4O_2S [M+H]^+: 343.12232$.

2-[1-(Benzothiazol-2-ylamino)-2-nitroethyl]-4,6-dichlorophenol (3i): Compound **3i** was obtained according to the general procedure as a yellow solid; yield: 69.7 mg (91%); mp 83–85°C. The enantiomeric excess was determined by HPLC [Daicel Chiralpak AD-H column (*n*-hexane-2-propanol 85:15), flow rate 1.0 mLmin⁻¹, detection at 254 nm]: minor enantiomer t_R =10.3 min, major enantiomer t_R = 9.1 min, 80% *ee*; $[a]_D^{25}$: -113.4 (*c* 0.94, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ =7.60 (t, *J*=7.4 Hz, 2H, ArH), 7.36– 7.31 (m, 2H, ArH), 7.19–7.15 (m, 2H, ArH), 5.94–5.88 (m, 1H, CH), 5.13 (dd, J_1 =13.4 Hz, J_2 =7.8 Hz, 1H, CH₂), 4.89 (dd, J_1 =13.2 Hz, J_2 =4.8 Hz, 1H, CH₂); ¹³C NMR (100 MHz, CDCl₃): δ =165.6, 150.3, 149.0, 129.9, 129.7, 126.6, 126.4, 125.7, 125.4, 123.1, 121.1, 119.5, 77.2, 53.2; IR (KBr): v=3371, 3059, 2978, 1705, 1598, 1575, 1557, 1537, 1456, 1447, 1413, 1375, 1339, 1295, 1249, 1223, 1157, 1128, 1044, 1018, 930, 866, 752, 725 cm⁻¹; HR-MS (ESI): *m*/*z* = 383.99747, calcd. for C₁₅H₁₂Cl₂N₃O₃S [M+H]⁺: 383.99707.

Benzothiazol-2-yl-(2-nitro-1-pyridin-3-ylethyl)amine (3j): Compound 3j was obtained according to the general procedure as a yellow solid; yield: 57 mg (95%); mp 130-133 °C. The enantiomeric excess was determined by HPLC [Daicel Chiralpak AD-H column (n-hexane:2-propanol 70:30), flow rate 1.0 mLmin⁻¹, detection at 254 nm]: minor enantiomer $t_R = 6.6 \text{ min}$, major enantiomer $t_R = 11.8 \text{ min}$, 99% ee; $[\alpha]_D^{25}$: +79.6 (c 0.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.73$ (d, J=2.0 Hz, 1 H, pyridine-H), 8.60 (d, J=4.0 Hz, 1 H, pyridine-H), 7.78-7.76 (m, 1H, ArH), 7.59-7.55 (m, 2H, ArH), 7.34-7.29 (m, 2H, ArH), 7.16-7.12 (m, 1H, ArH), 6.48 (br s, 1 H, NH), 5.84 (t, J=6.0 Hz, 1 H, CH), 5.15 (dd, $J_1=$ 13.4 Hz, $J_2 = 6.6$ Hz, 1 H, CH₂), 4.93 (dd, $J_1 = 13.2$ Hz, $J_2 =$ 5.6 Hz , 1H, CH₂); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.6$, 151.5, 150.0, 148.3, 134.6, 132.5, 130.8, 126.1, 124.0, 122.6, 120.9, 119.7, 77.6, 54.2; IR (KBr): v=3197, 2961, 2759, 1598, 1565, 1534, 1476, 1455, 1443, 1424, 1377, 1338, 1316, 1240, 1205, 1124, 1026, 911, 853, 754, 724, 709, 638 cm⁻¹; HR-MS (ESI): m/z = 301.07484, calcd. for $C_{14}H_{13}N_4O_2S$ [M+H]⁺: 301.07537.

Benzothiazol-2-yl-(1-furan-2-yl-2-nitroethyl)amine (3k): Compound 3k was obtained according to the general procedure as a yellow solid; yield: 51.9 mg (90%); mp 130-132°C. The enantiomeric excess was determined by HPLC with a Daicel Chiralpak IB column (*n*-hexane-2-propanol 80:20), flow rate 1.0 mLmin⁻¹, detection at 254 nm]: minor enantiomer $t_R = 9.0$ min, major enantiomer $t_R = 8.4$ min, 98% ee; $[\alpha]_{D}^{25}$: +225.9 (c 1.95, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.60-7.58$ (m, 2H, ArH), 7.39 (d, J = 1.6 Hz,1H, furan-H), 7.32 (t, J=8.0 Hz,1 H, ArH), 7.14 (t, J=7.0 Hz,1 H, ArH), 6.41 (d, J=3.2 Hz, 1H, furan-H), 6.36 (dd, $J_1=$ 3.2 Hz, J₂=2.0 Hz, 1 H, furan-H), 6.09 (br s, 1 H, NH), 5.88 (t, J = 5.8 Hz, 1H, CH), 5.07 (dd, $J_1 = 13.2$ Hz, $J_2 = 5.6$ Hz, 1 H, CH₂), 4.92 (dd, $J_1 = 13.2$ Hz, $J_2 = 6.0$ Hz, 1 H, CH₂); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.7$, 151.6, 148.8, 143.1, 130.8, 126.1, 122.5, 120.9, 119.7, 110.8, 108.6, 75.8, 50.6; IR (KBr): v=3177, 3003, 2972, 2740, 1594, 1569, 1542, 1456, 1447, 1379, 1250, 1228, 1202, 1179, 1143, 1074, 1012, 965, 832, 821, 763, 751, 726, 692, 640 cm⁻¹; HR-MS (ESI): m/z =290.05895, calcd. for $C_{13}H_{12}N_3O_3S [M+H]^+$: 290.05939.

