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Cancer cells acquire numerous biological properties (designated “cancer hallmarks”), such as cell survival and energy

metabolism, that facilitate tumor growth and metastatic dissemination during development. To date, eight hallmarks of cancer

have been identified that provide a logical framework for understanding the remarkable diversity of neoplastic diseases, as

proposed by Douglas Hanahan and Robert A. Weinberg. Long noncoding RNAs (lncRNAs), a category of transcripts widely

demonstrated to exert significant regulatory effects on biological processes, have attracted considerable research attention

due to their association with the occurrence and development of cancer. The mechanisms by which lncRNAs exert their

functions require elucidation to optimize their potential utility as alternative biomarkers and therapeutic targets during tumor

occurrence and progression. In this review, we have discussed recent research progress on lncRNAs involved in various cancer

hallmarks and their related mechanisms of action, with a view to providing an updated picture of their immense therapeutic

potential in the fight against cancer.
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Introduction
Long noncoding RNAs (lncRNAs), defined as >200 nt transcripts
with low or no protein-coding potential, represent one of the most
significant discoveries in recent decades. Several studies have dem-
onstrated their roles in the initiation and development of dis-
ease.1,2 Considering that lncRNAs participate in various biological
processes (such as genomic imprinting, chromatin modeling and
posttranscriptional regulation), it is presumed that dysregulation
of lncRNA expression could hamper cellular homeostasis and lead
to cancer initiation.3 Genome-wide association and comparative
analyses of cancer and normal cells have established differential
expression patterns of lncRNAs as well as single nucleotide poly-
morphisms (SNPs) at their transcriptional loci.4–6 Furthermore,
cancer-specific lncRNA expression patterns appear more tissue-
and stage-specific than those of protein-coding genes, supporting
the potential development of lncRNAs as powerful alternative bio-
markers and therapeutic targets.7,8 However, the major problem
confronted by researchers is the current dimension of the lncRNA
transcriptome. Based on novel results obtained by the FANTOM
consortium, 19,175 potentially functional lncRNAs in the human
genome have been identified.9 It is advisable to focus on lncRNAs
with known functional roles or specific expression patterns in can-
cer cells and understand their modes of action in the search for
translational opportunities. In this review, we have comprehen-
sively summarized the details of experimentally verified lncRNAs
involved in hallmarks of cancer, and discussed their correlation to
different stages of cancer progression.

Expression Patterns and Action Modes of lncRNAs
Noncoding RNAs constitute an overwhelmingly high percentage
(≥80%) of human transcripts.10 Approximately 4–9% genomic
sequences of mammals are transcribed into lncRNAs, rep-
resenting a considerably higher proportion than protein-coding
mRNA sequences (1%), albeit with low expression levels.11 The
ENCODE project and data from other comprehensive analyses of
the transcriptome in mammals (FANTOM) have revealed the
presence of a large number of lncRNAs on a genome-wide scale,
which may overlap with protein-coding genes or show distribu-
tion within intergenic intervals.12–14

Theoretically, if noncoding RNAs are not under selection,
expression diversity and divergence patterns would be similar
among different tissues.11 However, some are synergistically
expressed with conserved mRNAs and have particular expression
patterns in a tissue- or developmental stage-specific manner.7,15,16

In cases where a sufficient number of normal samples are available
for comparison, lncRNAswith cancer-specific expression in various
organ systems could be identified.17 Considering that the majority
of lncRNAs do not encode proteins, their functions are closely asso-
ciated with transcript abundance or expression levels. Over the past
decade, multiple studies have identified alterations in lncRNA
expression patterns in the context of cancers, potentially resulting
from genetic and epigenetic changes including chromosomal trans-
locations, copy number alterations, small insertions and deletions

(INDELs) and SNPs,1,6,18 or dysregulation by specific oncogenic
and tumor-suppressor related signals and regulatory factors.19–23

Overall, ~8,000 lineage and/or cancer-specific lncRNAs have been
identified, representing a vast tumor-specific resource for cancer
biomarkers and therapeutic targets,24 which will be maintained and
updated through continued research efforts on cancer-related
lncRNAs. For instance, lncRNA-activated by transforming growth
factor beta (TGF-β; lncRNA-ATB) levels are markedly increased in
glioma, hepatocellular carcinoma and prostate cancer, and impli-
cated in cancer cell proliferation and invasion.25–27 Expression of
lncRNA-PVT1 in nonsmall cell lung cancer (NSCLC) is higher than
that in normal cells, which is closely related to tumor invasion,
metastasis and poor prognosis.28

