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ABSTRACT
In search of new non-nucleoside reverse transcriptase inhibitors (NNRTIs) with improved solubility, two ser-
ies of novel diaryl ethers with phenacyl moiety were designed and evaluated for their HIV-1 reverse tran-
scriptase inhibition potentials. All compounds exhibited good to excellent results with IC50 at low
micromolar to submicromolar concentrations. Two most active compounds (7e and 7g) exhibit inhibitory
potency comparable or even better than that of nevirapine and rilpivirine. Furthermore, SupT1 and CD4þ

cell infectivity assays for the most promising (7e) have confirmed its strong antiviral potential while dock-
ing studies indicate a novel binding interactions responsible for high activity.
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Introduction

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have pro-
ven their effectiveness as components of highly active antiretro-
viral therapy1–3. Their relatively low toxicity, as compared to other
antiretroviral drugs, makes them a very attractive class of com-
pounds used in treating HIV-1 infections4–7. Currently, there are
five registered NNRTIs, first generation: nevirapine (NVP), efavirenz
(EFV), delavirdine, and second generation: etravirine (ETV) and ril-
pivirine (RPV). Because HIV-1 reverse transcriptase (RT) has a low
fidelity – its error rate was reported to be in the range of
10�3–10�5 per nucleotide addition8–10 – there is a very high

mutation rate of the virus, and strains resistant to antiretroviral
drugs emerge. Consequently, the pharmacotherapy may become
ineffective, moreover, cross-resistance between NNRTIs is pos-
sible11–14. Another problem is that the NNRTIs binding site of RT
favours non-polar compounds, which are usually poorly soluble in
water. This is especially the case in second-generation NNRTIs, as
both ETV and RPV are practically insoluble in water and require
special formulations15,16. For these reasons there is a need to
develop new NNRTIs with improved potency against resistant HIV
mutants and better pharmacokinetics17–19. First generation NNRTIs
like NVP and EFV are rigid molecules that bind well to the wild-
type RT, but a single amino acid mutation in the binding site can
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significantly decrease their affinity to the enzyme. Second gener-
ation NNRTIs have flexible structures which allows them to adapt
to a modified binding site of mutant RT20. Usually, second gener-
ation NNRTIs have 2–3 aromatic rings with an ether, thioether,
short alkyl or amino group located between the rings that acts as
a hinge that allows the inhibitors to bind in different conforma-
tions and overcome resistance mutations20,21. An excellent review
on the chemical diversity of NNRTIs was written by Zhan et al.18.
Diaryl ethers are one of the classes of second generation NNRTIs.
There are several interesting inhibitors belonging to this class,
including 1 – the most potent NNRTI reported to date (against
wild type RT) and doravirine (2), which is in phase III clinical trials
(Figure 1)22–24.

As mentioned above, poor solubility in water results in reduced
bioavailability, and there is an increasing awareness of the need to
design NNRTIs with improved pharmacokinetics. Several
approaches were used by different authors to achieve better solu-
bility of NNRTIs: salt formation25,26, prodrug formation27,28, add-
ition of polar substituents29–31, modification of crystal structure23

or reduced halogenations32.
Our goal was to design second generation NNRTIs with

improved solubility and chemical stability. Building on common
substructures of several diaryl ether (3–5)33–35 and azole NNRTIs
(6)36 we designed two new scaffolds: 7a and 8a (Figure 2). The
new structures feature phenacyl moiety as an alternative to hydro-
lytically labile amide, found in some NNRTIs (Figure 2).

Materials and methods

Synthesis

Compounds 7a–g (resorcinol type) and 8a–f (catechol type) were
synthesised in several steps from commercially available starting

materials. Diaryl ether parts (9a–f) of the new NNRTIs were syn-
thesised from phenols and aryl fluorides in N-methylpyrrolidone
(Figure 3) as described earlier34,35. In case of 9b Chan-Lam cou-
pling was used37. Hydroxyacetophenones were O-alkylated with
ethyl chloroacetate. Subsequent exchange of ethyl to methyl
afforded pure and solid methyl esters, which were selectively bro-
minated with N-bromosuccinimide and p-toluenesulfonic acid in
chloroform (10a–d) (Figure 3)38. Final deesterification was per-
formed using potassium carbonate in a mixture of methylene
chloride, methanol and water (room temperature, 1–2 days).
Structures of obtained compounds are given in Table 1. Detailed
synthetic procedures and characterisation data of reported com-
pounds can be found in the supplemental material.