(6-Methylbenzothiazol-2-yl)-(2-nitro-1-phenylethyl)amine (3): Compound 3I was obtained according to the general procedure as a white solid; yield: 58.7 mg (94%); mp 126– 128 °C. The enantiomeric excess was determined by HPLC [Daicel Chiralpak IB column (*n*-hexane-2-propanol 70:30), flow rate 1.0 mL min⁻¹, detection at 254 nm]: minor enantiomer $t_{\rm R}$ =10.1 min, major enantiomer $t_{\rm R}$ =8.5 min, 99% *ee*; [α]_D²⁵: +69.5 (*c* 2.29, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ =7.44 (d, *J*=8.2 Hz, 1H, ArH), 7.40–7.31 (m, 6H, ArH), 7.11 (d, *J*=8.0 Hz, 1H, ArH), 6.37 (s, 1H, NH), 5.66 (t, *J*= 6.0 Hz, 1 H, CH), 5.05 (dd, J_1 =12.8 Hz, J_2 =6.8 Hz, 1 H, CH₂), 4.83 (dd, J_1 =13.0 Hz, J_2 =5.8 Hz, 1 H, CH₂), 2.38 (s, 3 H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ =164.8, 149.5, 136.2, 132.1, 130.7, 129.2, 128.9, 127.2., 126.5, 120.9, 119.0, 78.3, 56.8, 21.2; IR (KBr): v=3195, 3013, 1719, 1605, 1542, 1467, 1384, 1233, 1196, 1074, 808, 760, 694 cm⁻¹; HR-MS (ESI): m/z=314.09591, calcd. for C₁₆H₁₆N₃O₂S [M+H]⁺: 314.09557.

(6-Methoxybenzothiazol-2-yl)-(2-nitro-1-phenylethyl)amine (3m): Compound 3m was obtained according to the general procedure as a white solid; yield: 58.9 mg (90%); mp 45-47°C. The enantiomeric excess was determined by HPLC [Daicel Chiralpak AD-H column (n-hexane-2-propanol 70:30), flow rate 1.0 mLmin^{-1} , detection at 254 nm]: minor enantiomer $t_{\rm R}$ = 13.2 min, major enantiomer $t_{\rm R}$ = 20.2 min, 99% *ee*; $[\alpha]_{\rm D}^{25}$: +57.3 (*c* 0.45, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.45$ (d, J = 8.8 Hz, 1 H, ArH), 7.41– 7.32 (m, 5H, ArH), 7.10 (d, J=2.4 Hz, 1H, ArH), 6.89 (dd, $J_1 = 8.8 \text{ Hz}, J_2 = 2.4 \text{ Hz}, 1 \text{ H}, \text{ ArH}$, 5.64 (t, J = 6.4 Hz, 1 H,CH₂), 5.05 (dd, J₁=13.0 Hz, J₂=7.0 Hz, 1H, CH₂), 4.83 (dd, $J_1 = 13.0 \text{ Hz}, J_2 = 5.8 \text{ Hz}, 1 \text{ H}, \text{ CH}_2), 3.80 \text{ (s, 3 H, OCH}_3);$ ¹³C NMR (100 MHz, CDCl₃): $\delta = 163.9$, 155.6, 145.7, 136.2, 131.6, 129.2, 128.9, 126.5, 119.8, 113.7, 105.3, 78.3, 56.8, 55.8; IR (KBr): v=3412, 2917, 2738, 1626, 1602, 1556, 1487, 1441, 1375, 1315, 1271, 1225, 1180, 1089, 1057, 1027, 927, 832, 765, 701, 623, 602 cm⁻¹; HR-MS (ESI): m/z = 330. 09091, calcd. for $C_{16}H_{16}N_3O_3S [M+H]^+$: 330.09069.

(6-Chlorobenzothiazol-2-yl)-(2-nitro-1-phenylethyl)amine (3n): Compound 3n was obtained according to the general procedure as a white solid; yield: 60.9 mg (91%); mp 141-142°C. The enantiomeric excess was determined by HPLC [Daicel Chiralpak IB column (n-hexane-2-propanol 70:30), flow rate 1.0 mL min⁻¹, detection at 254 nm]: minor enantiomer $t_{\rm R} = 10.2$ min, major enantiomer $t_{\rm R} = 7.7$ min, 99% ee; $[\alpha]_{D}^{25}$: +63.4 (c 2.72, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.55 - 7.41$ (m, 7H, ArH), 7.27 (d, J = 6.4 Hz, 1H, ArH), 5.80 (br s, 1H, NH), 5.70 (t, J=5.0 Hz, 1H, CH), 5.10 (dd, $J_1 = 13.0 \text{ Hz}, J_2 = 6.2 \text{ Hz}, 1 \text{ H}, \text{ CH}_2), 4.88 \text{ (dd, } J_1 = 12.8 \text{ Hz},$ $J_2 = 5.6$ Hz, 1 H, CH₂); ¹³C NMR (100 MHz, DMSO- d_6): $\delta =$ 165.6, 150.7, 137.4, 132.0, 128.6, 128.1, 126.9, 125.7, 125.2, 120.7, 119.4, 78.3, 55.5; IR (KBr): v = 3375, 3062, 2977, 1597, 1558, 1535, 1494, 1446, 1377, 1342, 1307, 1270, 1205, 1096, 1052, 967, 919, 816, 765, 700 cm⁻¹; HR-MS (ESI): m/z =334.04135, calcd. for $C_{15}H_{13}Cl N_3O_2S [M+H]^+$: 334.04115.