To some extent, the genomic location of lncRNA transcripts
can reveal, at least in part, their putative functions. Generally,
lncRNAs exert their regulatory functions in two modes, specifi-
cally, in-ciswhereby lncRNA loci act locally to regulate the expres-
sion of nearby genes or in-trans whereby lncRNA loci encode
RNAs that act in a nonlocal manner.29 For example, lncRNAs
transcribed within the vicinity of a specific target gene can act as a
cis element to recruit or impede transcription factors and thus
modulate transcriptional productivity. Upon binding to comple-
mentary mRNA sequences, lncRNAs can act directly as effectors
to interfere with transcriptional potency. LncRNAs are addition-
ally reported to function as a scaffold of genomic structure to initi-
ate the assembly of protein complex or as a sponge (or precursor)
of small ncRNAs to regulate downstream gene expression. In
addition, lncRNAs couple with proteins via formation of specific
structures to alter localization of proteins or indirectly affect pro-
tein activities by altering configurational isomerism.3 Accordingly,
lncRNA targets vary from DNA to RNA to protein. Moreover,
one lncRNA may not be confined to a single action mode. For
example, lncRNA X-inactive specific transcript (lncRNA-Xist)
can induce transcription silencing of chromatin by recruiting pol-
ycomb repressive complex 2 (PRC2),30 the antisense transcript of
Xist (Tsix) acts in-cis to repress transcription and negatively regu-
late Xist expression.31 In addition, Xist has been shown to interact
directly with numerous regulatory factors (heterogeneous nuclear
ribonucleoprotein K [hnRNPK], Wilms’ tumor 1-associating pro-
tein [WTAP], structural maintenance of chromosomes flexible
hinge domain containing 1 [SMCHD1], and RNA binding motif
protein 15 [Rbm15]), which play diverse roles in the initiation and
spread of X-inactivation.32

Discovery of the diverse modes of action of lncRNAs in the
context of cancer is complex owing to the high heterogeneity
among different cancer types and elusive regulatory roles of
lncRNA alone. Recent studies have demonstrated that lncRNAs
are intricately implicated in cancer occurrence and development
in a variety of ways.2,33 For instance, lncRNA cancer susceptibility
2 (lncRNA CASC2) acts as a competing endogenous RNA
by sponging miRNAs and negatively regulates pSTAT3 and
c-Myc,34 in turn, retarding cancer cell proliferation, migration,
invasion and metastasis.35,36 Yan and coworkers identified
lncRNA, HOXB cluster antisense RNA 3 (HOXB-AS3), encoding
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a small peptide that suppresses cancer growth instead ofHOXB-AS3
lncRNA. This peptide inhibits hnRNP A1-mediated regulation of
pyruvate kinase isozyme (PKM) splicing and subsequent glucose
metabolism reprogramming, consequently affecting colon cancer
progression.37 However, systematic elucidation of the functions of
diverse lncRNAs has not been achieved yet, and further research
is required to establish the functional mechanisms of action of
lncRNAs in cancer.

Cancer Hallmarks
Carcinogenesis is a multifactor and multistage process, in which
genetic alterations are accumulated, and many biological capabili-
ties that act as hallmarks of cancer are acquired. Eight cancer
hallmarks exist, as proposed by Douglas Hanahan and Robert A.
Weinberg, specifically, sustaining proliferative signaling, evad-
ing growth suppressors, resisting cell death, enabling replicative
immortality, inducing angiogenesis, activating invasion and meta-
stasis, reprogramming energy metabolism and evading immune
destruction.38–40 We divided the eight known hallmarks into four
groups according to the clinicopathological status of cancer cells:
(i) uncontrolled growth: which includes sustaining proliferative
signaling, evading growth suppressors and evading immune des-
truction; (ii) increased cellular viability: which includes resisting
cell death, enabling replicative immortality; (iii) increased motility:
which includes inducing angiogenesis, activating invasion and
metastasis; (iv) changed energy metabolism mode: which includes
reprogramming energy metabolism. In this review, we have sys-
tematically discussed the cancer-related lncRNAs reported in
recent years (Table 1 and Supporting Information Table S1) and
their roles in different cancer hallmarks during cellular transfor-
mation fromnormal to cancerous (Fig. 1).

