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1 |  INTRODUCTION

Eugenol (4‐allyl‐2‐methoxyphenol) is a natural phenylpro-
panoid present in essential oils of some plants as India's 
clove (Syzygium aromaticum) and cinnamon‐brava (Croton 
zenhtneri). Several authors have reported different biological 
activities for eugenol, analogues, and derivatives, such as the 
antimicrobial (Dai et al., 2013; Yadav, Chae, Im, Chung, & 
Song, 2015), antitumoral (Manikandan, Senthil, Priyadarsini, 
Vinothini, & Nagini, 2010), anti‐inflammatory (Daniel et al., 

2009), anti‐parasitic (Machado et al., 2011), and antioxidant 
(Gülçin, 2011) actions.

In view of this great interest, our research group has been 
working on the chemical manipulation of this allylphenol 
and its analogues, as isoeugenol and di‐hydroeugenol, in 
order to identify new active derivatives from them. Recently, 
we have discovered some derivatives of eugenol with anti-
bacterial (Cazelli et al., 2017; Souza et al., 2015) and anti-
fungal (Abrão et al., 2015; Souza et al., 2016, 2014) actions 
(Figure 1).
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Abstract
The search for compounds with new structural scaffolds is an important tool to the 
discovery of new drugs against Chagas disease. We report herein the synthesis of 
1,2,3‐triazoles obtained from eugenol and di‐hydroeugenol and their in vitro and in 
vivo trypanocidal activity. These derivatives were obtained by a three‐step objective 
route and were suitably characterized by 1H and 13C nuclear magnetic resonance 
spectroscopy and high‐resolution mass spectrometry. Two compounds (9 and 10) 
showed activity against epimastigote forms of Trypanosoma cruzi (Y strain) in the 
range 42.8–88.4 μM and were weakly toxic to cardiomyoblast cells (H9c2 cells). The 
triazole 10 was the most active derivative and could reduce more than 50% of para-
sitemia after a 100‐mg/kg oral treatment of mice infected with T. cruzi. Molecular 
docking studies suggested this compound could act as a trypanocidal agent by in-
hibiting cruzain, an essential enzyme for T. cruzi metabolism, usually inhibited by 
triazole compounds.
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Following our efforts in obtaining optimized deriva-
tives of eugenol, we have designed a new structural pat-
tern containing the eugenol or di‐hydroeugenol nucleus 
attached to a 1,2,3‐triazole ring. This structural pattern 
was designed considering the biological versatility of eu-
genol or di‐hydroeugenol combined with different reports 
of di‐substituted 1,2,3‐triazole derivatives active against 
T. cruzi (Andrade et al., 2015; Silva et al., 2008; Porta et 
al., 2017). This heterocycle is isostere of 1,2,4‐triazole and 
imidazole rings present in different drugs as fluconazole, 
ketoconazole, benznidazole, and metronidazole. Then, we 
hypothesized that the triazole core could help to improve 
the antiparasitc properties of phenylpropanoids. Thus, 
we synthesized these derivatives and evaluated them as 
trypanocidal agents by in vitro and in vivo activity tests. 
Further, we performed molecular docking studies to check 
its ability to interact with cruzain as a possible target in 
T. cruzi.

2 |  RESULTS AND DISCUSSION

2.1 | Chemistry
The 1,2,3‐triazole derivatives from eugenol and di‐hy-
droeugenol were synthesized in a short and objective syn-
thetic route as shown in Scheme 1.

Firstly, eugenol (1) and di‐hydroeugenol (2) were con-
verted to the epoxides 3 and 4, respectively, by reactions 
with epychlorohydrine (Jin et al., 2004), which in sequence 
afforded the alkylazides 5 and 6 after ring opening with 

sodium azide (Carvalho et al., 2010). The reaction of alkyl 
azides with different alkynes by a click reaction afforded 
the triazoles 7–14 in good yields after purification by col-
umn chromatography, following the procedure described 
by Souza et al. (2015). The click reaction is a 1,3‐dipo-
lar cycloaddition catalyzed by Cu(I) and has been largely 
employed for the synthesis of biologically actives 1,2,3‐
triazoles (Deobald et al., 2011; Freitas et al., 2011). In 
the 1H nuclear magnetic resonance spectra of compounds 
7–14, it was possible to observe a signal corresponding to 
the triazole proton near 8 ppm, besides the diastereotopic 
methylene protons as a double of doublets between 3.5 and 
4.5 ppm.

