

Subscriber access provided by WESTERN SYDNEY U

5,6-Dihydroxypyrimidine Scaffold to Target HIV-1 Nucleocapsid Protein

Savina Malancona, Mattia Mori, Paola Fezzardi, Marisabella Santoriello, Andreina Basta, Martina Nibbio, Lesia Kovalenko, Roberto Speziale, Maria Rosaria Battista, Antonella Cellucci, Nadia Gennari, Edith Monteagudo, Annalise Di Marco, Alessia Giannini, rajhans sharma, Manuel Pires, Eleonore Real, Maurizio Zazzi, Maria Chiara Dasso Lang, Davide De Forni, Francesco Saladini, Yves Mély, Vincenzo Summa, Steven Harper, and Maurizio Botta

ACS Med. Chem. Lett., Just Accepted Manuscript • DOI: 10.1021/acsmedchemlett.9b00608 • Publication Date (Web): 19 Mar 2020 Downloaded from pubs.acs.org on March 21, 2020

Just Accepted

Letter

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

55

56

57 58 59

60

5,6-Dihydroxypyrimidine Scaffold to Target HIV-1 Nucleocapsid Protein

Savina Malancona^{1*°}, Mattia Mori^{2°}, Paola Fezzardi¹, Marisabella Santoriello¹, Andreina Basta^{1,†}, Martina Nibbio¹, Lesia Kovalenko³, Roberto Speziale¹, Maria Rosaria Battista¹, Antonella Cellucci¹, Nadia Gennari¹, Edith Monteagudo¹, Annalise Di Marco¹, Alessia Giannini⁴, Rajhans Sharma³, Manuel Pires³, Eleonore Real³, Maurizio Zazzi⁴, Maria Chiara Dasso Lang², Davide De Forni⁵, Francesco Saladini⁴, Yves Mely³, Vincenzo Summa^{1,††}, Steven Harper^{1,#} and Maurizio Botta^{2#}

¹IRBM S.p.A., Via Pontina Km 30.600, 00071 Pomezia (RM), Italy

²Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy

³Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France

⁴Department of Medical Biotechnologies, University of Siena, Viale Mario Bracci, 16, 50100 Siena, Italy

⁵ViroStatics S.r.l, Viale Umberto I 46, 07100 Sassari, Italy

[#]This work is dedicated to the beloved memory of Prof. Maurizio Botta (August 2, 2019) and Steven Harper (June 30, 2019)

KEYWORDS: Nucleocapsid protein, HIV, NC inhibitors, Dihydroxypyrimidine, Drug Resistance, Antiretroviral.

ABSTRACT: The HIV-1 Nucleocapsid Protein (NC) is a small basic DNA and RNA binding protein which is absolutely necessary for viral replication and thus represent a target of great interest to develop new anti-HIV agents. Moreover, the highly conserved sequence offers the opportunity to escape the drug resistance (DR) emerged following the highly active antiretroviral therapy (HAART) treatment. Based on our previous research nordihydroguaiaretic acid 1 acts as NC inhibitor showing moderate antiviral activity and sub-optimal drug-like properties due to the presence of the catechol moieties. A bio-isosteric catechol replacement approach led us to identify the 5-dihydroxypyrimidine-6-carboxamide substructure as privileged scaffold of a new class of HIV-1 NC inhibitors. Hit validation efforts led to the identification of optimised analogs, as represented by compound **28**, showing improved NC inhibition and antiviral activity as well as good ADME and PK properties.

Nowadays AIDS (Acquired Immune Deficiency Syndrome) is still a major global public health issue. According to the Joint United Nation Program on HIV/AIDS (UNAIDS) nearly 38 million people were living with HIV in 2018.1 The current pharmacological strategy relays on the combination of drugs (HAART, highly active antiretroviral therapy) targeting various steps of the viral replication: entry, fusion, reverse transcription, integration, protein maturation. Despite successful in mortality and morbidity reduction, HAART long-term treatment is associated with the insurgence of drug resistance as results of the ability of HIV-1 to mutate.² In this context there is an urgent need to develop new drugs to treat HIV infection based on novel mechanism of action or targets.³ One emerging approach to overcome drug resistance is to target HIV-1 proteins that are highly conserved among phylogenetically distant viral strains and currently not targeted by available therapies. The Nucleocapsid Protein (NC) of the Human Immunodeficiency Virus type-1 (HIV-1) is a small and basic protein with two zinc fingers that is highly conserved among the retroviruses. This

nucleic acids (NA) binding protein is involved in both early and late steps of the HIV-1 replication cycle, through its ability to chaperone NAs towards their most stable conformation.4,5,6,7 Thus, NC appears as an ideal target for the development of new drugs to prevent HIV-1 replication and complement the highly active anti-retroviral therapy.8 Since NC is highly conserved, anti-NC drugs are expected to provide a sustained replication inhibition of the wild type and HIV-1 drug-resistant strains. Three classes of NC inhibitors have been reported based on the mechanism of action: (i) zinc ejectors,^{9,10} (ii) noncovalent NCIs binding to nucleic acid partners of NC,^{11,12} and (iii) noncovalent NCIs binding to NC.^{13,14} The development of NCIs directly binding to NC is currently our main research area, as it is expected to overcome the selectivity and toxicity issues intrinsically related to NCIs belonging to the classes (i) and (ii). In this work, we describe the most recent advances achieved, leading to the identification of a new class of NCIs showing both good antiviral activity as well as promising in-vitro and invivo profiles.