LncRNAs Involved in Uncontrolled Cancer Growth
Normal cell growth comprises a deliberate strategy for regulating
growth-promoting signals that instruct entry of cells and progres-
sion through the growth and division cycle, thereby ensuring
proper control of cell number and maintenance of normal tissue
architecture and function. However, cancer cells deregulate these
signals, including intrinsic mitogenic signals (K-Ras, BRAF and
mitogen-activated protein kinase [MAPK] pathways) and external
components (ligands of cell surface growth factor receptors or
cytokines secreted by cytotoxic lymphocytes [CTLs]), leading to
eventual escape from cell cycle regulation.4,39

Recent studies have demonstrated that several lncRNAs play
complex roles in coordinating tumor suppressor and growth arrest
pathways. For example, RAS and its downstream cascades transmit
cellular signals, resulting in increased transcription of genes involved
in cell growth and division. Using a custom-designed lncRNA
microarray, the lncRNA Orilnc1 was identified as a genetic target
of RAS critical for oncogenicity. Orilnc1 was highly expressed in
BRAF-mutated cancers, such as melanoma, and regulated by RAS–
RAF–MEK–extracellular signal-regulated kinase (ERK) signaling
via the transcription factor (activator protein 1 [AP1]). Silencing of

Orilnc1 blocked tumor cell proliferation and growth in vitro and
in vivo.41

Some lncRNAs affect cancer cell proliferation by directly regu-
lating cell cycle regulatory molecules. The lncRNA—antisense
noncoding RNA in the INK4 locus (ANRIL) reported to be dys-
regulated in several human cancers42–44—is transcribed from the
INK4b–ARF–INK4a gene cluster in the antisense strand and
is believed to facilitate cancer cell proliferation.45 Kyoko and
coworkers showed the presence of higher levels of ANRIL in pros-
tate cancer with involvement in repressing the p15/CDKN2B-p16/
CDKN2Ap14/ARF gene cluster in-cis via direct binding of PRC.137

Moreover, this lncRNA can regulate the CDK6/E2F1 pathway
through epigenetic silencing of miR-99a/miR-449a via binding to
PRC2 which could, in part, account for ANRIL-mediated cell
growth regulation.43

Another well-characterized lncRNA, growth arrest specific 5
(GAS5), affects proliferation by influencing cell cycle progression.
GAS5 was originally identified by subtractive cDNA cloning of
genes that are preferentially expressed in growth-arrested cells,138

showing an evident decrease in expression in multiple cancer
types.48–50 GAS5 induced growth arrest of gastric cancer cells
through inhibition of G1–S phase translation, whichwas potentially
mediated via upregulation of P21 and suppression of CDK6.51

On the other hand, excessive accumulation of cancer cells is
derived not only from aberrant activation of the intrinsic mito-
genic pathway but also attenuation of suppressor genes, RB and
TP53 and immune surveillance. TP53 is themost extensively stud-
ied tumor-suppression factor activated during the stress response,
including replicative stress, oxidative stress, hypoxia, DNA dam-
age and nutrient deprivation, and plays critical roles in themainte-
nance of cellular number and function.139–142 Recently, a number
of lncRNAs have been shown to interact with the p53 pathway
and form a complex regulatory network by acting as either
the target (such as MALAT1, MEG3, H19, LincRNA-RoR, 7SL,
MT1JP, ZFAS1) or regulator (such as LincRNA-p21, PANDA, Pint,
NORAD, TUG1, PVT1, LINP1, DDSR1) of TP53.143 For instance,
TP53 target 1 (TP53TG1) has been identified as lncRNA critical for
the correct response of p53 to DNA damage. The tumor growth
suppressor features of TP53TG1 are linked to its ability to block
the tumorigenic activity of the RNA-binding protein, Y box bind-
ing protein 1 (YBX1). DNA methylation-associated silencing of
TP53TG1 produces aggressive tumors that are resistant to cellular
death by DNA damage agents and small targeted molecules. This
earlier study provides an example of a tumor-suppressor lncRNA
undergoing epigenetic lesions in cancer located at the crossroads of
DNA damage and oncogenic pathways.56

Immune defense reflects the whole-organism level of protection
from abnormal cell growth via which the vast majority of incipient
cancer cells are recognized and eliminated. However, cancers man-
age to evolve mechanisms to avoid recognition of the immune sys-
tem, even facilitating tumor development. LncRNAs have been
shown to mediate immune changes in cancer cells. The lncRNA
epidermal growth factor receptor (Lnc-EGFR), upregulated in regu-
latory T cells (Treg), is correlated positively with tumor size and
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EGFR/Foxp3 and negatively with interferon-gamma (IFN-γ)
expression. This lncRNA stimulates Treg differentiation, suppresses
CTL activity and promotes hepatocellular carcinoma immune eva-
sion in an EGFR-dependent manner.57 In addition, some lineage-

specific lncRNAs are preferentially located adjacent to or intergenic
with cytokine coding genes, such as lncRNA-IL7R,58 lncRNA-
NeST144,145 and lncRNA-Th2-LCR,146,147 and act downstream of
lineage-specific transcription factors to regulate their expression.148