(6-Methylbenzothiazol-2-yl)-[2-nitro-1-(3-nitrophenyl)ethyl]amine (30): Compound 30 was obtained according to the general procedure as a yellow solid; yield: 70 mg (98%); mp 131-133°C. The enantiomeric excess was determined by HPLC [Daicel Chiralpak IA column (n-hexane-2-propanol 80:20), flow rate 1.0 mLmin⁻¹, detection at 254 nm]: minor enantiomer $t_R = 12.4$ min, major enantiomer $t_R = 15.3$ min, 99% ee; $[\alpha]_{D}^{25}$: +48.4 (c 2.58, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.33$ (s, 1H, ArH), 8.21 (d, J = 8.0 Hz, 1H, ArH), 7.79 (d, J=7.6 Hz, 1H, ArH), 7.59 (t, J=8.0 Hz, 1H, ArH), 7.44 (d, J=8.4 Hz, 1H, ArH), 7.40 (s, 1H, ArH), 7.12 (d, J=7.6 Hz, 1H, ArH), 6.09 (br s, 1H, NH), 5.89 (t, J= 5.8 Hz, 1 H, CH), 5.14 (dd, $J_1 = 13.2$ Hz, $J_2 = 6.4$ Hz, 1 H, CH₂), 4.95 (dd, $J_1 = 13.4$ Hz, $J_2 = 5.0$ Hz, 1H, CH₂), 2.39 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.1$, 149.2, 148.6, 138.7, 132.9, 132.6, 130.8, 130.3, 127.4, 123.8, 121.6, 121.0, 119.2, 77.9, 55.7, 21.2; IR (KBr): v=3374, 3201, 2922, 1793, 1607, 1556, 1528, 1467, 1378, 1350, 1308, 1278, 1238, 1196, 1135, 1100, 1002, 928, 898, 814, 734, 688, 671 cm⁻¹; HR-MS (ESI): m/z = 359.08098, calcd. for C₁₆H₁₅N₄O₄S [M + H]⁺: 359.08085.

(6-Methoxybenzothiazol-2-yl)-[2-nitro-1-(3-nitrophenyl)ethyl]amine (3p): Compound 3p was obtained according to the general procedure as a yellow solid; yield: 68.7 mg (92%); mp 48-50 °C. The enantiomeric excess was determined by HPLC [Daicel Chiralpak AD-H column (nhexane-2-propanol 70:30 v/v), flow rate 1.0 mLmin⁻¹, detection at 254 nm]: minor enantiomer $t_R = 13.2$ min, major enantiomer $t_R = 14.6$ min, 99% ee; $[\alpha]_D^{25}$: +27.4 (c 1.93, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.32$ (s, 1 H, ArH), 8.20 (d, J=8.4 Hz, 1 H, ArH), 7.79 (d, J=7.6 Hz, 1 H, ArH), 7.58 (t, J = 8.0 Hz,1H, ArH), 7.44 (d, J = 8.8 Hz, 1H, ArH), 7.12 (d, J = 1.6 Hz, 1 H, ArH), 6.90 (dd, $J_1 = 2.4$ Hz, $J_2 = 8.8$ Hz, 1 H, ArH), 5.86 (t, J = 5.6 Hz, 1H, CH), 5.12 (dd, $J_1 = 13.6$ Hz, $J_2 = 6.8$ Hz, 1 H, CH₂), 4.93 (dd, $J_1 = 13.2$ Hz, $J_2 = 5.2$ Hz, 1 H, \tilde{CH}_{2}), 3.81 (s, 3H, \tilde{OCH}_{3}); ¹³C NMR (100 MHz, $CDCl_{3}$): $\delta =$ 163.2, 155.8, 148.5, 145.4, 138.7, 132.9, 131.8, 130.2, 123.7, 121.6, 120.0, 113.9, 105.3, 77.8, 55.8, 55.7; IR (KBr): v= 3462, 3385, 3088, 2925, 1619, 1597, 1561, 1526, 1446, 1376, 1350, 1271, 1245, 1206, 1098, 1051, 906, 858, 817, 733, 687 cm⁻¹; HR-MS (ESI): m/z = 375.07562, calcd. for $C_{16}H_{15}N_4O_5S [M+H]^+: 375.07577.$

(6-Chlorobenzothiazol-2-yl)-[2-nitro-1-(3-nitrophenyl)ethyl]amine (3q): Compound 3q was obtained according to the general procedure as a white solid; yield: 67.1 mg (89%); mp 54-56°C. The enantiomeric excess was determined by HPLC [Daicel Chiralpak IB column (n-hexane-2propanol 80:20), flow rate 1.0 mLmin⁻¹, detection at 254 nm]: minor enantiomer $t_{\rm R}$ =17.3 min, major enantiomer $t_{\rm R}$ =15.5 min, 97% *ee*; $[\alpha]_{\rm D}^{25}$: +36.8 (*c* 1.88, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.33$ (s, 1 H, ArH), 8.22 (d, J = 7.2 Hz, 1H, ArH), 7.79 (d, J = 7.6 Hz, 1H, ArH), 7.60 (t, J = 8.0 Hz, 2 H, ArH), 7.55 (d, J = 1.2 Hz, 1 H, ArH), 7.44 (d, J = 8.8 Hz, 1H, ArH), 7.26 (d, $J_1 = 2.6$ Hz, $J_2 = 8.6$ Hz, 1H, ArH), 6.33 (br s, 1 H, NH), 5.90 (t, J=5.6 Hz, 1 H, CH), 5.13 (dd, $J_1 = 13.8 \text{ Hz}$, $J_2 = 6.6 \text{ Hz}$, 1 H, CH₂), 4.96 (dd, $J_1 =$ 13.4 Hz, $J_2 = 5.4$ Hz, 1 H, CH₂); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.7$, 150.0, 148.6, 138.5, 132.9, 132.0, 130.4, 128.0, 126.7, 123.9, 121.6, 120.6, 120.4, 77.8, 55.5; IR (KBr): v=3369, 3088, 2924, 1705, 1597, 1560, 1531, 1447, 1402, 1377, 1350, 1270, 1204, 1097, 1052, 904, 858, 816, 733, 687 cm⁻¹; HR-MS (ESI): m/z = 379.02622, calcd. for $C_{15}H_{12}CIN_{3}O_{2}S [M+H]^{+}: 379.02623.$

