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Abstract: An organocatalytic enantioselective Frie-
del–Crafts alkylation of a series of substituted 1-
naphthol derivatives and activated phenols with
ethyl trifluoropyruvate, catalyzed by a quinine-de-
rived squaramide, is presented. Good yields and
high to excellent enantioselectivities of the Friedel–
Crafts alkylation products were obtained.
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The Friedel–Crafts (F-C) reaction is one of the most
fundamental, important and powerful C¢C bond
forming reactions in organic chemistry.[1] This reaction
provides an efficient synthetic pathway to prepare
functionalized aromatic compounds of great impor-
tance and widely used in academia and industry.
Moreover, the catalytic enantioselective version of
the F-C reaction leads to the formation of highly val-
uable chiral aromatic compounds.[2]

However, most of the examples reported in the lit-
erature with regard to this version are concerned with
the use of heteroarenes such indoles and pyrroles as
nucleophilic partners,[3] whilst other nucleophiles such
as naphthols have been less studied, probably due to
their reduced reactivity towards electrophiles.[4] Con-
sequently, the extension of the asymmetric F-C alky-
lations to include naphthols is of great interest for or-
ganic synthesis. Since the first example of Erker in
1990[5] where the enantioselective alkylation of naph-
thol was described using an activated ketone such
methyl pyruvate, only two asymmetric examples of
the reaction between naphthols and ketones have

been recently reported, using isatins as substrates.[6]

Nevertheless, the enantioselective alkylation of 1-
naphthol with alkyl trifluoropyruvates is not de-
scribed, to the best of our knowledge. This reaction
would provide access to chiral tertiary benzylic alco-
hols bearing a trifluoromethyl group as a substitu-
ent.[7,8] This particular motif has become an important
structural characteristic in several drugs such as CJ-
17493 or Efavirenz (Figure 1).[9]

Since the pioneering work by Jørgensen and co-
workers,[10] who described the alkylation of different
aromatic and heteroaromatic compounds with alkyl
trifluoropyruvate, several methodologies have been
reported.[11] However, the enantioselective alkylation
of naphthols with ethyl trifluoropyruvate remains elu-
sive (Scheme 1).[12] As a part of our continuous inter-
est in the enantioselective synthesis of CF3-cointaining
compounds,[13] herein we report an organocatalytic
enantioselective F-C alkylation of 1-naphthol deriva-
tives with ethyl trifluoropyruvate under mild condi-
tions using a squaramide organocatalyst[14] derived
from quinine.

The reaction of 1-naphthol (1a) with ethyl trifluoro-
pyruvate (2) was studied with different bifunctional

Figure 1. Structures of drugs containing a chiral tetrasubsti-
tuted carbon bearing a trifluoromethyl group.
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organocatalysts under various reaction conditions
(Table 1). We initially examined quinine (A) in tolu-
ene at room temperature (entry 1, Table 1). To our
delight, the corresponding tertiary alcohol 3a was ob-
tained smoothly in 70% yield and 43% ee. 9-O-(p-
MeC6H4CH2)-cupreine B, where the 9-OH group was
protected and the 6’-OH was free, showed an inver-
sion of the enantioselectivity (48% ee), with a moder-
ate yield (Table 1, entry 2). Although cupreine cata-
lysts C and D, with different groups such as aryl ether
or benzoyl group at the 9-OH position, afforded the
product 3a with higher enantioselectivity, (78% ee, en-
tries 3 and 4) the reactions were slower. When qui-
nine-derived thiourea E was used (Table 1, entry 5),
the reaction proceed faster, furnishing the product in
86% yield, although with a decrease in the enantio-
meric excess (46%). Quinine-derived squaramide F
proved to be the most efficient catalyst (entry 6,
Table 1) in terms of yield (89%) and enantioselectivi-
ty (78% ee). Other thiourea organocatalysts bearing
a tertiary amine moiety, such as TakemotoÏs catalyst
G (entry 7, Table 1), showed good yield (86 % yield),
although with decreased selectivity (46% ee). We de-
cided to study the effect of different solvents (en-
tries 8–12) with catalyst F in the Friedel–Crafts alkyla-
tion. To our delight, when ether was used as a solvent,
excellent results were obtained (92% yield, 91% ee,
entry 9). The enantiomeric excess of tertiary alcohol
3a could reach 97% (entry 13) when the reaction was
carried out at 0 88C. Finally, the catalyst loading was
decreased to 2 and then 1 mol% (entries 14 and 15,
respectively), with similar results in terms of enantio-
selectivity, although the reactivity was much lower.