Table 1. Summary of published well-studied lncRNAs involves in cancer hallmarks

LncRNA Type Molecular regulators Hallmarks References

Orilnc1 onco RAS (+); RAF (+); MEK (+); ERK (+); AP1(+) ①
41

ANRIL onco p15 (−); p16 (−); MMP3 (+); TIMP2 (−); caspse-9 (+); caspase-3 (+);
Bcl-2 (+); Bax (−); E2F1(+); c-Myc (+)

①②③⑥
42–47

GAS5 TS CDK6 (−); PTEN (+); E2F1 (−); p21(+); cyclinD1 (−); CDK6 (−);
vimentin (−); MMP2 (−)

①②⑥
48–55

TP53TG1 TS p53 (+); YBX1 (−); ②
56

Lnc-EGFR onco NF-AT1(+) ⑧
57

IL7R TS E-selectin (−); VCAM-1(−); IL-6 (−); IL-8 (−) ⑧
58

PTENP1 TS PTEN (+); PHLPP (+); ULK1 (+); ATG7 (+); p62 (+) ①③⑥
59

HOTAIRM1 onco miR-20a (−); miR-106b (−); miR-125b (−); LC3B (+) ③
60

MEG3 TS Cyclin D1 (−); cyclin B1 (−); CDK1 (−); p53 (+); caspase3 (+);
procaspase-9 (+); cytochrome c (+); Bcl-2 (−); Bax (+)

①②③⑥
61–66

TERRA TS TRF2(−) ④
67

CARLo-5 onco p27 (−); p21 (−); p16 (−); caspase-3 (−); Bax (−); Bcl-2 (+); Snail
(+); Twist (+); c-Myc (+)

①②③⑥
68–72

UBE2CP3 onco VEGFA (+); Ang2 (+); p-Erk (+); p-p70S6K (+); HIF-1α (+) ⑤
73

MVIH onco PGK1 (+) ⑤
74

HULC onco ZEB1 (+); ZO-1 (+); E-Cadherin (−); LC3-II/LC3-I (+); pmTOR (+); E2F1
(+); Snail (+)

①③⑥
75–79

ATB onco Cyclin E (+); cyclin D1 (+); miR-200 s (−); TGF-β2 (−); ZEB1 (+); ZEB2
(+); E-cadherin (−); ZO-1 (−); N-cadherin (+); vimentin (+); TGF-β (+)

①⑥
25–27,80

UCA1 onco Cyclin D1(+); p27(−); ZEB1 (+); ZEB2 (+); E-cadherin (−); N-cadherin
(+); Vimentin (+); Snail (+); β-catenin (+); MMP14 (−); MMP-7 (+);
FGFR1 (+)

①②⑥
81–91

p21 onco HIF1 (+) ⑦
92

IGFBP4-1 onco HK2 (+); PDK1 (+); LDHA (+) ⑦
93

CCAT2 onco GAC (+) ⑦
94

CRNDE onco GLUT4 (+); insulin (−); IGF-I (−); IGF-II (−) ⑦
95

SAMMSON onco P32 (+) ⑦
96

MALAT1 onco CDK4 (+); BAX (−); ZEB2 (+); slug (+); E-cadherin (−); β-catenin (+);
N-cadherin (+); vimentin (+);Twist (+); MMP13 (+); MMP19 (−);
MMP-9 (+); TIMP-3 (−); VEGF (+); TGFA (+); miR-200s (−); TGF-β (+)

①③⑤⑥
97–109

H19 onco RB (−); c-Myc (+); EGFR (−); cyclin A2 (+); CDK4 (+); cyclin B1 (+);
cyclin D1 (+); cyclin E1 (+); P21 (−); IGF-II (−);

①②③⑤⑧
110–122

HOTAIR onco Cyclin D1 (+); cyclin E (+); CDK4 (+); CDK2 (+); E2F1 (+); p53 (−); p21
(−); p16 (−); P38 (+); PIK3R3 (−); Bcl-2 (+); caspase-9 (−);
caspase-3 (−); NOTCH1 (+); β-catenin (+); N-cadherin (+); Vimentin
(+); Snail (+); Twist (+); MMP9 (+); MMP2 (+); MMP3 (+); FGF1 (+);
VEGFA (+); Ang2 (+); GLUT1 (+);

