Accepted Manuscript

Enantioselective Organocatalytic Approach to δ -Lactones Bearing a Fused Cyclohexanone Scaffold

Dorota Kowalczyk, Łukasz Albrecht

PII:	S0040-4039(18)30667-1
DOI:	https://doi.org/10.1016/j.tetlet.2018.05.053
Reference:	TETL 50000
To appear in:	Tetrahedron Letters

Received Date:4 April 2018Revised Date:11 May 2018Accepted Date:18 May 2018

Please cite this article as: Kowalczyk, D., Albrecht, L., Enantioselective Organocatalytic Approach to δ-Lactones Bearing a Fused Cyclohexanone Scaffold, *Tetrahedron Letters* (2018), doi: https://doi.org/10.1016/j.tetlet. 2018.05.053

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Tetrahedron Letters journal homepage: www.elsevier.com

Enantioselective Organocatalytic Approach to δ -Lactones Bearing a Fused Cyclohexanone Scaffold

Dorota Kowalczyk and Łukasz Albrecht*

Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland

ARTICLE INFO

ABSTRACT

Article history: Received Received in revised form Accepted Available online

Keywords: δ-Lactone Cyclohexanone Asymmetric organocatalysis Cascade reactivity Acylphosphonates A new method based on the cascade reaction between $\beta_{,\gamma}$ -unsaturated- α -ketophosphonates and cyclic 1,3-dicarbonyls is reported for the synthesis of highly enantiomerically enriched δ -lactones bearing a fused cyclohexenone scaffold. The target products bearing a δ -lactone moiety and one stereogenic center were obtained in good to excellent yields (83-96%) and enantioselectivities (63:32-95:5 er). The best results were obtained in the presence of a chiral Brønsted base catalyst derived from the cinchona alkaloid quinine and modified by a squaramide moiety.

2018 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +48-42-631-3157; e-mail: <u>lukasz.albrecht@p.lodz.pl</u>, http://www.a-teamlab.p.lodz.pl/

1. Introduction

Chiral δ - and γ -lactone ring systems are common structural motifs in a variety of biologically interesting compounds and natural products.¹ In recent years, asymmetric organocatalysis has become an effective method of inducing chirality into target compounds, in which chiral organic molecules are used as promoters of selected chemical transformations.^{2,3} Organocatalytic asymmetric cascade reactions are a powerful synthetic instrument leading to biologically important derivatives including δ - and γ -lactone core structures (Scheme 1).³

NepetalactoneAlantolactoneSoulamarinScheme 1. Selected biologically active compounds containing
 γ - and δ -lactones structural motifs

For example, nepetalactone, isolated from the plant catnip (*Nepeta cataria*), shows sedative and analgesic effects in rats.⁴ Alantolactone is present in elecampane (*Inula helenium*) and has potential activity against triple-negative breast cancer MDA-MB-231 cells by suppressing the signal transducer and activator of transcription 3 (STAT3) signaling pathway.⁵ Finally, soulmarin exhibiting diverse biological activity was isolated from the stem bark of *Calophyllum soulattri*.⁶

Therefore, the main objective of this study was to develop a straightforward approach to bicyclic δ -lactones 1 bearing an additional cyclohexanone moiety. Recently, Zhao and Du demonstrated a facile route to this group of compounds based on the reaction between 1,3-dicarbonyl compounds and 1cinnamoylpyrrolidine-2,5-dione derivatives (Scheme 2, top).⁷ Given the importance of δ -lactones¹ and our interest in the application of acylphosphonates for the synthesis of biologically relevant molecules,^{8,9} we postulated that acylphosphonates could serve as highly convenient precursors of this class of compounds (Scheme 2, bottom). The reaction mechanism involves: (i) organocatalytic Michael addition of pronucleophile 3 to electrondeficient olefin 2; (ii) enolization; and (iii) lactonization to yield the target product 1. In such a setup, the phosphonate moiety serves a triple purpose. Firstly, it activates the starting material making the double bond in 2 more electrophilic. Secondly, it enables efficient recognition of the catalyst through H-bonding interactions. Thirdly, the phosphonate moiety can be used as a good leaving group making the cyclization step (this occurs after the initial Michael addition and enolization) more feasible.

Previous studies:

