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a b s t r a c t

Rhodium-catalyzed intramolecular hydroamidation of alkynes was carried out to construct the synthetic
intermediates of a proteasome inhibitor, salinosporamide A. Several alkynyl formamides were synthe-
sized and subjected to the hydroamidation reaction. Some derivatives with a methoxymethyl (MOM) or
2-methoxy-2-propyl (MOP) group near the reaction site were converted to the corresponding lactams in
excellent yields.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The synthesis of salinosporamide A (1) [1], a potent and selec-
tive proteasome inhibitor, has attracted much interest due to its
important bioactivity and polysubstituted lactam structure [2�4].
In connection with our research on the synthesis of functionalized
lactams through transition-metal-catalyzed reactions [5], we have
launched a program directed toward the total synthesis of salino-
sporamide A. Our plan is based on the transition-metal-catalyzed
hydroamidation of alkynes. By applying this reaction intramolec-
ularly, we previously showed that a-alkylidene-g-lactams can be
synthesized from alkynyl formamides (Scheme 1) [6]. This
approach has advantages for the synthesis of functionalized lac-
tams in terms of ready access to cyclization precursors and neutral
reaction conditions. Preceding studies [7] on hydroamidation were
limited to simple substrates, and the reaction has rarely been
applied to natural product synthesis [8].

Our retrosynthetic analysis is shown in Scheme 2. To examine
the key intramolecular hydroamidation, four cyclization precursors
(3, 7,11, and 14) were designed. The targeted salinosporamide A (1)
could be simplified by removing the cyclohexene moiety, opening
the b-lactone, and introducing the exo-double bond in the lactam
: þ81 75 753 4569.
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ring to yield g-lactam 2. This compound was envisioned to be
formed by a key intramolecular hydroamidation that requires
alkynyl formamide 3 as a precursor. Compound 3 could be obtained
by the alkynylation of keto amide 4. Oxidation of known amino
alcohol 5 [3a] derived from threonine will give ketone 4. Form-
amide 7, a cyclization precursor which lacks a methyl group at the
propargylic position, could be prepared via synthetic intermediates
8 and 9 by a sequence similar to that for 3 from serine. Comparison
of the hydroamidation of 7 with that of 3 may reveal the effect of
steric hindrance near the alkynyl group. Another substrate for
hydroamidation is acetal 11 which could be obtained from alde-
hyde 12. For the total synthesis, differentiation of the two diaster-
eotopic alkoxy groups in the acetal moiety of 10 is required after the
hydroamidation of 11. We were also interested in formamide 14
with a simple alkyl group instead of a siloxymethyl group on the
alkyne, since the bioactivities of salinosporamide A derivatives are
known to strongly rely on the substituent at this position [9].
2. Results and discussion

The synthesis of 3was attempted from amino alcohol 5 obtained
from threonine through oxazoline 15 [3a] (Scheme 3). Alcohol 5
was converted to keto formamide 4 by formylation and oxidation.
However, the alkynylation of 4 did not proceed despite numerous
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and varied attempts; therefore, the cyclization precursor 3 was not
available.

On the other hand, the syntheses of 7aed, 7a0, and 7d0 were
feasible (Scheme 4). Similar to 4, aldehyde 8 was obtained in four
steps from serine via 16 [10] and 9. Addition of the lithium acetylide
gave the desired alkynyl formamide as a 1:2 mixture of
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diastereomers, 7a (less polar) and 7a0 (polar). During this addition
process, the formation of retro-aldol product 17was observed. This
causes a moderate yield of 7. Through appropriate protection of the
hydroxy group in 7a and 7a0, formamides 7bed and 7d0 were
obtained (7b: R2 ¼ Ac, 7c: R2 ¼ TES, 7d and 7d0: R2 ¼ MOP).

Formamides 11aed and 14a were synthesized in a straightfor-
ward manner (Scheme 5). Acetalization [11] of triol 18 followed by
benzylation gave amino alcohol 19. Selective N-formylation of this
amino alcohol was accomplished with ethyl formate and sodium
hydride in EtOH. Subsequent Swern oxidation gave aldehyde 12,
which was subjected to alkynylation with lithiated 3-siloxy-1-
propyne or 1-butyne. Quenching of the alkoxides in situ with
electrophiles such as water, TESCl, and MOMCl gave the corre-
sponding formamides 11aec and 14a. Compound 11d was
synthesized from 11a by the reaction with 2-methoxypropene.
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Hydroamidation was performed with Rh4(CO)12 (20 mol%) in
xylene at 130 �C (Table 1) [6]. When 7a with a free hydroxy group
was subjected to the reaction, g-lactam 6a was obtained in 36%
yield (entry 1). A significant amount of compound 17 (see Scheme
4) was also isolated (56%), which was probably formed by retro-
aldol fragmentation. The corresponding diastereomer 7a0 gave
similar results, which indicates that the stereochemistry at the
propargylic position does not affect the reaction (entry 2). The same
reaction of acetate 7b and silyl ether 7c did not give good results
(entries 3, 4). However, 2-methoxy-2-propyl (MOP) derivatives 7d
and 7d0 underwent hydroamidation to give lactams 6a and 6a0 in
high yields after unexpected cleavage of the MOP group (entries 5,
6). It is likely that the MOP group was cleaved after cyclization
because of the clear difference between the yields of entries 1 and
Table 1
Rhodium-catalyzed intramolecular hydroamidation of alkynyl formamides.a
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R2O
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O