①②③⑤⑥⑦
88,123–131

Type: oncomeans the lncRNA promotes cancer progression; TSmeans the lncRNA inhibits cancer progression.Molecular regulators: + means themolecular has
a positive correlation with the lncRNA; − means the molecular has a negative correlation with the lncRNA. Hallmarks: ①—sustaining proliferative signaling;
②—evading growth suppressors; ③—resisting cell death; ④—enabling replicative immortality; ⑤—inducing angiogenesis; ⑥—activating invasion and metasta-
sis;⑦—reprogramming energymetabolism;⑧—evading immune destruction.
Abbreviations: Ang2, angiopoietin-2; AP1, activator protein 1; ATG7, autophagy-related gene 7; Bax, Bcl-2 associated X; Bcl-2, B-cell lymphoma 2; CDK,
cyclin-dependent kinases; EGFR, epidermal growth factor receptor; ERK, extracellular signal-regulated kinase; GAC, glutaminase isoform C; HIF,
hypoxia-inducible factor; HK2, hexokinase 2; IGF, insulin-like growth factor; IL, interleukin; LDHA, lactate dehydrogenase A; MMP, matrix metalloproteinase;
NF-AT1, nuclear factor of activated T-cells 1; PDK, pyruvate dehydrogenase kinase; PGK1, phosphoglycerate kinase 1; PHLPP, PH domain and leucine rich repeat
protein phosphatases; PIK3R3, phosphatidylinositol 3-kinase, regulatory subunit 3; PTEN, phosphatase and tensin homolog; TGF, transforming growth factor;
TIMP, tissue inhibitor of metalloproteinase; TRF2, telomeric repeat-binding factor 2; ULK1, unc-51 like autophagy activating kinase 1; VCAM-1, vascular cell
adhesion molecule 1; VEGF, vascular endothelial growth factor; VEGFA, vascular endothelial growth factor A; YBX1, Y box binding protein 1; ZEB, zinc finger
E-box binding homeobox; ZO-1, zona occludens-1.
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LncRNAs Involved in Cancer Viability
Apart from disrupting growth signals, cancer also evolves from
resistance to cell death and facilitation of replicative immortality.
Various cell death processes, including autophagy and apoptosis
are attributed to eliminating aberrant cells and maintaining
organismic integrity under different states of stress stimuli. Can-
cer cells succeed in circumventing this barrier in the crisis phase
and facilitate division into repeated cycles (resistance to senes-
cence). Notably, progressive evidence indicates that specific
lncRNAs regulate these processes, including inactivation and
attenuation of death-inducing cascade signals, and extension of
cell life via upregulating telomerase expression. For example, the
lncRNA mentioned above, GAS5, has a strong positive correla-
tion with apoptosis in prostate cancer cell lines, nonsmall cell
lung cancer and breast cancer cells.149–151

Some tumor-suppressor lncRNA genes participate in apo-
ptosis and autophagic regulation of cancer cells. The lncRNA
phosphatase and tensin homolog pseudogene 1 (PTENP1) is a
pseudogene of the tumor-suppressor gene, PTEN, capable of pro-
voking autophagy initiation through repressing the oncogenic
phosphoinositide 3-kinase/protein kinase B/mammalian target of
rapamycin (PI3K/Akt/mTOR) pathway.59 Overexpression of
PTENP1 in hepatocellular carcinoma (HCC) has been shown to
significantly restore the expression of PTEN and decoy oncomiRs,
miR-17, miR-19b and miR-20a, leading to increased expression of
autophagic genes, such as unc-51 like autophagy activating kinase
1 (ULK1), autophagy-related gene 7 (ATG7) and p62/SQSTM1,
in turn, triggering cell autophagy and suppressingHCC.59,152

In contrast to PTENP1, the lncRNA HOTAIRM1 impedes
autophagy by inhibiting all-trans retinoic acid (ATRA)-induced

Figure 1. LncRNAs in Cancer Hallmarks. LncRNAs contribute to each of the eight hallmarks of cancer (diagram adapted from Hanahan and
Weinberg, Cancer: Principles & Practice of Oncology, 2015, 28–57, ©Wolters Kluwer). Selected examples of lncRNAs and their molecular
partners or genomic targets are shown for proliferation, growth suppression, immune destruction, immortality, motility, angiogenesis, viability
and energy metabolism.132–136 [Color figure can be viewed at wileyonlinelibrary.com]
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cell autophagy of PML-RARA in promyelocytic leukemia
(PML).60,153,154 Interestingly, however, upon binding miR-20a/
106b andmiR-125b for enhancingULK1, E2F1 andDNAdamage
regulated autophagy modulator 2 expression, HOTAIRM1 can
additionally promote autophagy, contributing to autophagy-
dependent degradation of PML-RARA.60,155 Thus, overexpression
of HOTAIRM1 may serve as a potential therapeutic measure for
PML. The lncRNA, maternally expressed gene 3 (MEG3), a well-
studied tumor suppressor, simultaneously affects cell apoptosis
and autophagy in multiple cancers.61–63 This lncRNA inhibits
intrinsic cell survival pathways by reducing protein expression of
B-cell lymphoma 2 (Bcl-2), enhancing Bcl-2 associated X (Bax)
and activating the p53 downstream target, caspase-3.64 Moreover,
MEG3 levels are negatively correlated with LC3-II, an autophagy
marker, thus affecting cancer cell viability through suppression of
cell autophagy.156