Figure 1. NC inhibitors based on catechol template 1 and 2. 5,6dihydroxypyrimidine 3 as catechol replacement and hit compound 4 active in the NC-inhibition assay. Raltegravir, first in class HIV integrase inhibitor.

Recently, we have developed non-covalent NC inhibitors,15 by applying a computational structure-based screening of commercial compounds collection followed by in-vitro assessment of the NC inhibitory activity. This led to the identification of the natural product nordihydroguaiaretic acid 1 and compound 2 as NC inhibitors sharing a catechol moiety (Figure 1). Based on our pharmacophore, the catechol moiety is a common structural feature that plays a critical role in binding NC in a guanidine-like manner by means of the two hydroxyl groups.^{16,17,18} Biophysical and computational studies of compound 1 interacting with the protein confirmed the binding postulated by modeling.¹⁵ While valuable as a tool compound, the low metabolic profile associated with the catechol group limits the further development of both compounds 1 and 2. The replacement of undesirable functional groups with bioisosters is a common strategy applied in drug discovery to modulate the activity profile, reduce potential toxicities and circumvent metabolic liabilities.¹⁹ In this perspective, using the protocol previously described,¹⁶ a virtual screening campaign on the ZINC catalog of commercial products was conducted to identify catechol-like compounds as putative candidate inhibitors of NC. Following virtual screening and clusterization of the top-ranking compounds,¹⁵ the dihydroxypyrimidine core scaffold 3 (Figure 1) emerged as a potential replacement for the catechol moiety and thus offering the possibility to develop a new class of NCIs.

Along this line further scaffold expansion was achieved through the design of a focused virtual library of analogs with the scope of selecting a pool of compounds to be evaluated *invitro* for their ability to inhibit the NC chaperone activity. To this aim, a well-established fluorescence assay²⁰ (NC-inhibition assay) was used; it allows to monitor the destabilization of cTAR DNA, the complementary sequence to the transactivation response element of the HIV-1 genome labeled with the Alexa488 dye and Dabcyl quencher.^{21,22} The protein concentration used in the inhibition assay is 1 μ M and thus 0.5 μ M is the lowest IC₅₀s values measurable. This effort conducted

to the identification of compound 4 as a positive hit (Figure 1), showing an IC₅₀ below 200 µM (Table 1). Despite its modest potency, compound 4 represented an optimal starting point from the development perspective due to the favorable druglike properties of the dihydroxypyrimidine carboxamide class. This class of compounds is known to have led to the discovery of Raltegravir²³ (Figure 1), the first in class HIV integrase inhibitor. Furthermore, in the antiviral field, the dihydroxypyrimidine core has been investigated to target other NA processing enzymes, such as HIV-1 RT²⁴ or HCV NS5B RNA-dependent RNA polymerase.²⁵ Due to the close structural similarity between compound 4 and Raltegravir, a possible polypharmacology profile could be expected in the development of this class of compounds as NC inhibitors. Nonetheless, first rough structural comparison and lack of activity of Raltegravir in the NC inhibition assay (data not shown), suggested that a degree of selectivity was already present in the hit compound 4. The structure activity relationship (SAR) of the dihydroxypyrimidine carboxamide as inhibitors of the HIV-integrase enzyme has been fully elucidated and well documented in literature.^{26,27,28,29} Optimized HIV-integrase inhibitors show a marked preference for the Nmethylpyrimidone core, benzylic carboxamide and neutral aryl or alkyl substituent at the 2-position of the pyrimidine core. In contrast, the catechol-like dihydroxypyrimidine core of the hit compound 4, is decorated with an alkyl amide that in the HIV integrase inhibitor abolish completely the activity against this target, and a basic aromatic substituent in the 2-position of the pyrimidine.²⁸ A hit validation and optimization process was thus conducted on 4 with the aim of improving the potency as NC inhibitor. The compounds were also tested for cell-based antiretroviral activity. The in-vitro and in-vivo ADME properties were finally evaluated for the most interesting analogs.