Scheme 2. Previous and present approaches to the target δ lactones 1

2. Results and Discussion

The optimization studies were performed using diethyl (E)-5phenyl-3-benzylidenefuran-2(3H)-one 2a and cyclohexane-1,3dione 3a as model reactants (Table 1). It was anticipated that the reaction should be possible using bifunctional catalysts bearing both Brønsted base and H-bond donor moieties (Scheme 2). Initially, simple cinchona alkaloids such as quinine 4a and cinchonine 4b were employed as catalysts providing the desired δ -lactone **1a** efficiently, albeit with very low enantioselectivity (Table 1, entries 1-2). Therefore, modified alkaloids 4c-g bearing more efficient H-bonding units were evaluated (Table 1, entries 3-7). In all cases, the reaction cascade proceeded efficiently; however, the stereochemical outcome of the reaction was strictly correlated to the H-bonding moiety present in the catalyst. Squaramide 4e, derived from quinine, provided the highest enantioselectivity (Table 1, entry 5). The reaction was terminated within 24 hours and δ -lactone **1a** was obtained in 80% yield and 83:17 er. Various solvents were tested (Table 1, entries 8-11) and to our delight an enhancement of the reaction enantioselectivity (92:8 er) was observed in CHCl₃ (Table 1, entry 8). Finally, experiments were performed in order to evaluate the influence of reaction concentration (Table 1, entries 12-13) and temperature (Table 1, entries 14-17) on the enantioselectivity of the transformation. While, the reaction concentration had no beneficial impact on this parameter, an increase of the reaction temperature to 40 °C resulted in a further improvement of enantioselectivity, thus establishing optimal reaction conditions (Table 1, entry 15). At this stage the absolute stereochemistry of bicyclic δ -lactone **1a** was assigned as R by comparison of the sign of the specific rotation with that of enantiomerically pure material of known configuration.⁷ The absolute configuration of products 1b-o were assigned by analogy.

Table 1. Stereocontrolled synthesis of δ -lactones 1 – optimization studies^a

Entry	Solvent	Cat	т	Viold	orc
Епиу	Solvent	Cal.			el
			[°C]	[%]*	
1	CH_2Cl_2	4a	RT	70	53:47
2	CH_2Cl_2	4b	RT	48	47:53
3	CH_2Cl_2	4c	RT	64	58:42
4	CH_2Cl_2	4d	RT	69	42:58
5	CH_2Cl_2	4 e	RT	80	83:17
6	CH_2Cl_2	4f	RT	75	41:59
7	CH_2Cl_2	4 g	RT	78	68:32
8	CHCl ₃	4 e	RT	89	92:8
9	ClCH ₂ CH ₂ Cl	4 e	RT	80	83:17
10	Toluene	4 e	RT	79	85:15
11	1,4-Dioxane	4 e	RT	75	87:13
12 ^d	CHCl ₃	4 e	RT	90	79:21
13 ^e	CHCl ₃	4e	RT	95	91:9
14	CHCl ₃	4e	60	56	90:10
15	CHCl ₃	4 e	40	95	95:5
16	CHCl ₃	4 e	10	90	91:9
17	CHCl ₃	4 e	0	78	86:14

^a Reactions performed on 0.1 mmol scale using **2a** (1 equiv.) and **3a** (1 equiv.) in 0.2 mL of the solvent (see ESI for detailed reaction conditions). ^b Isolated yield. ^c Determined by HPLC on a chiral phase. ^d Reaction performed in 0.4 mL of CHCl₃. ^e Reaction performed in 0.1 mL of CHCl₃.

With the screening studies accomplished, the substrate scope was explored (Table 2, Scheme 3). Initially, various diethyl (E)- β,γ -unsaturated- α -ketophosphonates 2 were reacted with cyclohexane-1,3-dione 3a (Table 2). Various aromatic substituents in the γ -position of 2 were well-tolerated providing target δ -lactones **1a–l** in high yield (83-95%) and with good to high enantioselectivities (70:30-95:5 er) (Table 3, entries 1-12). Notably, the electronic properties of the substituent on the aromatic ring in 2 (Table 3, entries 1-6 vs. 7-9) had no significant influence on the reaction efficiency. Similarly, the reaction proved unbiased towards the position of the substituent on the aromatic ring in 2 (Table 3, entries 4-6 vs. 8-9). However, when chlorine was present in the ortho position a reduction in enantioselectivity was observed (Table 3, entry 6). Interestingly, disubstituted aromatic rings (Table 3, entries 10-11) and heteroaromatic substituents (Table 3, entry 12) could be present as demonstrated in the synthesis of 1j,k and 1l. Notably, the introduction of an alkyl chain in the γ -position of 2 was also possible providing products **1m**,**n** in high yields and with good enantioselectivity (Table 3, entries 13-14).

$R \xrightarrow{O}_{U} P(OEt)_{2} + \underbrace{O}_{U} \xrightarrow{O}_{U} O$							
Entry	R	1	Yield [%] ^b	er ^c			
1	Ph	1 a	95	95:5			
2	$4-CF_3C_6H_4$	1b	90	90:10			
3	$4-BrC_6H_4$	1c	94	92:8			
4	$4-ClC_6H_4$	1d	96	84:16			
5	3-ClC ₆ H ₄	1e	84	89:11			
6	2-ClC ₆ H ₄	1f	83	70:30			
7	$4-MeC_6H_4$	1g	92	88:12			
8	$4-MeOC_6H_4$	1h	93	89:11			
9	$2-MeOC_6H_4$	1i	94	85:15			
10 ~	1-naphthyl	1j	91	86:14			
11	$3,4-OCH_2OC_6H$	3 1k	90	90:10			
12	2-furyl	11	94	85:15			
13	CH ₃	1m	91	86:14			
14	C ₆ H ₁₃	1n	92	88:12			

^a Reactions performed on 0.1 mmol scale (see ESI for detailed reaction conditions). ^b Isolated yield. ^c Determined by HPLC on a chiral phase.