2.2 | In vitro assays
The cytotoxicity of the compounds was evaluated against 
cardiac cells obtained from neonatal rat cardiomyoblasts 
(H9c2 cells). Following, the selectivity indexes (SI) of the 
synthesized compounds could be determined. All deriva-
tives and the two phenylpropanoids were evaluated against 
epimastigote forms of Trypanosoma cruzi by the resazurin 
microtiter assay (Table 1). The triazole 10, obtained from 
di‐hydroeugenol, showed inhibition at 42.8  µM against 
this form of the parasite, similarly to that presented by the 
control drug benznidazole. Although this derivative had a 
lower SI than benznidazole, it can be considered an inno-
vative structural core for optimization and design of new 
tripanocidal agents. Moreover, the triazole 10 was twice 
as active as the corresponding eugenol derivative 9 (IC50 

F I G U R E  1  Eugenol (I) and derivatives with antibacterial (II and III) and antifungal (IV, V, and VI) activities
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88.4  µM) pointing the importance of the n‐propyl side 
chain for this activity. It is possible to note among these 
1,2,3‐triazoles that the phenyl group (present in derivatives 
9 and 10) was the best substituent at the triazole core, be-
cause derivatives with hydroxymethyl (derivatives 7 and 
8), acetyl (derivatives 11 and 12) or cyclohexyl (deriva-
tives 13 and 14) groups showed lower or no trypanocidal 
activity.

2.3 | Docking studies
Some azoles are known as compounds that show anti‐tryp-
anosomal activity and this action may come from cruzain 
inhibition (Brak et al., 2010). The compounds synthesized 
in this work present a di‐substituted 1,2,3‐triazole ring, 
so they could act as such possibly by inhibiting this en-
zyme, which is crucial in trypanosomatides survival. In 
the current study, a crystallographic complex formed by 
this enzyme and a di‐substituted 1,2,3‐triazole inhibitor 
(1,2,3‐triazole‐tetrafluorophenoxymethyl ketone) was se-
lected as the model (Brak et al., 2010). Docking studies 
were carried using the conformers of minimal energy from 
compounds 9 and 10 with chemical structures generated by 

Spartan software (Shao et al., 2006), and the results from 
the main interactions with cruzain are shown in Tables 2 
and 3. According to these studies, it was possible to indi-
cate the individual poses relative to a selective binding to 
the cruzain active site.

The empirical scoring function of iGemdock is character-
ized by the sum of Van der Waals, H‐bonding, and electro-
static energies. At this point, the best poses for ligands 9 and 
10 showed affinity energies of −102.25 and −102.05 kcal/
mol, respectively. Calculated values for both molecules were 
similar to each other but the compound 9 showed lower Van 
der Waal and higher H‐bonding values in comparison to 
compound 10. No electrostatic interactions were observed 
for these compounds and the amino acid residues in cruzain 
active site.

The data of docking experiments indicate that the main 
interactions between the triazoles 9 and 10 and cruzain ac-
tive site involve the residues GLY 23, CYS 25, TRP 26, SER 
64, GLY 65, GLY 66, LEU 67, MET 68, LEU 160, HIS 
162, and GLY 163. Additionally, the active interactions be-
tween the compounds 9 and 10 and cruzain active site are 
shown in Figure 2. After applying the postscreening analy-
sis GLY 65 was detected as the main residue evolved in this 

S C H E M E  1  Synthesis of 1,2,3‐triazole derivatives from eugenol and di‐hydroeugenol
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ligand–receptor binding (with Z‐score −1.09 and WPharma 
1.00). Some of these residues (CYS 25, GLY 65, GLY 66, 
and LEU 67) are the same observed in the docking study per-
formed by Brak et al. (2010) with tetrafluorophenoxymethyl 

ketone and the active site of cruzain (figure available in 
“Supporting Information”).