Molecular docking

The RCSB Protein Data Bank (PDB)39 contains over 150 crystallo-
graphic structures of HIV-1 reverse transcriptase-NNRTI complexes.
Basing on structural similarity features, four PDB entries were
selected for wild type RT receptor preparation: 3DRP, 4H4M, 3C6T
and 2YNG (the structures of corresponding reference ligands can
be found in the supplemental file, Fig. S1). RT mutant structures
were taken from 3DRS, 3MEG (K103N), 3DRR, 1JLC (Y181C) and
4RW4, 3BGR (K103N/Y181C). In addition, 4G1Q structure was used
as a wild type RT complex with RPV. Protein structures were pre-
pared using Protein Preparation Wizard in Maestro40. After a pre-
processing step with default settings, all waters, ions and small
molecules were removed, hydrogen bond network was optimised,
followed by global optimisation of all atoms. Receptor grids were
prepared with default box size, centred on a reference ligand from
the crystallographic structure. To simulate a small-scale adaptation
of the receptor upon binding of a ligand, van der Waals radii of

Figure 1. Structures of a catechol diether with the lowest EC50 reported to date (1) and doravirine (2).

Figure 2. Structures of several diaryl ether NNRTIs (3–5), RDEA806 (6), and our newly designed compounds (7a, 8a).
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Figure 3. Synthesis scheme (a) K2CO3, N-methylpyrrolidone, 120 �C, 4 h (b) BBr3, CH2Cl2, 0–25 �C, 5 days (c) ethyl chloroacetate, K2CO3, KI, acetone, reflux, 4 h (d) NaOH,
CH2Cl2 – CH3OH (9:1), 25 �C 1 h, then diluted HCl (e) CH3OH, p-toluenesulfonic acid, reflux, 4 h (f) N-bromosuccinimide, p-toluenesulfonic acid, CHCl3, 25 �C, 12 h (g)
K2CO3, acetone, 25 �C, 4 h (h) K2CO3, CH2Cl2 – CH3OH – H2O, 25 �C, 1–2 days (i) Cu(CH3COO)2, pyridine, CH2Cl2, 25 �C, 2–3 days. R1-R4 groups are as in Table 1.

Table 1. Structures of synthesised compounds.

R1 R2 R3 R4

7a CN 2-Cl H CH2COOK
7b Cl 2-Cl H CH2COOK
7c CN 3-Cl H CH2COOK
7d CN H H CH2COOK
7e CN 2-Cl H

7f CN 2-Cl 2-CH3 CH2COOK
7g CN 2-Cl 3-CH3 CH2COOK
8a CN 4-Cl H CH2COOK
8b CN 5-Cl H CH2COOK
8c CN 4-Cl H

8d CN 4-Cl 2-CH3 CH2COOK
8e CN 5-Cl 3-CH3 CH2COOK
8f CN 5-Cl H

JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY 11
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atoms with partial charges less than 0.2 were scaled down by a
factor of 0.941. Several docking protocols were used:

� Standard and extra precision (XP) Glide docking with default
settings42–45. Three best poses were stored. For XP docking the
threshold to reject a minimised pose was increased to 0.9 kcal/
mol.

� Custom protocol 1 (CP1): The following positional constraint
was added during receptor grid preparation – a 1 Å sphere
centred at the oxygen atom of diphenyl ether motif of a refer-
ence ligand (from the crystallographic structure) had to be
occupied by a neutral H-bond acceptor atom of a docked lig-
and. All ligand poses which did not comply with the constraint
were rejected.

� Custom protocol 2: ligand poses obtained with the standard or
custom (CP1) protocol were examined, and one best pose was
manually selected (basing on the similarity to the reference lig-
and pose from crystallographic structure). All ligands were then
aligned to the selected pose using the Flexible Ligand
Alignment tool from Maestro, using a maximal common sub-
structure. Subsequently, ligands were docked using Glide XP
with the sampling mode set to “None (refine only)”

Only the best scoring pose obtained with either protocol was
kept for each docked ligand. The complete results can be found in
the supplemental file.