[1-(2-Methoxyphenyl)-2-nitroethyl]-(6-methylbenzothiazol-2-yl)amine (3r): Compound 3r was obtained according to the general procedure as a white solid; yield: 66.5 mg (97%); mp 45–47°C. The enantiomeric excess was determined by HPLC [Daicel Chiralpak IB column (n-hexane-2propanol 70:30), flow rate 0.8 mLmin⁻¹, detection at 254 nm]: minor enantiomer $t_{\rm R} = 17.7$ min, major enantiomer $t_{\rm R} = 13.6$ min, 99% $ee; [\alpha]_{\rm D}^{25}$: +100.0 (c 0.68, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.45$ (d, J = 8.8 Hz, 1 H, ArH), 7.37–7.31 (m, 3H, ArH), 7.10 (d, J=8.0 Hz, 1H, ArH), 6.95 (t, J=7.4 Hz, 2H, ArH), 6.26 (br s, 1H, NH), 5.77 (br s, 1H, CH), 5.03 (dd, $J_1 = 12.4$ Hz, $J_2 = 7.2$ Hz, 1H, CH₂), 4.86 (dd, $J_1 = 12.4$ Hz, $J_2 = 6.4$ Hz, 1H, CH₂), 3.94 (s, 3H, OCH₃), 2.38 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 165.0, 156.9, 149.8, 131.9, 130.7, 130.2, 129.3,$ 127.1, 123.6, 121.2, 120.8, 119.0, 111.1, 77.3, 55.5, 55.4, 21.2; IR (KBr): v = 3374, 3070, 2964, 2942, 2836, 1604, 1550, 1541, 1496, 1471, 1439, 1388, 1344, 1285, 1242, 1224, 1189, 1119, 1056, 1030, 1015, 857, 829, 817, 768, 758, 737, 636, 627 cm⁻¹; HR-MS (ESI): *m*/*z*=344.10657, calcd. for C₁₇H₁₈ N₃O₃ S [M+H]⁺: 344.10634.

(6-Methoxybenzothiazol-2-yl)-[1-(2-methoxyphenyl)-2-nitroethyl]amine (3s): Compound 3s was obtained according to the general procedure as a white solid; yield: 64.7 mg (90%); mp 50-52 °C. The enantiomeric excess was determined by HPLC [Daicel Chiralpak IB column (n-hexane-2propanol 70:30 v/v), flow rate 0.8 mLmin^{-1} , detection at 254 nm]: minor enantiomer $t_{\rm R}$ = 13.9 min, major enantiomer $t_{\rm R} = 11.1 \text{ min}, 99\% ee; [\alpha]_{\rm D}^{25}: +133.1 (c 2.88, CH_2Cl_2).$ ¹H NMR (400 MHz, CDCl₃): $\delta = 7.46$ (d, J = 9.2 Hz, 1H, ArH), 7.36–7.30 (m, 2H, ArH), 7.10 (d, J=2.4 Hz, 1H, ArH), 6.97–6.92 (m, 2H, ArH), 6.89 (dd, $J_1 = 2.6$ Hz, $J_2 =$ 8.8 Hz, 1H, ArH), 6.32 (br s, 1H, NH), 5.77 (br s, 1H, CH), 5.01 (dd, $J_1 = 12.6$ Hz, $J_2 = 7.0$ Hz, 1 H, CH₂), 4.85 (dd, $J_1 =$ 12.6 Hz, $J_2 = 6.2$ Hz, 1H, CH₂), 3.92 (s, 3H, OCH₃) 3.80 (s, 3H, OCH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 164.1$, 156.8, 155.4, 146.0, 131.6, 130.2, 129.1, 123.6, 121.1, 119.7, 113.6, 111.0, 105.2, 77.2, 55.8, 55.4, 55.3; IR (KBr): v=3310, 2921, 1613, 1557, 1533, 1489, 1462, 1376, 1338, 1276, 1245, 1219, 1163, 1123, 1048, 1023, 907, 869, 816, 789, 753, 730 cm⁻¹; HR-MS (ESI): m/z = 360.10126, calcd. for $C_{17}H_{18}N_3O_4S$ [M+ H]+: 360.10125.