While retaining the central dihydroxypyrimidine core, structural modifications were introduced first in the aromatic region at the 2-position (R₂, Table 1). The 2-(pyridin-2-yl) group emerged as the privileged substitution for the activity: the replacement with a simple phenyl 5 or replacement with the 2-(pyridin-3-yl) or 2-(pyridin-4-yl) isomers, respectively compounds 6 and 7, resulted in complete loss of the activity. Neither a 2-phenethyl, 2-(1-phenylethyl) or bulky 2-(tert-butyl) substituents were tolerated, compounds 8, 9 and 10 respectively. The amide moiety $(R_1, Table 1)$ of compound 4 is believed from modelling to be oriented towards the hydrophobic binding site of the protein. The SAR in the amide region showed that the replacement of the N-(cyclohexylmethyl) group with N-benzyl 11, N-ethyl 12 and the tertiary amide 13 are not tolerated. The exploration of the linker length pointed out that anchoring the cyclohexyl directly to the amide nitrogen as for 14 produces a 2-fold loss of activity in the NC inhibition assay with respect to the hit compound 4, whereas the elongation of the linker by one carbon atom 15 is beneficial for the activity and accounts for a 4-fold improved activity. Similar gain of potency is achieved with the branched analogs (R)-N-(1-cyclohexylethyl) 16 and (S)-N-(1-cyclohexylethyl) 17, showing the same activity regardless of chirality. The results obtained are in line with the proposed binding mode that suggests the amide occupying the hydrophobic pocket and that the lipophilic substituents are thus well tolerated, chirality is not influencing conformation and binding of the amide moiety.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Table1. In-vitro NC inhibition for the analogs exploring the amide and aromatic substituent regions

ID	R ₁	R ₂	NC inhibition IC ₅₀ (μM) ^a	ID	\mathbf{R}_{1}	R ₂	NC inhibition IC ₅₀ (μM) ^a
4	, H	₩ N	167 ± 7	17	HN	N N	47 ± 5
5	N. N	Ū,	N.A. ^b	18	, H	↓ N	20 ± 1
6	, H	€ N N N N N N N N N N N N N N N N N N N	N.A. ^b	19	×H	, CN	20°
7		N	N.A. ^b	20	×H	↓ ↓ ↓ ↓	8 ± 0.7
8	N. N	C ×	N.A. ^b	21	HN	↓↓↓ N	41 ± 10
9			N.A. ^b	22	HR L		21 ± 15
10		X	N.A. ^b	23	× H	CF ₃	20 ^d
11	×	N N	N.A. ^b	24		F ₃ C	23 ± 6
12	H N	N	N.A. ^b	25	×H	F ₃ C	12 ± 6
13	×N V	€ N	N.A. ^b	26	×H	CF ₃	20 ^d
14	H.	€ N	300 ± 100	27	×H		22 ± 7
15	N. H.	€ N	38 ± 10	28	× H	CI	2 ± 1
16		N N	42 ± 10	29	×H	, N	4 ± 1

^{*a*} Data are average \pm SD of a least two independent experiments. ^{*b*}N.A. = not active. ^{*c*}IC₄₀. ^{*d*}IC₃₅.

Preliminary SAR at the 2-position of the 5,6dihydroxypyrimidine core has shown that 2-(pyridin-2-yl) substituent is required for the activity. Further optimization was thus conducted introducing substituents on the pyridine ring. First modifications introduced were the methyl (18-22) and trifluoromethyl (23-26) groups which were selected considering the differences in the electron donating and withdrawing ability, as well as lipophilicity. Regardless of the electronic nature, the introduction of a substituent in position 4- and 5 is beneficial for the activity, affording compounds 20 and 25 showing IC₅₀s around 10 µM. In the other positions of the pyridine ring, twofold activity gain was achieved with respect to the hit 4. A variety of other substituents were evaluated, in particular, the most relevant results were obtained with the introduction of 5methoxy and 5-chlorine groups on the pyridine ring (respectively, compounds 27 IC₅₀ =20 μ M and 28 IC₅₀ = 2 μ M). To complete the exploration at the 2- position of the pyrimidine core, a series of heterocycles retaining the 2-nitrogen atom present in the 2-pyridine substituent were explored. Best results were achieved with fused bicyclic groups, such as the quinoline analogs 29 showing more than 40-fold improvement in the NC inhibition with respect to the original compound 4. Smaller 5member ring heterocycles such as thiophene or thiazole were not tolerated (data not shown).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39 40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

Modification at the dihydroxypyrimidine core showed that both hydroxyl groups are essential for the activity. Indeed, compounds **30** and **31** lacking respectively the 4- and 5hydroxyl substituent, were found inactive in the NC inhibition assay (Figure 2).

The 5,6-dihydroxypyrimidine core exists in two tautomeric forms, namely dihydroxypyrimidine and pyrimidone. A different hydrogen bond donator/acceptor asset, potentially able to influence the binding to the nucleocapsid protein, is associated to each form. The N-methyl pyrimidone analog **32** resulted to be completely inactive in the NC inhibition assay, indicating the catechol form as decisive for NC inhibition, in contrast to the preference for the pyrimidinone form in the HIV-1 integrase area. The SAR conducted on the hit compound **4** has shown that it is possible to modulate NC activity and improve 80-fold its potency (cmpd **28**), thus obtaining a number of compounds in the low micromolar range of activity.

Figure 2. Dihydroxypyrimidine core modifications leading to lack of NC inhibition.