According to the results generated by these docking stud-
ies, 1,2,3‐triazoles 9 and 10 interact in the same region at 
the cruzain active site as observed in the model generated 
with the 1,2,3‐triazole inhibitor (Brak et al., 2010). The main 
intermolecular interactions are those observed between GLY 
23 and the triazole ring/N3 (2.74 Å), CYS 25 thiol and the 
N‐2 from the same ring (2.20 Å). Other important H‐bonding 
interaction observed in this model occurs between the sec-
ondary alcohol and the GLY 163 nitrogen (2.5 Å). These re-
sults show a good predicted binding pose between derivatives 
9 and 10 and suggest they may be candidates to structural 
optimization to follow development as trypanocidal agents 
acting probably as cruzain inhibitors, a special target used in 
anti‐trypanosomatide drug design.

2.4 | In vivo assay
The two most potent derivatives against T. cruzi epimastigote 
forms (compounds 9 and 10) were evaluated in mice infected 
with T. cruzi (Y strain) trypomastigotes. These compounds 
were given orally for seven consecutive days as suspensions 
at 100 mg/kg weight, and benznidazole was used as the con-
trol drug (Table 4).

F I G U R E  2  Binding poses of triazoles 9 (blue) and 10 (purple) in the Trypanosoma cruzi cruzain active site (3IUT) calculated by Igemdock 
2.1 and visualized using Chimera software (v. 1.10.1)

T A B L E  1  In vitro activity (IC50) against epimastigote forms of 
T. cruzi, cytotoxicity (CC50) against H9c2 cells and SI for eugenol (1), 
di‐hydroeugenol (2) and derivatives 7–14

Compound
T. cruzi
IC50 (µM)

H9c2 cells
CC50 (µM) Selectivity Index

1 383.3 >1,000 >3.2

2 658.6 >1,000 >1.8

7 —a 144.4 —

8 293.9 319.4 1.1

9 88.4 141.4 1.6

10 42.8 155.3 3.6

11 — >500 —

12 — >500 —

13 108.2 363.6 3.3

14 178.9 375.0 2.1

Bzn 35.8 655.1 18.3

Abbreviation: —a: no significant activity; Bzn: Benznidazole; SI: CC50/IC50.

T A B L E  2  Docking results and Van der Waals (VDW), H‐bond, and electrostatic interactions (in kcal/mol) for derivatives 9 and 10 in 
Trypanosoma cruzain active site (PDB code 3IUT), using IGemdock 2.1 software

Compounds Affinity energy (Kcal/mol) VDW (Kcal/mol) H‐bond (Kcal/mol) Electrostatic (Kcal/mol)

9 −102.25 −82.88 −19.37 0.0

10 −102.05 −87.37 −14.68 0.0
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Untreated infected animals showed maximal parasite-
mia (1.425 × 106 parasites/ml blood) as expected. The di‐
hydroeugenol derivative 10 reduced more than 50% of the 
parasitemia when compared to the untreated animals. The 
compound 9 showed no significant ability to reduce the in-
fection. Although compound 10 was not as good as benzni-
dazole in reducing parasitaemia, it is important to note that 
it has an innovative structural core. As such it can be seen 
as an alternative in acting against benznidazole‐resistant 
parasites.

3 |  CONCLUSION

Eight new 1,2,3‐triazoles were synthesized from eugenol and 
di‐hydroeugenol and were assayed as trypanocidal agents. 
Some important structure–activity relationships could be 
noted for best trypanocidal activity and higher selectivity 
index, as a preference for a propyl instead of an allyl side 
chain in the phenylpropanoid residue and for a phenyl group 
as the substituent attached to the triazole ring. Docking stud-
ies showed that the triazoles 9 and 10 interact with the active 
site of cruzain similarly to a well‐known 1,2,3‐triazole inhib-
itor of this enzyme. In vivo studies showed that the triazole 
10 could reduce parasitaemia in infected mice and, as such, 
can be seen as a good prototype for the development of new 
anti‐trypanosomal agents.
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