(6-Chlorobenzothiazol-2-yl)-[1-(2-methoxyphenyl)-2-nitroethyl]amine (3t): Compound 3t was obtained according to the general procedure as a white solid; yield: 66.9 mg (92%); mp 59-62°C. The enantiomeric excess was determined by HPLC [Daicel Chiralpak IB column (n-hexane-2propanol 70:30 v/v), flow rate 1.0 mLmin⁻¹, detection at 254 nm]: minor enantiomer $t_{\rm R}$ =15.9 min, major enantiomer $t_{\rm R}$ =11.3 min, 99% *ee*; $[\alpha]_{\rm D}^{25}$: +161.8 (*c* 0.56, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.54$ (s, 1 H, ArH), 7.46 (d, J = 8.0 Hz, 2H, ArH), 7.34 (t, J = 7.4 Hz, 2H, ArH), 7.25 (d, J=7.2 Hz, 1H, ArH), 6.96 (t, J=8.4 Hz, 2H, ArH), 5.79 (t, J = 6.4 Hz, 1 H, CH), 5.02 (dd, $J_1 = 12.6$ Hz, $J_2 = 7.4$ Hz, 1 H, CH₂), 4.85 (dd, $J_1 = 12.4$ Hz, $J_2 = 5.6$ Hz, 1 H, CH₂), 3.94 (s, 3H, OCH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 165.7$, 156.9, 150.6, 131.9, 130.4, 129.3, 127.3, 126.5, 123.3, 121.3, 120.5, 120.2, 111.2, 77.2, 55.6, 55.4; IR (KBr): v=3357, 3069, 2938, 2840, 1717, 1596, 1550, 1534, 1489, 1447, 1419, 1376, 1336, 1306, 1250, 1216, 1119, 1021, 917, 859, 812, 798, 752 cm^{-1} ; HR-MS (ESI): m/z = 364.05189, calcd. for $C_{16}H_{15}CIN_3O_3S$ [M+H]⁺: 364.05172.

4-Methyl-N-(2-nitro-1-phenylethyl)benzenesulfonamide

(5a):^[22] Compound 5a was obtained according to the general procedure as a white solid; yield: 52.1 mg (80%); mp 154–156 °C. The enantiomeric excess was determined by HPLC [Daicel Chiralpak IB column (*n*-hexane-2-propanol 70:30), flow rate 1.0 mL·min⁻¹, detection at 254 nm]: minor enantiomer t_R =9.8 min, major enantiomer t_R =10.8 min, 15% ee; $[\alpha]_D^{25}$: +12.3 (*c* 0.65, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ =7.64 (d, *J*=8.4 Hz, 2H, ArH), 7.26–7.21 (m, 5H, ArH), 7.10–7.07 (m, 2H, ArH), 5.65 (d, *J*=7.6 Hz, 1H, NH), 5.00 (dd, *J*₁=13.6 Hz, *J*₂=6.8 Hz , 1H, CH₂), 4.66 (dd, *J*₁=13.2 Hz, *J*₂=6.4 Hz , 1H, CH₂), 2.40 (s, 3H, CH₃).

tert-Butyl 2-nitro-1-phenylethyl carbamate (5b):^[6] Compound 5b was obtained according to the general procedure as a white solid; yield: 47.8 mg (90%); mp 108–110 °C. The enantiomeric excess was determined by HPLC [Daicel Chir-

alpak OJ-H column (*n*-hexane-2-propanol 85:15), flow rate 1.0 mL·min⁻¹, detection at 254 nm]: minor enantiomer $t_R =$ 13.6 min, major enantiomer $t_R =$ 11.4 min, 31% *ee*; $[\alpha]_D^{25}$: +10.7 (*c* 1.5, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta =$ 7.40–7.27 (m, 5H), 5.38 (br s, 2H, CH+NH), 4.85 (br s, 1H, CH), 4.70 (d, J = 9.2, 1H, CH), 1.44 (s, 9H, CH₃).

Benzothiazol-2-yl-(2-nitro-1-phenylpropyl)amine (6): Compound 5 was obtained according to the general procedure as a white solid; yield: 60.2 mg (96%); mp 55-57°C. The enantiomeric excess was determined by HPLC [Daicel Chiralpak IA column (n-hexane-2-propanol 80:20), flow rate 1.0 mLmin⁻¹, detection at 254 nm]: diastereomer A: $t_{\text{minor}} = 8.2 \text{ min}, t_{\text{major}} = 11.1 \text{ min}, 99\% ee; \text{ diastereomer } B:$ $t_{\text{minor}} = 13.7 \text{ min}, t_{\text{major}} = 18.5 \text{ min}, 99\% ee; [\alpha]_{D}^{25} + 36.9 (c 2.0, c)$ CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.56-7.50$ (m, 2H, ArH), 7.34-7.25 (m, 6H, ArH), 7.12-7.06 (m, 1H, ArH), 6.06 (br s, 1H, NH), 5.42-5.35 (m, 1H, CH), 5.14-5.07 (m, 1H, CH), 1.62–1.55 (m, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.3$, 151.4, 136.3, 135.6, 129.1, 129.0, 128.9, 128.8, 127.0, 126.9, 126.0, 122.2, 122.1, 120.8, 119.2, 86.7, 85.3, 62.0, 61.8, 17.1, 15.2; IR (KBr): v=3369, 3195, 3062, 3031, 2991, 2940, 2903, 1702, 1599, 1535, 1495, 1444, 1389, 1358, 1310, 1287, 1262, 1247, 1204, 1157, 1069, 1028, 1017, 931, 883, 753, 725, 700 cm⁻¹; HR-MS (ESI): m/z = 314.09570, calcd. for $C_{16}H_{16}N_3O_2S [M+H]^+: 314.09577$.