The binding mode of most potent NC inhibitors identified was investigated by molecular docking simulations and reported in Figure 3 for compound **28** and Figure S1 for compounds **4**, **20** and **25**. To this aim, we took advantage of the computational protocol already refined by our research group for the NC protein, and based on molecular docking with the FRED program (OpenEye) against the NMR structure of the NC in complex with a small molecule inhibitor (PDB: 2M3Z), see also the Supporting Information.^{15,17,16} Overall, the molecules shared a highly similar binding mode, and proved to fit the hydrophobic pocket of the NC. Besides a π -stacking interaction with the side chain of Trp37, the core dihydroxypyrimidine established H-bonds with the backbone of Gly35, and Met46,

and with the side-chain of Gln45. In addition, the amide moiety established hydrophobic interactions with the side chain of residues from the NC hydrophobic platform¹⁷ such as Phe16, Ala25, Trp37, and Met46 (Figure 3). Overall, this binding mode is highly consistent with the binding mode of NA nucleotides³⁰ and of nordihydroguaiaretic acid 1^{15} . Most notably, the predicted binding for these dihydroxypyrimidines also overlaps with the binding mode of the NC inhibitor characterized by NMR spectroscopy in complex with the NC, whose structure was used as a receptor in molecular docking simulation³¹ (Supporting Information, Figure S2). A good correlation between the score of compounds 4, 20, 25, and 28 and their $logIC_{50}$ was observed (R² = 0.939) (Supporting Information, Figure S3). Finally, the binding mode described above and shown in Figure 3 and Figure S1 clearly accounts for the lack of NC inhibition by derivatives deprived of the dihydroxyl moiety, such as 30, and 31, or bearing the N-methyl pyrimidone substructure such as 32.

The antiviral activity on the whole replication cycle of HIV-1 was evaluated for selected compounds by means of the cellbased assay named BiCycle (Table 2). The assay consists of a first infection round of the T-cell line MT-2 using HIV-1 wildtype reference strain NL4-3, followed by a second infection round of the reporter cell line TZM-bl.³² Hit compound **4** shows activity in the low micromolar range. A similar activity is found for the analog **15**, which is more active in the biochemical assay as result of the amide elongation.

Figure 3. Predicted binding mode of 28 within the hydrophobic pocket of the NC. The protein is shown as green cartoon. Residues within 5 Å from the ligands are shown as lines, and are labeled. Compound 28 is shown as yellow sticks. H-bond interactions are highlighted by black dashed lines.

A beneficial effect on the antiviral activity is seen when the branched amide is present, with both **16** and **17** enantiomers active in the sub-micromolar range. The difference between the *R* and *S* enantiomers in term of antiviral activity is very modest (3-fold), confirming the behavior observed in the NC inhibition assay. Analogs substituted in the aromatic region such as **20**, **25**, **27**, **28** and **29** exhibit nanomolar antiviral activity with EC_{50} s ranging from 40 to 400 nM. In parallel, cytotoxicity was evaluated in Hela and peripheral blood mononuclear cells (PMBC) and the selectivity indexes (SI) were calculated as the ratio between the CC_{50} and EC_{50} values measured in their respective assays (see footnote of Table 2). Despite the narrow difference between the activity and cytotoxicity found for **4** and close analogues (SI range 2-5-fold), much higher SI values were

57

58 59

60

found for compounds **20**, **27**, **28**, **29** as a result of their improved activity in cells (SI in the range 13-75). Overall, these data clearly show that the potency and selectivity can be modulated and improved in future investigations of the series. The inhibition of NC is expected to overcome drug resistance. To prove this hypothesis most potent compounds were tested against a representative panel of drug-resistant HIV-1 strain (Table 2). Notably, only a 1-2-fold IC₅₀ shift was measured compared to wild type IC₅₀, consistent with the hypothesis that NC inhibitors retain their full potency against resistant strains.

In order to further characterize the new class of NC inhibitors (NCIs), a series of *in-vitro* and *in-vivo* tests were performed on a small set of selected compounds. The metabolic stability was evaluated *in-vitro* in rat and human species, plasma and hepatocytes matrices (Table 3). Data show that compounds **25**, **27**, **28** and **29** were stable up to one hour or more in both plasma and hepatocytes matrices. The same compounds were not inhibitors of major human cytochrome P450 isoforms (CYP1A2, CYP2D6, CYP3A4) and the hERG ion channels. Based on the potency profile in the different assays and the *in-vitro* DMPK data, compounds **27**, **28** and **29** were selected for *in-vivo* PK studies in C57BL/6 mice (Table 3). Compounds were administrated IV and PO at 2 and 5 mg/kg, respectively. Eight time points were taken up to 24h to obtain a plasma PK profile (Table 4).