IC50 measurements

HIV RT inhibitory activity of the new compounds was measured
using the colorimetric Reverse Transcriptase Assay kit (Roche,
Basel, Switzerland). The assay was performed according to the
manufacturer’s instruction with the only modification that 2 ng
(instead of suggested 4–6 ng which caused the reaction to run too
fast) of enzyme supplied was used for the each reaction. Stock
solutions of examined and reference compounds (NVP (TCI, Tokyo,
Japan) and RPV) containing 5% dimethyl sulfoxide (Merck,
Darmstadt, Germany) were used to prepare dilutions ranging from
0.1 to 50 mM. Averaged results from at least two measurements
were used to obtain an inhibition curve. IC50 values were obtained
by interpolating the curve using non-linear regression.

Solubility

Substances were dissolved in ultrapure deionised water at room
temperature up to concentrations of 50 g/L. Solutions were centri-
fuged and their aliquots were transferred into weighed glass vials
(d¼ 0.01mg). The samples were dried under reduced pressure and
the vials were weighed again. The solubility was calculated from
mass difference divided by sample volume.

Infection assays and cytotoxicity measurements

CD4þ T cells were harvested from normal donors and cultured in
Roswell Park Memorial Institute medium (RPMI) supplemented
with 2mM L-glutamine (Life Technologies, Merelbeke, Belgium),
10% (v/v) heat-inactivated foetal calf serum (Hyclone, Thermo
Fisher Scientific, Waltham, MA), 100U/mL penicillin and 100 mg/mL
streptomycin (Life Technologies), 20 ng/mL interleukin-2 (IL-2; spe-
cific activity 10U/ng, Peprotech, London, UK), and with 1mg/mL
phytohemagglutinin (PHA) mitogen (Thermo Fisher Scientific), 72 h
prior to infection, as described earlier46. SupT1 cells were

maintained at maximum 500,000 cells/mL, in Iscove’s Modified
Dulbecco’s Medium (IMDM) supplemented with 2mM L-glutamine
(Life Technologies) and 10% (v/v) heat-inactivated foetal calf
serum (Hyclone, Thermo Fisher Scientific, Waltham, MA), as
described earlier47.

Lyophilised compound was dissolved in dimethyl sulfoxide to a
concentration of 5mM, and further diluted in cell culture medium
(SupT1: IMDM and CD4þ T cells: RPMI). Cells were incubated 2 h
prior infection in appropriate medium as described above, now
also supplemented with diluted compound. Subsequently, cells
(SupT1: 50,000 per 96 well, CD4þ T cells: 250,000 per 96 well)
were infected with HIV (HIV NL4–3-GFP-I, an infectious virus
expressing green fluorescent protein (GFP) from gfp-IRES-nef
mRNA expressed from the nef locus, as described earlier48.
Medium was as described above, now also supplemented with
diluted compound (For CD4þ T cells, PHA was left out). Medium
was refreshed after 24 h, keeping compound and supplement con-
centrations constant. After 72 h, cells were harvested, measured by
flow cytometry for GFP expression and counted, using a
MACSQuant flow cytometer (Miltenyi Biotec, Bergisch Gladbach,
Germany). Infection rate measured by GFP expression was
between 6 and 20%. Cell numbers were used to measure cytotox-
icity (cell numbers in non-infected cultures supplemented with
compound were compared to cell numbers obtained in parallel
cultures without compound added: a reduction with more than
10% was considered to indicate cytotoxicity).

Results and discussion

RT inhibitory activity

7a and 8a were tested for the inhibitory activity against HIV-1 RT.
Both compounds were found to be NNRTIs with IC50 of
1.23 ± 0.05 lM and 23.4 ± 1.6 lM, respectively. Using 7a and 8a as
lead compounds several of their analogues were prepared and
tested in vitro. Replacement of nitrile with chlorine in 7b was det-
rimental to the inhibitory activity (Table 2). Changing the position
or removing the chlorine atom in the central ring of 7a also
resulted in increased IC50 values (7c and 7d, Table 2), but in case
of catechol ethers moving the position of chlorine from 4 in 8a to
5 in 8b was beneficial for activity (about seven-fold decrease the
IC50 value, Table 2). Modifications introduced to the phenacyl moi-
ety of the new inhibitors resulted in several interesting findings.
7e was found to be the most active NNRTI in this study with IC50
0.36 ± 0.01 mM, more potent than the drug NVP
(IC50¼ 0.75 ± 0.02 mM) and nearly as potent as RPV

Table 2. IC50 values, solubility and docking scores of examined compounds.