In the majority of immortalized cancer cells, the ability to
maintain telomeric DNA length aids in avoiding replicative
senescence, which is commonly achieved through upregulating
telomerase or, less frequently, an alternative recombination-based
telomere maintenancemechanism.4,157 Telomerase RNA compo-
nent (TERC) has been shown to have catalytic activity in the pro-
cess of adding telomere repeats.158 Moreover, the lncRNA
telomeric repeat containing RNA (TERRA) is involved in the
organization and maintenance of telomeric structure by regulat-
ing telomerase.67,159,160

In addition, genome instability, which facilitates mutational
alterations of hallmark-enabling genes, could trigger growth
immortality. Amplification of the 8q24 locus is a well-characterized
oncogenic event in many human malignancies resulting in Myc
amplification. Myc is a recognized oncogenic event in several
human cancer types. Significant evidence implicates regulatory
roles of lncRNA inMyc-driven cancers. Cancer-associated region
lncRNA (CARLo-5, also designated colon cancer-associated
transcript-1 (CCAT1)) located in the 8q24.21 gene desert region
and initially characterized in colon cancer, also accelerates pro-
liferation and suppresses apoptosis of cancer cells.68 CARLo-5
binds and positively regulates c-Myc,68 promoting immortaliza-
tion ability and, in turn, proliferation and viability of cancer
cells.

LncRNAs Involved in Cancer Motility
Clinically, once tumor cells acquire the capability to migrate, can-
cer enters a stage of deterioration. Induction of angiogenesis and
activation of invasion and metastasis mechanisms are responsible
for this process. Tumor angiogenesis is a precondition for metas-
tasis, which is driven by complex interplay between proan-
giogenic (VEGF/VEGFR, platelet-derived growth factor [PDGF]/
PDGFR) and antiangiogenic factors (thrombospondin [TSP-1/
TSP-2]) within the tumor microenvironment.161 A number of
lncRNAs are reported to participate in tumor angiogenesis. For
example, MALAT1-deficient cells exhibited decreased vascular
proliferation and vascular endothelial growth factor (VEGF)
responsiveness leading to a reduced vascular network, compared

to that in wild-type mice retina162; Similar toMALAT1, ubiquitin
conjugating enzyme E2C pseudogene 3 (lncRNA UBE2CP3) is
associated with increased levels of vascular endothelial growth
factor A (VEGFA) inHCC cell supernatants and promotes angio-
genesis via stimulating human umbilical vein endothelial cell
(HUVEC) proliferation, migration and tube formation by activat-
ing ERK/HIF-1α/p70S6K/VEGFA signaling73; while microvascu-
lar invasion in liver cancer (MVIH) that is overexpressed in
hepatocellular carcinoma suppresses angiogenesis by binding to
phosphoglycerate kinase 1 (PGK1).74

In addition to angiogenesis, activation of epithelial-to-mesen-
chymal transition (EMT) is a crucial means by which carcinoma
cells enhance invasive capacity.163 Loss of E-cadherin is considered
a fundamental event in EMT. Some lncRNAs, such as highly
upregulated in liver cancer (HULC), lncRNA-ATB and urothelial
cancer-associated 1 (UCA1), promote EMT through modulating
the zinc finger E-box binding homeobox (ZEB) protein, which
binds the E-cadherin promoter and suppresses its transcrip-
tion.26,75,76,81 Other than ZEB, Snail and Slug are important regula-
tory factors, which trigger the steps of desmosomal disruption, cell
spreading, and partial separation at cell–cell borders, the first and
necessary phase of the EMT process. LncRNAs, such as prostate
cancer antigen 3 (PCA3) and translation regulatory lncRNA 1
(TRERNA1), promote cancer motility via acting as enhancers of
Snail activity,164,165 while lncRNA–small nucleolar RNA host gene
15 (SNHG15) promotes cancer progression by binding to and stabi-
lizing Slug.166 In addition, lncRNAs regulate cancer motility by acti-
vating (H19, MALAT1, HOTAIR) or inhibiting (ROR, TCF7,
TUG1) multiple EMT-related pathways (such as TGF-β, fibroblast
growth factor [FGF],Wnt/beta-catenin andNotch).163,167