O

R2O
R3

or

7a-d, 7a', and 7d' 11a-d and 14a

Rh4(C

xyle
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Entry Substrate

1 7a (R2 ¼ H)
2 7a0 (R2 ¼ H)
3 7b (R2 ¼ Ac)
4 7c (R2 ¼ TES)
5 7d (R2 ¼ MOP)
6 7d0 (R2 ¼ MOP)
7 11a (R2 ¼ H,

R3 ¼ CH2OTBS)
8 11b (R2 ¼ TES,

R3 ¼ CH2OTBS)
9 11c (R2 ¼ MOM, R3 ¼ CH2OTBS)
10e 11d (R2 ¼ MOP,

R3 ¼ CH2OTBS)
11 14a (R2 ¼ MOM, R3 ¼ Et)

a Reaction was carried out with Rh4(CO)12 (20 mol%) in xylene at 130 �C for 2 h.
b The values in parentheses show the yield of recovered starting materials.
c Compound 17 (see Scheme 4) was isolated in 56% yield.
d Compound 17 was isolated in 70% yield.
e 10 mol% of the catalyst was used.
5. The reaction was also insensitive to the configuration of the
starting materials 7d and 7d0. Similarly, hydroxy-free acetal 11a
gave lactam 10a in 30% yield (entry 7). The reaction of 11b
(R2 ¼ TES) was also unsatisfactory (entry 8). Although the MOP
group was cleaved during the reaction, compounds 11c and 11d
with either a MOM or MOP group were converted to the corre-
sponding lactams in acceptable yields (entries 9, 10). Since treat-
ment of MOM 14 bearing an ethyl group instead of a siloxymethyl
group under the same conditions furnished the desired product 13a
in a yield comparable to that of 11c (entry 11), the acetylene can
accommodate a simple alkyl group as an R3 substituent. The results
in Table 1 show that substrates with acetal moieties such as MOM
or MOP at the propargylic position gave better yields than others.
The origin of this effect is under investigation in our laboratories.
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In summary, we have developed concise synthetic routes to the
key intermediates of salinosporamide A and its analogs. Hydro-
amidation was shown to be feasible even for functionalized
substrates. It is worth noting that during the synthesis, the formyl
group which initially acted as a protecting group, was incorporated
into themolecular framework by its chemoselective activationwith
the rhodium catalyst. The results described herein are a progressive
attempt to apply hydroamidation to total synthesis. Chemo-
selective activation of an inert functionality such as formamide
with a transition metal catalyst was shown to be an effective and
attractive synthetic strategy in a multistep synthesis. Further
investigations directed toward the total synthesis of salinospor-
amide A are currently ongoing in our laboratories.

3. Experimental

3.1. General procedure for rhodium-catalyzed intramolecular
hydroamidation

Amixture of formamide (0.0252mmol) and Rh4(CO)12 (3.77mg,
0.00504 mmol) in xylene (0.25 ml) was stirred at 130 �C for 2 h
under Ar atmosphere. After cooling and evaporation of the volatile
materials, the crude residue was purified by SiO2 column chro-
matography to give lactam.

3.1.1. Analytical data for lactam 6a
1H NMR (500 MHz, CDCl3, d) 7.34e7.30 (m, 4H), 7.18e7.15 (m,

4H), 6.76 (d, 1H, J ¼ 8.6 Hz), 6.74 (ddd, 1H, J1 ¼ J2 ¼ 4.8 Hz,
J3 ¼ 2.1 Hz), 5.03 (dd, 1H, J1 ¼ 6.7 Hz, J2 ¼ 2.1 Hz), 4.62 (d, 1H,
J ¼ 15.3 Hz), 4.54 (dd, 1H, J1 ¼ 4.8 Hz, J2 ¼ 1.5 Hz), 4.53 (dd, 1H,
J1 ¼ 4.8 Hz, J2 ¼ 1.5 Hz), 4.47 (d, 1H, J ¼ 15.3 Hz), 4.27 (d, 1H,
J¼ 11.9 Hz), 4.21 (d,1H, J¼ 11.9 Hz), 3.87 (d,1H, J¼ 10.4 Hz), 3.85 (d,
1H, J ¼ 10.4 Hz), 3.76 (s, 3H), 3.54 (s, 3H), 3.45 (d, 1H, J ¼ 6.7 Hz),
0.91 (s, 9H), 0.11 (s, 6H); 13C NMR (126 MHz, CDCl3, d) 171.1, 167.8,
158.8, 137.3, 136.5, 133.1, 129.6, 128.6, 128.5, 127.9, 127.6, 113.6, 73.3,
70.6, 67.8, 61.2, 55.2, 52.6, 44.7, 29.6, 25.8,�0.1,�5.5; IR (ATR) 3343,
1673 cm�1; HRMS (FABþ) C30H41NO7Si: (Mþ) 555.2652. Found
555.2657.