Compound IC50 [mM] Solubility [g/L] Mean docking score

7a 1.23 ± 0.05 13.1 –14.94
7b 6.75 ± 0.50 4.3 –14.56
7c 8.30 ± 1.3 >50.0 –14.76
7d 9.78 ± 0.67 >50.0 –14.39
7e 0.36 ± 0.01 3.2 –17.07
7f 4.71 ± 0.43 8.9 –14.97
7g 0.65 ± 0.03 3.8 –15.14
8a 23.4 ± 1.6 >50.0 –14.85
8b 3.40 ± 0.30 >70.0 –14.73
8c 1.90 ± 0.11 >50.0 –16.60
8d 4.70 ± 0.70 14.4 –14.89
8e 3.07 ± 0.22 39.9 –15.30
8f 1.27 ± 0.05 >50.0 –16.59
NVP 0.75 ± 0.02 0.17a –
RPV 0.32 ± 0.04 0.00002b –
aMorelock et al.49
bJanssen et al.15.
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(IC50¼ 0.32 ± 0.04mM). Analogous modification in catechol series
resulted in 8c, more potent that its parent compound 8a (IC50
1.9 ± 0.11mM). Methylation of 7a in the phenacyl ring yielded 7f
(less potent) and 7g, which was found to be another potent
inhibitor of HIV-1 RT, slightly more active than NVP (IC50
0.65 ± 0.03mM). Catechol analogues 8d-f were found to possess
comparable, low micromolar activity (Table 2).

Molecular docking analysis

Using one of the three docking protocols, a good pose for every
inhibitor could be found for all four receptors. Averaged docking
scores are given in Table 2 (individual scores are in Table S4 of
supplemental material). Interestingly, the obtained mean docking
scores show quite good qualitative correlation with IC50 values
(Table 2). For example, for compounds 7a–g the docking scores
almost correctly rank the inhibitors by their activity: 7e, 7 g, 7f,
7a, 7c, 7 b, 7d, with only 7f being swapped with 7a, as well as 7c
with 7b. For 8a–f the docking scores also were able to identify
the three most active inhibitors. The results show that the molecu-
lar docking may be a valuable tool in further development of
NNRTIs from this chemical class.

The docking analysis was also useful in gaining some insight
into the binding interactions of the new inhibitors with RT. The
diaryl ether part of examined compounds binds in the hydropho-
bic cavity formed by non-polar aromatic amino acid residues of
Tyr181, Tyr188, Phe227, Trp229 and Tyr318 (Figure 4(a)). The 3-
chloro-5-cyanophenyl ring forms a p–p stacking interactions with
Trp229 and Tyr188. The chlorine atom in the central aromatic ring
points towards the carbonyl oxygen of Tyr188, forming a halogen
bond. The carbonyl group of phenacyl moiety forms a hydrogen
bond with the backbone oxygen of Lys103. Finally, the carboxyl
group of three-ringed inhibitors locates itself at the solvent
exposed entrance to the binding site, forming a hydrogen bond
with Val106. In case of compounds 7e, 8c and 8f, the additional
phenyl ring between phenacyl and glycolic acid synthons is pre-
dicted to bind in an unexplored pocket adjacent to the entrance
to the NNRTIs binding site (Figure 4(b)). This pocket may be an
attractive target for the further optimisation of the new inhibitors.
The predicted binding modes of 7e, 8c and 8f suggest the exist-
ence of a strong ionic interaction between the inhibitors carboxyl
and guanidine of Arg199, which explains the unusually high-dock-
ing scores for these three compounds (e.g. –19.62 for 7e in 3C6T
receptor, see Table S3), and may also be the cause of 7e potency.

In order to assess expected activity of our best compound
against mutated forms of the enzyme we have performed docking
studies of 7e and RPV – clinically used drug of the second gener-
ation that is active against these mutations. For wild-type, K103N,
and Y181C forms 3DRP, 3DRS and 3DRR structures were chosen,

Figure 4. (a) Predicted binding mode of 7a (PDB: 3C6T). Turquoise dashed lines – p–p stacking, red dashed lines – hydrogen bonds, purple dashed line – halogen
bond. (b) Predicted binding mode of 7e (PDB: 3C6T) viewed from the entrance to the NNRTIs binding site. Some residues removed for clarity.

Figure 5. Comparison of docking scores of 7e and RPV to selected RT mutants.

Table 3. Threshold toxic concentrations and antiviral activity at 10-fold lower
concentration of compounds examined.