LncRNAs Involved in Energy Metabolism
To maintain rapid proliferation and growth, cancer cells com-
monly reprogrammetabolism to produce adenosine triphosphate
(ATP) expeditiously for promoting macromolecular biosynthesis
and cultivating an applicable homeostatic redox balance. Com-
pared to normal cells, cancer cells have distinct metabolic charac-
teristics, such as excessive glucose uptake, higher dependence on
aerobic glycolysis, increased glutamine uptake and glutaminolysis
andmodified lipid metabolism.168

Glucose is the primary energy source for cells. Several lncRNAs
modulate glucose metabolism in cancer cells through critical
transcription factors that regulate expression of genes involved in
glycolysis to facilitate the glycolytic process, such as hypoxia-
inducible factor 1 (HIF-1). For instance, lincRNA-P21, a previ-
ously identified p53-inducible lncRNA,169 is strongly induced by
hypoxia and enhances glycolysis in a HIF-1α-dependent manner.
LincRNA-p21 stabilizes HIF-1α by alleviating von Hippel–Lindau
(VHL)-mediated HIF-1α ubiquitination and subsequent degrada-
tion.92 Other mechanisms by which lncRNAs modulate glycolysis
have also been documented. For instance, the lncRNA IGFBP4-1
influences ATP production and expression of specific enzymes,
including hexokinase 2 (HK2), pyruvate dehydrogenase kinase
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1 (PDK1) and lactate dehydrogenase A (LDHA), and the aerobic
glycolysis rate in lung cancer.93

Glutamine, a growth-supporting metabolite, is the most plen-
tiful amino acid in both cell culture medium and blood, serving
as an essential supporting factor of cancer cell proliferation and
growth.170 Two types of glutaminases, GLS1 (glutaminase1) and
GLS2 (glutaminase2), control the rate-limiting step in glutamine
metabolism and are therefore subjected to fine adjustment.170

LncRNA colon cancer associated transcript 2 (CCAT2) regulates
glutamine metabolism of colon cancer cells in an allele-specific
manner via binding the cleavage factor I (CFIm) complex, thus
modulating the alternative splicing of GLS, with preferential
induction of glutaminase isoform C (GAC) splicing through
selection of the poly(A) site in intron 14 of precursor mRNA.94

LncRNAs additionally regulate cancer energy metabolism
through various other mechanisms. The lncRNA colorectal neo-
plasia differentially expressed (CRNDE) regulated by insulin/
insulin-like growth factors (IGFs) is a downstream target of PI3K/
Akt/mTOR or Raf/MAPK pathways. Knockdown of a highly con-
served sequence within intron 4 (gVC-In4) affects the expression
of many genes that are correlated with insulin/IGF signaling path-
way components and responses, including glucose and lipid
metabolism.95 The lncRNA, survival associated mitochondrial
melanoma specific oncogenic noncoding RNA (SAMMSON),
primarily localizes in the cytoplasm, and interacts with p32 to
regulate mitochondrial homeostasis and metabolism.96

Complex Roles of lncRNAs Involved in Cancer
Progression
Cancer development is a multifaceted process during which vari-
ous hallmarks are acquired in an unexpected manner and the rel-
ative balance and significance of their contributions to malignant
disease vary across the spectrum of human cancers.39 Consider-
ing the versatile action modes and spatiotemporal expression pat-
terns of lncRNAs, it is likely that these molecules play complex
and diverse roles in cancer development without confinement to
a single hallmark.

The lncRNA metastasis-associated lung adenocarcinoma
transcript-1 (MALAT1) has been shown to participate in multiple
cancer steps, such as proliferation, apoptosis, autophagy, angiogen-
esis, EMT and metastasis,97–99 and is involved in tumorigenesis of
several cancer types.100,101 MALAT1 can regulate signaling factors
in both cell cycle and apoptotic pathways.102 Autophagy is also
conditioned by MALAT1 via modulation of pPI3K, p85α and
Akt levels.171 Furthermore, MALAT1 facilitates cancer metastasis
through inducing angiogenesis,98 EMT,103 and matrix metallopro-
teinase (MMP) and tissue inhibitor of metalloproteinase (TIMP)
expression.98 These collective findings support the utility ofMALAT1
as a potential biomarker of cancer progression.