3.1.2. Analytical data for lactam 6a0
1H NMR (500 MHz, CDCl3, d) 7.34e7.31 (m, 3H), 7.21 (d, 2H,

J ¼ 7.0 Hz), 7.16 (d, 1H, J ¼ 8.6 Hz), 6.74 (d, 2H, J ¼ 8.6 Hz), 6.64 (dd,
1H, J1 ¼ 6.4 Hz, J2 ¼ 3.1 Hz), 5.11 (m, 1H), 4.63e4.52 (m, 3H),
4.39e4.30 (m, 3H), 3.90 (d, 1H, J¼ 10.7 Hz), 3.82 (d, 1H, J¼ 10.7 Hz),
3.74 (s, 3H), 3.39 (s, 3H), 0.91 (s, 9H), 0.13 (s, 3H), 0.13 (s, 3H); 13C
NMR (126 MHz, CDCl3, d) 169.8, 168.6, 158.9, 137.5, 134.0, 132.8,
130.3, 128.8, 128.4, 127.9, 127.8, 113.5, 73.2, 71.4, 69.4, 66.6, 62.3,
55.2, 52.0, 44.3, 25.8, 18.4, �0.1, �5.7; IR (ATR) 3366, 1670 cm�1;
HRMS (FABþ) C30H42NO7Si: (MHþ) 556.2731. Found 556.2731.

3.1.3. Analytical data for lactam 10c
1H NMR (500MHz, CDCl3, d) 7.25 (d, 2H, J¼ 8.8 Hz), 6.88 (dd,1H,

J1 ¼ J2 ¼ 6.4 Hz), 6.84 (d, 2H, J ¼ 8.8 Hz), 4.84 (s, 1H), 4.65 (s, 2H),
4.56 (d, 2H, J ¼ 5.2 Hz), 4.06 (d, 1H, J ¼ 12.2 Hz), 3.93 (d, 1H,
J ¼ 12.2 Hz), 3.79 (s, 3H), 3.53 (d, 1H, J ¼ 11.9 Hz), 3.38 (s, 3H), 3.10
(d, 1H, J ¼ 11.9 Hz), 1.36 (s, 6H), 0.92 (s, 9H), 0.10 (s, 3H), 0.098 (s,
3H); 13C NMR (126 MHz, CDCl3, d) 168.0, 159.1, 139.4, 128.9, 114.1,
98.8, 94.0, 71.0, 62.8, 62.2, 60.3, 55.6, 55.2, 43.2, 26.4, 25.8, 20.5,
18.2,�5.35,�5.39; IR (ATR) 1692 cm�1; HRMS (FABþ) C27H43NO7Si:
(Mþ) 521.2809. Found 521.2789.

3.1.4. Analytical data for lactam 13a
1H NMR (500 MHz, CDCl3, d) 7.25 (d, 2H, J ¼ 8.9 Hz), 6.84 (d, 2H,

J ¼ 8.9 Hz), 6.83 (t, 1H, J ¼ 14.7 Hz), 4.83 (s, 1H), 4.66 (s, 2H), 4.55 (s,
2H), 4.09 (d, 1H, J ¼ 12.2 Hz), 3.94 (d, 1H, J ¼ 12.2 Hz), 3.79 (s, 3H),
3.53 (d, 1H, J ¼ 12.2 Hz), 3.41 (s, 3H), 3.07 (d, 1H, J ¼ 12.2 Hz), 2.40
(dq, 2H, J1 ¼14.7 Hz, J2 ¼ 7.4 Hz), 1.37 (s, 3H), 1.36 (s, 3H), 1.01 (t, 3H,
J ¼ 7.4 Hz); 13C NMR (126 MHz, CDCl3, d) 168.4, 159.0, 143.0, 128.8,
114.0, 98.8, 93.6, 70.6, 62.7, 62.0, 60.2, 55.6, 55.2, 43.0, 26.4, 22.5,
20.5, 13.5; IR (ATR) 1685 cm�1; HRMS (FABþ) C22H31NO6: (Mþ)
405.2151. Found 405.2149.
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