Benzothiazol-2-yl-(2-nitro-1-phenylbutyl)amine (7): Compound 7 was obtained according to the general procedure as a white solid; yield: 60.1 mg (92%); mp 60-62 °C. The enantiomeric excess was determined by HPLC [Daicel Chiralpak IA column (*n*-hexane-2-propanol 80:20), flow rate 1.0 mLmin⁻¹, detection at 254 nm]: diastereomer C: t_{minor} = 7.3 min, $t_{\text{major}} = 11.4 \text{ min}$, 99% ee; diastereomer D, $t_{\text{R}} =$ 18.5 min, enantiomers cannot be separated; $[\alpha]_{D}^{25}$: +26.3 (c 3.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.57 - 7.50$ (m, 2H, ArH), 7.32-7.25 (m, 6H, ArH), 7.13-7.06 (m, 1H, ArH), 6.44 (br s, 1H, NH), 5.40-5.31 (m, 1H, CH), 4.95-4.83 (m, 1H, CH), 2.17-1.99 (m, 2H, CH), 1.78-1.75 (m, 1H, CH), 0.98–0.95 (m, 3H, CH₃); ¹³C NMR (100 MHz, $CDCl_3$): $\delta = 166.3$, 151.5, 136.6, 135.9, 130.4, 129.1, 129.0, 128.7, 127.0, 126.7, 126.1, 126.0, 122.2, 122.1, 120.9, 120.8, 119.2, 119.1, 93.7, 92.6, 61.4, 60.9, 24.9, 23.7, 10.3; IR (KBr): v=3366, 3211, 3026, 2975, 2937, 2879, 1701, 1598, 1552, 1535, 1496, 1455, 1372, 1310, 1285, 1246, 1202, 1126, 1081, 1070, 1018, 930, 909, 884, 806, 754, 725, 698 $\rm cm^{-1};\; HR\text{-}MS$ (ESI): m/z = 328.11128, calcd. for $C_{17}H_{18}N_3O_2S$ [M+H]⁺: 328.11142.

Synthesis of Benzolthiazol-2-yl-(1-phenyl-2-piperidin-1-ylethyl)-amine (11)

To a solution of the adduct **3a** (299 mg, 1 mmol, 99% *ee*) in MeOH (25 mL) was added 10 wt% Pd-C (106 mg, 10 mol%). The mixture was placed under an atmosphere of H_2 in a rubber balloon and stirred for 12 h at room temperature. After filtration, the solvent was concentrated and the residue was separated by silica gel column chromatography with methanol-dichloromethane (1:10) as eluent, and the product **10** was obtained as yellow liquid; yield: 200.2 mg (74%).

Glutaraldehyde (50 wt% in H_2O , 0.1 mL) was added dropwise into a mixture of **10** (80.7 mg, 0.3 mmol) and NaBH-(OAc)₃ (424 mg, 2 mmol) in ClCH₂CH₂Cl (3 mL) at room

temperature. The resulting mixture was stirred at room temperature for 13 h, and quenched with aqueous NaOH solution (10%, 5 mL). The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic layers were concentrated. The residue was dissolved in CH₂Cl₂ (20 mL), washed with brine (10 mL), and dried over anhydrous Na₂SO₄. Then, the solution was filtered and concentrated, the residue was separated by silica gel column chromatography with methanol-dichloromethane (1:40) as eluent, and the product 11 was obtained as a yellow liquid; yield: 76.8 mg (76%). The enantiomeric excess was determined by HPLC [Daicel Chiralpak IA column (n-hexane-2-propanol 75:25 v/v), flow rate 1.0 mLmin⁻¹, detection at 254 nm]: minor enantiomer $t_{\rm R}$ = 4.8 min, major enantiomer $t_{\rm R} = 8.0$ min, 99% ee; $[\alpha]_{\rm D}^{25}$: +37 (c 1.0, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.54-7.26$ (m, 7H, ArH), 7.02-6.99 (m, 2H, ArH) 4.57 (s, 1H, CH), 2.59-2.55 (m, 4H, CH₂), 2.33 (s, 2H, CH₂), 1.60-1.45 (m, 6H, CH₂); ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.8$, 151.8, 140.2, 131.1, 128.7, 127.8, 126.9, 125.7, 121.3, 120.6, 118.9, 65.4, 56.5, 54.2, 25.8, 24.2; IR (KBr): v=3265, 3065, 3029, 2937, 2852, 2803, 1722, 1676, 1599, 1533, 1493, 1444, 1374, 1356, 1306, 1285, 1212, 1156, 1122, 1098, 1074, 1029, 995, 981, 962, 943, 908, 865, 778, 752, 726, 696 cm⁻¹; HR-MS (ESI): m/z = 338.16825, calcd. for $C_{20}H_{24}N_3S$ [M+H]⁺: 338.16854.

General Procedure for the One-Pot Asymmetric Aza-Henry Reaction

The mixture of 2-aminobenzothiazole **8** (0.2 mmol), aromatic aldehyde **9** (0.3 mmol), and catalyst **III** (6.3 mg, 0.01 mmol) in toluene (2 mL) was stirred for 5 min, then nitromethane **2a** (122 mg, 104 μ L, 2.0 mmol) was added. After stirring at 60 °C for 48 h, the reaction mixture was separated directly by silica gel column chromatography to afford the corresponding product with petroleum ether-ethyl acetate (5:1) as eluent.

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (Grant Nos. 21072020 and 21272024), the Science and Technology Innovation Program of Beijing Institute of Technology (Grant No. 2011CX01008) and the Development Program for Distinguished Young and Middle-aged Teachers of Beijing Institute of Technology.