Table 4: PK parameters for compounds **27**, **28** and **29** following i.v. and p.o administration in C57BL/6 mice at 2 mg/kg and 5 mg/kg respectively

	in-vivo profiling							
ID	t _{1/2} (h)	Vdss (L/kg)	Cl (ml/min/kg)	%F				
25								
27	1.4	0.8	33.1	25				
28	3.1	1.2	37.1	40				
29	1.1	0.8	30.2	26				

Compounds **27** and **29** showed similar PK parameters: medium-low plasma clearance (33 and 30 mL/min/kg, respectively) and medium volume of distribution (Vdss 0.8 L/kg for both) with a corresponding half-life of 1.4 and 1.1 hours respectively for **27** and **29**. The oral bioavailability was good (25% and 26%, respectively). Compared to **27** and **29**, compound **28** showed a better profile presenting higher oral bioavailability (40 %), prolonged half-life of 3.1 hours and volume of distribution of 1.2 L/kg.

To assess a preliminary polypharmacology profile compounds **4**, **27** and **29** were tested for their ability to inhibit the HIV Integrase enzyme by means of the well-established LEDGF-dependent IN activity assay³³ resulting not active up to 10 uM, Raltegravir used as positive control showed IC₅₀ = 0.027 $\pm 0.01 \mu$ M.

In summary, based on our previous studies the catechol moiety is a privileged structure to achieve NC inhibition as demonstrated by compound **1**. In the prospective of drug development, the intrinsic metabolic liability of the catechol

group is an issue to be considered. To overcome this issue, we decided to search for catechol-like scaffold with improved physicochemical properties able to bind NC protein. The allowed the identification of the 5.6process dihydroxypyrimidine-4-carboxamide analog 4 as representative of a new class of HIV-1 nucleocapsid inhibitors. Initial SAR studies were conducted in order to prove the bona fide nature of the hit and identify the key structural features needed to achieve and modulate NC inhibition. Optimized analogs such as 27, 28, 29 not only showed nanomolar antiviral activity and improved selective index, but were active against a panel of HIV-1 resistant strains in agreement with the proposed mechanism of action. Furthermore, the compounds showed a very clean profile against the major CYP-P450 isoforms and the hERG channel. The pharmacokinetic profile in mice was good for all three compounds but in particular for compound 28, which shows 40% oral bioavailability, good half-life and moderate clearance. In conclusion, we identified an unprecedented structural class of NC inhibitors with good drug like properties. In particular compound 28 represents a novel NC inhibitor lead with low nanomolar potency in cell-based assay, low cytotoxicity, and good PK profile. It represents a good starting point for further characterization and optimization.

	BiCycle Wild type strain NL4-3	Hela	1	PBMC MTS		Strain 11808 (PI) ^e	Strain 7401 (NRTI) ^e	Strain 12231 (NNRTI) ^e	Strain 11845 (INI) ^e
ID	EC ₅₀ (µМ) ^a	СС ₅₀ (µМ) ^a	SI- Hela ^b	СС ₅₀ (µМ) ^a	SI- PBMC ^c	EC ₅₀ (μM) ^a	EC ₅₀ (µМ) ^a	EC ₅₀ (µМ) ^a	EC ₅₀ (μM) ^a
4	1.2 ± 0.7	3.6 ± 0.7	3	2.6 ± 1.7	2				
15	2.3 ± 2	4.2 ± 3.4	2	11 ± 6.0	5				
16	0.7 ± 0.1	3.2 ± 0.9	5	3.0 ± 1.4	4				
17	0.2 ± 0.1	0.6 ± 0.04	3	2.4 ± 1	12				
20	0.2 ± 0.1	2.7 ± 0.4	13	3.1 ± 0.8	16				
25	0.4 ± 0.3	6.0 ± 0.2	15	1.1 ± 0.1	3				
27	0.04 ± 0.03	3.0 ± 0.1	75	2.7 ± 0.1	75	$\begin{array}{c} 0.056 \pm 0.02 \\ (1.4)^d \end{array}$	$\begin{array}{c} 0.031 \pm 0.02 \\ (0.8)^{d} \end{array}$	$\begin{array}{c} 0.11 \pm 0.04 \\ (2.8)^{d} \end{array}$	$\begin{array}{c} 0.09 \pm 0.04 \\ (2.3)^{d} \end{array}$
28	0.1 ± 0.03	3.0 ± 0.5	30	2.5 ± 0.2	25	$0.02 \pm 0.01 \\ (0.2)^{d}$	$\begin{array}{c} 0.01 \pm 0.005 \\ (0.1)^{d} \end{array}$	$0.08 \pm 0.06 \\ (0.8)^{d}$	$\begin{array}{c} 0.07 \pm 0.08 \\ (0.7)^{d} \end{array}$
29	0.1 ± 0.05	2.1 ± 0.3	21	5 ± 2	50	0.16 ± 0.1 (1.6) ^d	0.13 ± 0.08 (1.3) ^d	$\begin{array}{c} 0.21 \pm 0.07 \\ (2.0)^{d} \end{array}$	$\begin{array}{c} 0.09 \pm 0.02 \\ (0.9)^{d} \end{array}$

Table 2: Antiviral and cytotoxicity profile. Susceptibility to viral strains harbouring resistance to drug used in clinical practice

^{*a*}Data are average \pm SD for a least two independent experiments; ^{*b*}SI-Hela: HELA CC₅₀ / BiCycle EC₅₀; ^{*c*}SI-PBMC: PBMC CC₅₀ / BiCycle EC₅₀; ^{*d*}Fold change values indicate the ratio between IC₅₀ values from drug-resistant and NL4–3 wild type reference strains. ^{*e*}NIH AIDS Reagent Program catalogue number of resistant strains (www.aidsreagent.org). PI, resistance to Protease Inhibitor; NRTI, resistance to Nucleoside Reverse Transcriptase Inhibitor; INI, resistance to Integrase Inhibitor.