Under the optimized conditions shown in entry 13,
the substrate scope was investigated (Scheme 2). Dif-
ferent 1-naphthols[15] substituted with electron-with-
drawing and electron-donating groups were reacted
with ethyl trifluoropyruvate[16] (2). The presence of an
electron-donating group such MeO at the position 4
decreased the yield, without compromising the enan-
tiomeric excess (96%), however, groups such as Cl,
Br and OAc at this position gave good yields and ex-
cellent enantioselelectivities. Moreover, the reaction

was studied with 1-naphthol substituted at the 5-posi-
tion, with good yields and excellent enantiomeric ex-
cesses. Remarkably, 1,5-dihydroxynaphthalene react-
ed smoothly affording the corresponding chiral terti-
ary alcohol 3g with 70% yield and 97% ee.[17] Finally,
our reaction protocol also allowed us to use electron-
rich phenols as nucleophiles.[18] Sesamol[19] (4a), 3,4-di-
methoxyphenol (4b) and even phenols with only one
electron-donating group (4c–4f) gave the correspond-
ing chiral tertiary alcohols (5a–5f), although a de-
crease in the enantioselectivity was observed. Un-

Scheme 1. Enantioselective Friedel–Crafts alkylation with
ethyl trifluoropyruvate.

Table 1. Optimization of the reaction conditions.[a]

Entry Catalyst
(mol%)

Solvent t
[h]

T
[88C]

Yield
[%][b]

ee
[%][c]

1 A (5%) toluene 2 r.t. 70 43[d]

2 B (5%) toluene 3 r.t. 54 48
3 C (5%) toluene 7 r.t. 64 78
4 D (5%) toluene 6 r.t. 66 78
5 E (5%) toluene 1.5 r.t. 86 46
6 F (5%) toluene 1.5 r.t. 89 78
7 G (5%) toluene 2 r.t. 86 46[d]

8 F (5%) CH2Cl2 1 r.t. 91 80
9 F (5%) Et2O 2 r.t. 92 91
10 F (5%) EtOAc 2 r.t. 88 87
11 F (5%) (i-

Pr)2O
2 r.t. 94 87

12 F (5%) MTBE 24 r.t. 30 91
13 F (5%) Et2O 2 0 90 97
14 F (2%) Et2O 24 0 80 98
15 F (1%) Et2O 24 0 35 96

[a] Reaction conditions: 0.100 mmol 1a, 0.125 mmol 2, and
catalyst in solvent (1.0 mL).

[b] Isolated yield after column chromatography.
[c] Enantiomeric excess determined by chiral HPLC.
[d] The major product is the (S)-enantiomer.
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fortunately, simple phenol is unreactive in our reac-
tion conditions.

The absolute configuration of product 3c was as-
signed as (R) on the basis of an X-ray crystal struc-
ture analysis (Figure 2).[20] The configurations of the
rest of products were assigned on the assumption of
a uniform mechanistic pathway.

Treatment of product 3a with p-TsOH in toluene at
70 88C afforded chiral lactone[21] 6 in 80% yield and
preserving the enantiomeric purity of the compound
(Scheme 3).

In summary, we have developed a highly enantiose-
lective addition of 1-naphthol derivatives to ethyl tri-
fluoropyruvate employing a squaramide organocata-
lyst derived from quinine. The corresponding chiral
tertiary alcohols bearing a trifluoromethyl group were
obtained with good yields and excellent enantioselec-
tivities. Furthermore, the methodology was extended
to the use of activated phenols, with good yields and
enantiomeric excesses.

Experimental Section

General Friedel–Crafts Procedure

Naphthol 1 (0.100 mmol), ethyl trifluoropyruvate 2
(0.125 mmol) and squaramide F (2.4 mg, 0.050 mmol) were
dissolved in 1.0 mL of ether and the mixture stirred at 0 88C
until the reaction was complete (TLC). Finally, the reaction
mixture was directly applied to column chromatograpy,
using hexane:Et2O (95:5) as eluent to afford product 3.

Synthesis of (R)-3-Hydroxy-3-(trifluoromethyl)-
naphtho[1,2-b]furan-2(3H)-one (6)

A solution of 3a (30 mg, 0.095 mmol) and p-TsOH (4 mg,
0.019 mmol) in toluene (0.4 mL) was stirred for 6 h at 70 88C.

Scheme 2. Substrate scope for the enantioselective Friedel–
Crafts alkylation. Reaction conditions: 0.100 mmol 1,
0.125 mmol 2, and F (5 mol%) in Et2O (1.0 mL) at 0 88C. Iso-
lated yield after column chromatography. Enantiomeric
excess determined by chiral HPLC.

Figure 2. X-ray crystal structure of 3c.[20]

Scheme 3. Lactonization of 3a.
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The corresponding reaction mixture was purified directly by
flash chromatography on silica gel affording compound 6 ;
yield: 19.8 mg (78%).
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