References

 For reviews, see: a) B. Westermann, Angew. Chem. 2003, 115, 161; Angew. Chem. Int. Ed. 2003, 42, 151; b) E. Marqués-López, P. Merino, T. Tejero, R. P. Herrera, Eur. J. Org. Chem. 2009, 2401. For some recent examples, see: c) H. Rodriguez-Solla, C. Concellon, N. Alvaredo, G. R. Soengas, Tetrahedron 2012, 68, 1736; d) M. Rachwalski, S. Lesniak, P. Kielbasinski, Tetrahedron: Asymmetry 2011, 22, 1087; e) G. Kumaraswamy, A. Pitchaiah, Helv. Chim. Acta 2011, 94, 1543.

- [2] a) R. Ballini, M. Petrini, *Tetrahedron* 2004, 60, 1017;
 b) A. S. Kende, J. S. Mendoza, *Tetrahedron Lett.* 1991, 32, 1699;
 c) M. A. Sturgess, D. J. Yarberry, *Tetrahedron Lett.* 1993, 34, 4743.
- [3] a) K. Yamada, S. J. Harwood, H. Groger, M. Shibasaki, Angew. Chem. 1999, 111, 3713; Angew. Chem. Int. Ed.
 1999, 38, 3504; b) K. Yamada, G. Moll, M. Shibasaki, Synlett 2001, 980; c) N. Tsuritani, K. Yamada, N. Yoshikawa, M. Shibasaki, Chem. Lett. 2002, 276; d) L. Yin, M. Kanai, M. Shibasaki, Tetrahedron 2012, 68, 3497; e) S. L. Shi, M. Kanai, M. Shibasaki, Angew. Chem. 2012, 124, 3998; Angew. Chem. Int. Ed. 2012, 51, 3932.
- [4] a) N. Nishiwaki, K. R. Knudsen, K. V. Gothelf, K. A. Jørgensen, Angew. Chem. 2001, 113, 3080; Angew. Chem. Int. Ed. 2001, 40, 2992; b) K. R. Knudsen, T. Risgaard, N. Nishiwaki, K. V. Gothelf, K. A. Jørgensen, J. Am. Chem. Soc. 2001, 123, 5843.
- [5] B. M. Trost, D. W. Lupton, Org. Lett. 2007, 9, 2023.
- [6] a) T. Okino, S. Nakamura, T. Furukawa, Y. Takemoto, Org. Lett. 2004, 6, 625; b) T. P. Yoon, E. N. Jacobsen, Angew. Chem. 2005, 117, 470; Angew. Chem. Int. Ed. 2005, 44, 466; c) X. Xu, T. Furukawa, T. Okino, H. Miyabe, Y. Takemoto, Chem. Eur. J. 2006, 12, 466; d) L. Bernardi, F. Fini, R. P. Herrera, A. Ricci, V. Sgarzani, Tetrahedron 2006, 62, 375; e) C. M. Bode, A. Ting, S. E. Schaus, Tetrahedron 2006, 62, 11499; f) C. G. Wang, Z. H. Zhou, C. C. Tang, Org. Lett. 2008, 10, 1707; g) C. J. Wang, X. Q. Dong, Z. H. Zhang, Z. Y. Xue, H. L. Teng, J. Am. Chem. Soc. 2008, 130, 8606; h) C. Rampalakos, W. D. Wulff, Adv. Synth. Catal. 2008, 350, 1785; i) B. Han, Q. P. Liu, R. Li, X. Tian, X. F. Xiong, J. G. Deng, Y. C. Chen, Chem. Eur. J. 2008, 14, 8094; j) K. Takadaa, K. Nagasawaa, Adv. Synth. Catal. 2009, 351, 345.
- [7] a) C. Palomo, M. Oiarbide, A. Laso, R. López, J. Am. Chem. Soc. 2005, 127, 17622; b) F. Fini, V. Sgarzani, D. Pettersen, R. P. Herrera, L. Bernardi, A. Ricci, Angew. Chem. 2005, 117, 8189; Angew. Chem. Int. Ed. 2005, 44, 7975; c) E. Gomez-Bengoa, A. Linden, R. López, I. Múgica-Mendiola, M. Oiarbide, C. Palomo, J. Am. Chem. Soc. 2008, 130, 7955.
- [8] a) B. M. Nugent, R. A. Yoder, J. N. Johnston, J. Am. Chem. Soc. 2004, 126, 3418; b) A. Singh, R. A. Yoder, B. Shen, J. N. Johnston, J. Am. Chem. Soc. 2007, 129, 3466; c) A. Singh, J. N. Johnston, J. Am. Chem. Soc. 2008, 130, 5866.
- [9] a) M. Rueping, A. P. Antonchick, Org. Lett. 2008, 10, 1731; b) S. J. Connon, Angew. Chem. 2006, 118, 4013; Angew. Chem. Int. Ed. 2006, 45, 3909.
- [10] a) M. T. Robak, M. Trincado, J. A. Ellman, J. Am. Chem. Soc. 2007, 129, 15110; b) D. Uraguchi, K. Koshimoto, T. Ooi, J. Am. Chem. Soc. 2008, 130, 10878.
- [11] Z. X. Jia, Y. C. Luo, P. F. Xu, Org. Lett. 2011, 13, 832.
- [12] a) H.-X. Xie, Y.-N. Zhang, S.-L. Zhang, X.-B. Chen, W. Wang, Angew. Chem. 2011, 123, 11977; Angew. Chem. Int. Ed. 2011, 50, 11773.
- [13] For selected reviews, see: a) T. D. Bradshaw, A. D. Westwell, *Curr. Med. Chem.* 2004, *11*, 1009; b) R. Dubey, P. K. Shrivastava, P. K. Basniwal, S. Bhattacharya, N. S. H. N. Moorthy, *Mini-Rev. Med. Chem.* 2006, *6*, 633; c) L. Le Bozec, C. J. Moody, *Aust. J. Chem.* 2009, *62*, 639.