Table 3: In-vitro profiling for compounds 25, 27, 28 and 29; PK parameters for compounds 27, 28 and 29 following i.v. and p.o administration in C57BL/6 mice at 2 mg/kg and 5 mg/kg respectively

	in-vitro profiling									
ID	Mouse plasma t _{1/2} (h)	Human plasma t _{1/2} (h)	Mouse hepatocytes t _{1/2} (h)	Human hepatocytes t _{1/2} (h)	HERG IC ₅₀ (µM)	СҮР1А2 IC ₅₀ (µМ)	CYP2D6 IC ₅₀ (μM)	СҮРЗА4 IC ₅₀ (µМ)		
25	>1	>1	2.4	>4	>30	>30	>30	>30		
27	>24	>6	1.9	>4	>30	>30	>30	>30		
28	>6	>6	1.7	>4	>30	>30	>30	>30		
29	3.7	ND	1.7	2.6	>30	>30	>30	>30		

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Synthetic experimental details and characterization data, description of biological assay protocols, modeling (PDF).

AUTHOR INFORMATION

Corresponding Author

* Email: <u>s.malancona@irbm.com</u>

ORCID

Savina Malancona: 0000-0002-5388-6533

Present Addresses

[†]Tubilux Pharma spa, via Costarica 20, 00071 Pomezia (Rome) ^{††}Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy

Author Contributions

°These authors equally contributed to this work. All authors have given approval to the final version of the manuscript.

Funding Sources

This project has received funding from the European Union's Seventh Programme for research, technological development,

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

and demonstration under grant agreement no. 601969.

ACKNOWLEDGMENT

We acknowledge Fabrizio Colaceci (*in-vivo* work); Costanza Iaccarino and Letizia Lazzaro (compounds purification and QC); Prof. Enzo Tramontano and Francesca Esposito Dipartimento di Scienze della Vita e dell'Ambiente Università di Cagliari for the HIV-IN assay. The authors wish to thank the OpenEye Free Academic Licensing Program for providing a free academic license for molecular modeling and chemoinformatics software. YM is grateful to the Institut Universitaire de France (IUF) for support and providing additional time to be dedicated to research.

ABBREVIATIONS

AIDS, acquired immune deficiency syndrome; HAART, highly active antiretroviral therapy; NC, nucleocapsid protein; HIV-1, human immunodeficiency virus type-1; NCIs, nucleocapsid protein inhibitors; HIV-IN, human immunodeficiency virus integrase; SI, selectivity index; SAR, structure-activity relationship; NMR, nuclear magnetic resonance; PK, pharmacokinetics; hERG, human Ether-à-go-go-Related Gene.

REFERENCES

(1) UNAIDS. Global HIV & AIDS statistics - 2019 fact sheet. https://www.unaids.org/en/resources/fact-sheet (accessed on March 19, 2020)

(2) AIDSinfo. Understanding HIV/AIDS-Fact Sheets <u>https://aidsinfo.nih.gov/understanding-hiv-aids</u> (accessed on March 19, 2020)

(3) Zhan, P.; Pannecouque, C.; Clercq, E. de; Liu, X. Anti-HIV Drug Discovery and Development: Current Innovations and Future Trends. *J. Med. Chem.* **2016**, *59*, 2849–2878.

(4) Darlix, J.-L.; Rocquigny, H. de; Mauffret, O.; Mély, Y. Retrospective on the all-in-one retroviral nucleocapsid protein. *Virus Res.* **2014**, *193*, 2–15.

(5) Levin, J. G.; Mitra, M.; Mascarenhas, A.; Musier-Forsyth, K. Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription. *RNA Biol.* **2010**, *7*, 754–774.

(6) Zgheib, S.; Lysova, I.; Réal, E.; Dukhno, O.; Vauchelles, R.; Pires, M.; Anton, H.; Mély, Y. Quantitative monitoring of the cytoplasmic release of NCp7 proteins from individual HIV-1 viral cores during the early steps of infection. *Sci. Rep.* **2019**, *9*, 945.

(7) Retureau, R.; Oguey, C.; Mauffret, O.; Hartmann, B. Structural Explorations of NCp7-Nucleic Acid Complexes Give Keys to Decipher the Binding Process. *J. Mol. Biol.* **2019**, *431*, 1966–1980.