LncRNA-H19, located on chromosome 11 in humans, is a
maternally expressed imprinted gene shown to participate in
multiple cancer hallmarks.H19 has a highly conserved secondary
structure and is a precursor of miR-675-5p/miR-675-3p, sup-
porting its potential function as a reservoir of miR-675 that

suppresses its targets or as a modulator of micro-RNAs or pro-
teins via binding.172,173 Current research suggests that H19 exerts
its activities mainly through these two mechanisms of action. For
instance, H19-derived miR-675 downregulates the tumor sup-
pressor RB in human colorectal cancer, causing increased tumor
cell growth and soft agar colony formation.110 Moreover, H19-
derived miR-675 contributes to bladder cancer cell proliferation
through inhibiting p53 and p53-dependent protein expression.174

On the other hand, through interactions with miR-138 and miR-
200a, H19 promotes EMT by antagonizing their functions and
leads to de-repression of their endogenous targets Vimentin,
ZEB1 and ZEB2.111 Additionally, in malignant melanoma, H19
promotes glucose metabolism and cell growth via binding miR-
106a-5p.175

Another well-characterized lncRNA, HOX Transcript Anti-
sense RNA (HOTAIR), is involved in several processes associated
with carcinogenesis, such as proliferation and mobility.123–126

HOTAIR is a trans-acting lncRNA that serves as a scaffold for his-
tone modification complexes.176 Recent studies have shown that
HOTAIR is overexpressed in many types of primary tumors and
metastases, in turn, activating genomic relocalization of PRC2 and
H3K27 trimethylation of various genes in different chromosomes,
leading to increased cancer invasiveness and metastasis.177–179

Battistelli et al.180 showed thatHOTAIRmediates physical interac-
tions between Snail and enhancer of zeste homolog 2 (EZH2), an
enzymatic subunit of the polycomb repressive complex 2, thus
repressing Snail activity and ultimately promoting EMT. In addi-
tion to interacting with protein complexes as a scaffold, HOTAIR
could also exert its functional effects by acting as miRNA sponge.
For instance, through sequestering miR-206 at the posttranscrip-
tional level, HOTAIR upregulates the prosurvival protein, Bcl-w,
to enhance proliferation of breast cancer cells.181

Perspective
Cancer causes numerous deaths every year and requires long and
arduous treatment courses. Elucidation of the specific mechanisms
underlying cancer development provides significant benefits for
cancer diagnosis and treatment. In this review, we have discussed
the contributory roles of lncRNAs in cancer hallmarks. The occur-
rence and progression of cancer is clearly the result of a combina-
tion of multiple factors. Each hallmark interacts with another, and
the modes of action of lncRNAs may be diverse. Interestingly,
some lncRNAs, such as H19 and UCA1, potentially participate in
every cancer hallmark. These molecules not only influence cancer
cell growth, invasion and metastasis but also alter energy metabo-
lism and the immune system.82,83,112–114,182 Researchers can take
advantage of these findings to develop novel targets for cancer
diagnosis and treatment. However, clinical application of lncRNAs
is a considerable challenge due to the difficulties in function predic-
tions owing to nonconserved primary sequences.

To resolve this issue, a number of factors need to be considered.
First, information based on known findings should be assimilated.
For example, by miningmore dominant characters, we can develop
constructive computational tools depending on machine-based
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arithmetic to predict cancer-related lncRNAs. Second, integrated
information (such as genomic location, neighborhoods, synergetic
partners and coexpression networks) of lncRNAs should be utilized
to predict their functions. Collecting and processing the available
information on lncRNAs from a plethora of sources is tedious but
extremely beneficial. So far, many integrated lncRNA databases had
been developed, such as GENCODE, Noncode, lncRNAdb and
LNCipedia. To accumulate valuable information on lncRNAs in
cancer, our group recently developed a cancer-related lncRNA data-
base designated “CRlncRNA”183 accessible at http://crlnc.xtbg.ac.cn/,
which integrates knowledge on clinicopathological and molecu-
lar features as well as hallmark characteristics of cancer-related
human lncRNAs. The third challenge is how to improve the cur-
rent technology to more effectively validate lncRNA functions.
For example, by combining global run-on sequencing and

RNA-seq data from ER-treated MCF7 cells, lncRNAs regulating
cell cycle gene expression and proliferation in breast cancer cells
have been identified.184 In addition, using CRISPR-mediated
interference (CRISPRi), Liu et al.185 systematically determined
499 lncRNA loci required for robust cellular growth targeting
from 16,401 loci in seven diverse cell lines. Notably, the biologi-
cal traits of lncRNAs (conservation, action mode, secondary
structure significance in function) are markedly different from
those of mRNAs, resulting in diverse research strategies.

We believe that with the rapid advancements in technology
and increasing knowledge on lncRNAs, elucidation of the spe-
cific roles of these molecules in distinct cancer types should
further extend our understanding of the mechanisms underly-
ing cancer occurrence and development and facilitate effective
and timely diagnosis and treatment.
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