- [14] For selected examples, see: a) S. Aiello, G. Wells, E. L. Stone, H. Kadri, R. Bazzi, D. R. Bell, M. F. G. Stevens, C. S. Matthews, T. D. Bradshaw, A. D. Westwell, J. Med. Chem. 2008, 51, 5135; b) A. Kamal, K. S. Reddy, M. N. A. Khan, R. V. C. R. N. C. Shetti, M. J. Ramaiah, S. N. C. V. L. Pushpavalli, C. Srinivas, M. Pal-Bhadra, M. Chourasia, G. N. Sastry, A. Juvekar, S. Zingde, M. Barkume, Bioorg. Med. Chem. 2010, 18, 4747; c) W. J. Xu, G. Chen, W. L. Zhu, Z. L. Zuo, Bioorg. Med. Chem. Lett. 2010, 20, 6203; d) M. S. Christodoulou, F. Colombo, D. Passarella, G. Ieronimo, V. Zuco, M. De Cesare, F. Zunino, Bioorg. Med. Chem. 2011, 19, 1649; e) B. H. Yousefi, A. Drzezga, B. von Reutern, A. Manook, M. Schwaiger, H. J. Wester, G. Henriksen, ACS Med. Chem. Lett. 2011, 2, 673; f) S. Nagarajan, S. Majumder, U. Sharma, S. Rajendran, N. Kumar, S. Chatterjee, B. Singh, Bioorg. Med. Chem. Lett. 2013, 23, 287.
- [15] a) L. Li, B. A. Song, P. S. Bhadury, Y. P. Zhang, D. Y. Hu, S. Yang, *Eur. J. Org. Chem.* **2011**, 4743; b) H. X. He, G. P. Ouyang, *J. Guizhou Univ. (Nat. Sci.)* **2010**, *27*, 63.
- [16] For reviews on squaramides, see: a) R. I. Storer, C. Aciro, L. H. Jones, *Chem. Soc. Rev.* 2011, 40, 2330; b) J. Aleman, A. Parra, H. Jiang, K. A. Jorgensen, *Chem. Eur. J.* 2011, 17, 6890.
- [17] For selected recent examples, see: a) J. P. Malerich, K. Hagihara, V. H. Rawal, J. Am. Chem. Soc. 2008, 130, 14416; b) Y. Zhu, J. P. Malerich, V. H. Rawal, Angew. Chem. Int. Ed. 2010, 49, 4153; c) D. Q. Xu, Y.-F. Wang, W. Zhang, S.-P. Luo, A.-G. Zhong, A.-B. Xia, Z.-Y. Xu, Chem. Eur. J. 2010, 16, 4177; d) L. Dai, S.-X. Wang, F.-E. Chen, Adv. Synth. Catal. 2010, 352, 2137; e) H.

Jiang, M. W. Paixao, D. Monge, K. A. Jorgensen, J. Am. Chem. Soc. 2010, 132, 2775; f) W. Yang, D.-M. Du, Org. Lett. 2010, 12, 5450; g) W. Yang, D.-M. Du, Chem. Commun. 2011, 47, 12706; h) W. Yang, D.-M. Du, Adv. Synth. Catal. 2011, 353, 1241; i) Y. Qian, G. Ma, A. Lv, H.-L. Zhu, J. Zhao, V. H. Rawal, Chem.Commun. 2010, 46, 3004; j) H. Konishi, T. Y. Lam, J. P. Malerich, V. H. Rawal, Org. Lett. 2010, 12, 2028; k) S. V. Pansare, E. K. Paul, Chem. Commun. 2011, 47, 1027; l) C. Min, X. Han; Z. Q. Liao, X. F. Wu, H.-B. Zhou, C. Dong, Adv. Synth. Catal. 2011, 353, 2715; m) H. Y. Bae, S. Some, J. H. Lee, J.-Y. Kim, M. J. Song, S. Lee, Y. J. Zhang, C. E. Song, Adv. Synth. Catal. 2011, 353, 3196; n) W. Yang, Y. Jia, D.-M. Du, Org. Biomol. Chem. 2012, 10,

[18] For further general references, see: a) C. G. Oliva, A. M. S. Silva, D. I. S. P. Resende, F. A. A. Paz, J. A. S. Cavaleiro, *Eur. J. Org. Chem.* 2010, 3449; b) Z. Dong, X. Q. Jin, P. C. Wang, C. Min, J. Zhang, Z. Chen, H. B. Zhou, C. Dong, *Arktvoc* 2011, 9, 367.

332.

- [19] CCDC 906796 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.
- [20] For some recent examples, see: a) R. Imashiro, H. Uehara, C. F. Barbas, Org. Lett. 2010, 12, 5250; b) S. Bai, X. P. Liang, B. A. Song, Pinaki. S. Bhadury, D. Y. Hu, S. Yang, Tetrahedron: Asymmetry 2011, 22, 518.
- [21] J. W. Lee, T. H. Ryu, J. S. Oh, H. Y. Bae, H. B. Jang, C. E. Song, *Chem. Commun.* 2009, 7224.
- [22] H. Zhou, D. Peng, B. Qin, Z. Hou, X. Liu, X. Feng, J. Org. Chem. 2007, 72, 10302.