(8) Mori, M.; Kovalenko, L.; Lyonnais, S.; Antaki, D.; Torbett, B.
E.; Botta, M.; Mirambeau, G.; Mély, Y. Nucleocapsid Protein: A Desirable Target for Future Therapies Against HIV-1. *Curr. Top. Microbiol. Immunol.* 2015, *389*, 53–92.

(9) Sancineto, L.; Mariotti, A.; Bagnoli, L.; Marini, F.; Desantis, J.; Iraci, N.; Santi, C.; Pannecouque, C.; Tabarrini, O. Design and Synthesis of DiselenoBisBenzamides (DISeBAs) as Nucleocapsid Protein 7 (NCp7) Inhibitors with anti-HIV Activity. *J. Med. Chem.* **2015**, *58*, 9601–9614.

(10) Hartman, T. L.; Yang, L.; Helfrick, A. N.; Hassink, M.; Shank, N. I.; George Rosenker, K.; Scerba, M. T.; Saha, M.; Hughes, E.; Wang, A. Q.; et al. Preclinical evaluation of a mercaptobenzamide and its prodrug for NCp7-targeted inhibition of human immunodeficiency virus. *Antiviral Res.* **2016**, *134*, 216–225.

(11) Sosic, A.; Sinigaglia, L.; Cappellini, M.; Carli, I.; Parolin, C.; Zagotto, G.; Sabatino, G.; Rovero, P.; Fabris, D.; Gatto, B. Mechanisms of HIV-1 Nucleocapsid Protein Inhibition by Lysyl-Peptidyl-Anthraquinone Conjugates. *Bioconjugate Chem.* **2016**, *27*, 247–256.

(12) Frecentese, F.; Sosic, A.; Saccone, I.; Gamba, E.; Link, K.; Miola, A.; Cappellini, M.; Cattelan, M. G.; Severino, B.; Fiorino, F.; et al. Synthesis and in Vitro Screening of New Series of 2,6-Dipeptidylanthraquinones: Influence of Side Chain Length on HIV-1 Nucleocapsid Inhibitors. J. Med. Chem. 2016, 59, 1914–1924.

(13) Kim, M.-J.; Kim, S. H.; Park, J. A.; Yu, K. L.; Jang, S. I.; Kim, B. S.; Lee, E. S.; You, J. C. Identification and characterization of a new type of inhibitor against the human immunodeficiency virus type-1 nucleocapsid protein. *Retrovirology* **2015**, *12*, 90.

(14) Gamba, E.; Mori, M.; Kovalenko, L.; Giannini, A.; Sosic, A.; Saladini, F.; Fabris, D.; Mély, Y.; Gatto, B.; Botta, M. Identification of novel 2-benzoxazolinone derivatives with specific inhibitory activity against the HIV-1 nucleocapsid protein. *Eur. J. Med. Chem.* **2018**, *145*, 154–164.

(15) Mori, M.; Kovalenko, L.; Malancona, S.; Saladini, F.; Forni, D. de; Pires, M.; Humbert, N.; Real, E.; Botzanowski, T.; Cianférani, S.; et al. Structure-Based Identification of HIV-1 Nucleocapsid Protein Inhibitors Active against Wild-Type and Drug-Resistant HIV-1 Strains. *ACS Chem. Biol.* **2018**, *13*, 253–266.

(16) Mori, M.; Manetti, F.; Botta, M. Predicting the binding mode of known NCp7 inhibitors to facilitate the design of novel modulators. *J. Chem. Inf. Model.* **2011**, *51*, 446–454.

(17) Mori, M.; Nucci, A.; Lang, M. C. D.; Humbert, N.; Boudier, C.; Debaene, F.; Sanglier-Cianferani, S.; Catala, M.; Schult-Dietrich, P.; Dietrich, U.; et al. Functional and structural characterization of 2-amino-4-phenylthiazole inhibitors of the HIV-1 nucleocapsid protein with antiviral activity. *ACS Chem. Biol.* **2014**, *9*, 1950–1955.

(18) Mori, M.; Dasso Lang, M. C.; Saladini, F.; Palombi, N.; Kovalenko, L.; Forni, D. de; Poddesu, B.; Friggeri, L.; Giannini, A.; Malancona, S.; et al. Synthesis and Evaluation of Bifunctional Aminothiazoles as Antiretrovirals Targeting the HIV-1 Nucleocapsid Protein. ACS Med. Chem. Lett. 2019, *10*, 463-468.

(19) Patani, G. A.; LaVoie, E. J. Bioisosterism: A Rational Approach in Drug Design. *Chem. Rev.* **1996**, *96*, 3147–3176.

(20) Shvadchak, V.; Sanglier, S.; Rocle, S.; Villa, P.; Haiech, J.; Hibert, M.; van Dorsselaer, A.; Mély, Y.; Rocquigny, H. de. Identification by high throughput screening of small compounds inhibiting the nucleic acid destabilization activity of the HIV-1 nucleocapsid protein. *Biochimie* **2009**, *91*, 916–923.