Compound Threshold toxicity [mM] Antiviral activity

7a 5 –
7b 50 þ
7c 50 –
7d 50 –
7e 50 þ
7f >50 þ
7g 50 þ
8a 50 –
8b 5 –
8c 50 þ
8d 50 –
8e 50 þ
8f 5 –
NVP 50 þ
RPV 0.5 þ
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respectively, in case of 7e, because they share the same reference
ligand. For K103N/Y181C double mutant 4RW4 structure was used.
RPV was docked to 4G1Q (WT), 3MEG (K103N), 3JLC (Y181C) and
3BGR (K103N/Y181C), which all have RPV as the native ligand in
crystal structures, with the exception of 3JLC, as there is no crys-
tallographic data in PDB for RPV – Y181C complex. The results
show a small decrease of docking scores for RPV in K103N and
K103/Y181C, and a significant drop for Y181C mutant (in this case
the decrease may be overestimated since this is not the native
crystal structure, Figure 5). Interestingly, 7e shows practically the
same scores for WT, Y181C and K103N/Y181C forms, and an
increased score for K103N (Figure 5). This suggests that 7e is not
sensitive to these mutations.

Solubility

The aqueous solubility (at pH ¼7) of synthesised compounds is pre-
sented in Table 2. Many of the compounds show a good solubility,
exceeding 50g/L. Exact measurements of the maximum solubility
proved to be infeasible due to the formation of micelles, aggregates
and ultimately gels for increasing concentrations of the compounds.
This behaviour results from the amphiphilic character of the exam-
ined compounds and elongated shapes of their molecules, which
gives them surfactant-like properties. The general trend observed
for all inhibitors is that catechol-based ethers (8a–f) are better sol-
uble than their resorcinol counterparts (7a–g). Interestingly, remov-
ing or replacing the chlorine atom in two-position of resorcinol-
based ethers like in case of 7c and 7d significantly increased their
solubility. However, as discussed above, the two-position of the
chlorine atom is optimal for the inhibitory activity. Methyl substitu-
tion in the phenacyl ring was also detrimental for the solubility. The
most active compound 7e shows relatively low solubility, but it is
still ca. 100,000 times greater than that of RPV. Calculated octanol-
water partition coefficients (logD) for examined compounds range
from 0.97 to 3.05, which is close to that of NVP (2.49), and signifi-
cantly lower than that of RPV (5.47, Table S5).

Infection assays

First, toxicity of the compounds was determined in SupT1 cells.
Since even minor toxicity affects the support of viral replication by
the cell, compounds should be active well below threshold toxic
concentration (i.e. concentration at which toxicity is observed in
10-fold titration series). The threshold toxic concentration, and

whether antiviral activity was observed at 10-fold lower concentra-
tion than this threshold toxic concentration are given in Table 3.

Several compounds tested in infectivity assay did not show
antiviral activity at less than 10% of toxic concentration (Table 3).
Nonetheless, of those who did, 7e inhibited infection most clearly
below concentrations which affected cellular viability. Therefore,
this compound was tested more extensively in SupT1 cells, as well
as in peripheral blood CD4þ cells. As shown in Figure 6, both in
SupT1 cells as in primary T cells, IC50 was around 0.25mM (toxicity
was only apparent above 20 mM). The measurements were run in
parallel with NVP as a reference, and it showed IC50 of 0.04 mM, in
line with literature50.

Conclusions

Two novel scaffolds of diaryl ether NNRTIs with phenacyl moiety
were designed in this study. With the aid of molecular modelling
several modifications of the core structures were prepared. Using
molecular docking to several crystallographic structures and thor-
ough conformational search of ligands, it was possible to obtain
quite accurate predictions of structure–activity relationship. All
synthesised compounds showed inhibitory activity against wild-
type HIV-1 RT. In general, resorcinol-based compounds possessed
better activities than catechol-based compounds, and are more
promising candidates for further development. One of the com-
pounds, 7e, was found to be a very potent NNRTI in enzymatic
assay, and is predicted to display novel interactions with the RT.
The presented compounds were designed to possess a good
aqueous solubility, which was achieved in all cases. Given those
encouraging results, the inhibitors were subjected to biological
evaluation of their efficacy against HIV infection in vitro. 7e proved
to be a potent anti-viral in SupT1 and CD4þ T cell infectivity
assays. These results show our design could deliver highly water-
soluble NNRTIs, at least one compound displays potent antiviral
activity in infection assays in vitro.
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