(21) Bernacchi, S.; Mély, Y. Exciton interaction in molecular beacons: a sensitive sensor for short range modifications of the nucleic acid structure. *Nucleic Acids Res.* **2001**, *29*, E62-2.

(22) Bernacchi, S.; Stoylov, S.; Piémont, E.; Ficheux, D.; Roques, B. P.; Darlix, J. L.; Mély, Y. HIV-1 nucleocapsid protein activates transient melting of least stable parts of the secondary structure of TAR and its complementary sequence. *J. Mol. Biol.* **2002**, *317*, 385–399.

(23) Summa, V.; Petrocchi, A.; Bonelli, F.; Crescenzi, B.; Donghi, M.; Ferrara, M.; Fiore, F.; Gardelli, C.; Gonzalez Paz, O.; Hazuda, D. J.; et al. Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. *J. Med. Chem.* **2008**, *51*, 5843–5855.

(24) Lacbay, C. M.; Menni, M.; Bernatchez, J. A.; Götte, M.; Tsantrizos, Y. S. Pharmacophore requirements for HIV-1 reverse transcriptase inhibitors that selectively "Freeze" the pre-translocated complex during the polymerization catalytic cycle. *Bioorg. Med. Chem.* **2018**, *26*, 1713–1726.

(25) Koch, U.; Attenni, B.; Malancona, S.; Colarusso, S.; Conte, I.; Di Filippo, M.; Harper, S.; Pacini, B.; Giomini, C.; Thomas, S.; et al. 2-(2-Thienyl)-5,6-dihydroxy-4-carboxypyrimidines as inhibitors of the hepatitis C virus NS5B polymerase: discovery, SAR, modeling, and mutagenesis. J. Med. Chem. **2006**, *49*, 1693–1705.

(26) Petrocchi, A.; Koch, U.; Matassa, V. G.; Pacini, B.; Stillmock, K. A.; Summa, V. From dihydroxypyrimidine carboxylic acids to carboxamide HIV-1 integrase inhibitors: SAR around the amide moiety. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 350–353.

(27) Summa, V.; Petrocchi, A.; Matassa, V. G.; Gardelli, C.; Muraglia, E.; Rowley, M.; Paz, O. G.; Laufer, R.; Monteagudo, E.; Pace, P. 4,5-dihydroxypyrimidine carboxamides and N-alkyl-5hydroxypyrimidinone carboxamides are potent, selective HIV integrase inhibitors with good pharmacokinetic profiles in preclinical species. J. Med. Chem. 2006, 49, 6646–6649. (28) Pace, P.; Di Francesco, M. E.; Gardelli, C.; Harper, S.; Muraglia, E.; Nizi, E.; Orvieto, F.; Petrocchi, A.; Poma, M.; Rowley, M.; et al. Dihydroxypyrimidine-4-carboxamides as novel potent and selective HIV integrase inhibitors. *J. Med. Chem.* **2007**, *50*, 2225– 2239.

(29) Gardelli, C.; Nizi, E.; Muraglia, E.; Crescenzi, B.; Ferrara, M.; Orvieto, F.; Pace, P.; Pescatore, G.; Poma, M.; Ferreira, M. D. R. R.; et al. Discovery and synthesis of HIV integrase inhibitors: development of potent and orally bioavailable N-methyl pyrimidones. *J. Med. Chem.* **2007**, *50*, 4953–4975.

(30) Guzman, R. N. de. Structure of the HIV-1 Nucleocapsid Protein Bound to the SL3 -RNA Recognition Element. *Science* **1998**, *279*, 384–388.

(31) Goudreau, N.; Hucke, O.; Faucher, A.-M.; Grand-Maître, C.; Lepage, O.; Bonneau, P. R.; Mason, S. W.; Titolo, S. Discovery and structural characterization of a new inhibitor series of HIV-1 nucleocapsid function: NMR solution structure determination of a ternary complex involving a 2:1 inhibitor/NC stoichiometry. *J. Mol. Biol.* **2013**, *425*, 1982–1998.

(32) Saladini, F.; Giannini, A.; Boccuto, A.; Vicenti, I.; Zazzi, M. Agreement between an in-house replication competent and a reference replication defective recombinant virus assay for measuring phenotypic resistance to HIV-1 protease, reverse transcriptase, and integrase inhibitors. J. Clin. Lab. Anal. 2018, 32, e22206.

(33) Esposito, F.; Sechi, M.; Pala, N.; Sanna, A.; Koneru, P. C.; Kvaratskhelia, M.; Naesens, L.; Corona, A.; Grandi, N.; Di Santo, R.; et al. Discovery of dihydroxyindole-2-carboxylic acid derivatives as dual allosteric HIV-1 Integrase and Reverse Transcriptase associated Ribonuclease H inhibitors. *Antiviral Res.* **2020**, *174*, 104671.

SYNOPSIS TOC (Word Style "SN_Synopsis_TOC"). If you are submitting your paper to a journal that requires a synopsis graphic and/or synopsis paragraph, see the Instructions for Authors on the journal's homepage for a description of what needs to be provided and for the size requirements of the artwork.