In the course of further studies, various 1,3-dicarbonyl compounds **3** were evaluated (Scheme 3). Various cyclic 1,3-diketones such as dimedone **3b**, 1,3-indanodione **3c** and 5-phenylcyclohexane-1,3-dione **3d** were successfully employed in the reaction cascade. Notably, δ -lactone **1q** which possesses an additional stereogenic center was obtained as a mixture of two diastereoisomers in a 1:1 ratio. To our delight, the reaction cascade also proceeded efficiently using 4-hydroxycoumarin **3e**. Notably, in this case the formation of cyclic product **1r** was observed.¹¹

Scheme 3. Organocatalytic stereocontrolled approach to bicyclic δ -lactones 1 - 1,3-diketone 3 scope

3. Summary

In conclusion, we have developed a new organocatalytic approach to δ -lactones bearing a fused cyclohexanone scaffold. The reaction cascade relies on the application of β , γ -unsaturated- α -ketophosphonates **2** as key intermediates. It was demonstrated that the application of a bifunctional organocatalyst derived from cinchona alkaloids that bears both a Brønsted base moiety and H-bond donor enables the efficient recognition of both substrates. As a consequence the reaction proceeded efficiently with moderate to high levels of stereocontrol. Notably, our approach is complementary to Zhao and Du's strategy¹¹ with the main benefits relating to the usage of β , γ -unsaturated- α -ketophosphonates **2** as highly convenient and effective α , β -unsaturated acid surrogates.⁸⁶

Acknowledgments

This project was financially supported by funds from Lodz University of Technology (Działalność statutowa).

Supplementary Material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/

References and notes

- (a) McConathy, J.; Owens, M. J. Prim. Care Companion J. Clin. Psychiatry 2003, 5, 70. (b) Hutt, A. J. Drug Metabol. Drug Interact. 2007, 22, 79. (c) Janecki, T. Ed. Natural lactones and lactams. Synthesis occurrence and biological activity, Wiley-VCH, Weinheim, 2014. (d) Albrecht, A.; Albrecht, Ł.; Janecki, T. Eur J. Org. Chem. 2011, 2747. (e) Xavier, N. M.; Rauter, A. P.; Queneau, Y. Top. Curr. Chem. 2010, 295, 19. (f) Bräse, S.; Encinas, A.; Keck, J.; Nising, C. F. Chem. Rev. 2009, 109, 3903. (g) Boucard, V.; Broustal, G.; Campagne, J. M. Eur. J. Org. Chem. 2007, 225. (h) Lundt, I.; Madsen, R. Top. Curr. Chem. 2001, 215, 177. (i) Libaszewska, K. Biotechnol. Food Sci. 2011, 75, 45; (j) Ee, G. C. L.; Mah, S. H.; Teh, S. S.; Rahmani, M.; Go, R.; Taufiq-Yap, Y. H. Molecules 2011, 16, 9721.
- For selected reviews on organocatalysis, see: (a) Bella, M.; Gasperi, T. Synthesis 2009, 1583. (b) Palomo, C.; Oiarbide, M.; López, R. Chem. Soc. Rev. 2009, 38, 632. (c) Melchiorre, P. Angew. Chem., Int. Ed. 2012, 51, 9748. (d) Albrecht, Ł.; Jiang, H.; Jørgensen, K. A. Chem. Eur. J. 2014, 20, 358. (e) Alemán, J.; Cabrera, S. Chem. Soc. Rev. 2013, 42, 774.
- For selected reviews on organocatalytic multicatalytic and domino synthetic strategies, see: (a) Chauhan, P.; Mahajan, S.; Enders, D. Acc. Chem. Res. 2017, 50, 2809. (b) Wende, R. C.; Schreiner, P. R. Green Chem. 2012, 14, 1821. (c) Ramachary, D. B.; Jain, S. Org. Biomol. Chem. 2011, 9, 1277. (d) Grondal, C.; Jeanty, M.; Enders, D. Nat. Chem. 2010, 2, 167. (e) Alba, A.-N.; Companyo, X.; Viciano, M.; Rios, R. Curr. Org. Chem. 2009, 13, 1432. (f) Yu, X.; Wang, W. Org. Biomol. Chem. 2008, 6, 2037. (g) Enders, D.; Grondahl, C.; Hüttl, M. R. M. Angew. Chem., Int. Ed. 2007, 46, 1570.
- Aydin, S.; Beis, R.; Oztürk, Y.; Baser, K. H. J Pharm Pharmacol. 1998, 50, 813.
- (a) Chun, J.; Li, R. J.; Cheng, M. S.; Kim, Y. S. *Cancer Lett.* **2015**, *357*, 393. (b) Mi, X. G.; Song, Z. B.; Wu, P.; Zhang, Y. W.; Sun, L. G.; Bao, Y. L.; Zhang, Y.; Zheng, L. H.; Sun, Y.; Yu, C. L.; Wu, Y.; Wang, G. N.; Li, Y. X. *Toxicol Lett.* **2014**, *224*, 349.
- Ee, G. C. L.; Mah, S. H.; Teh, S. S.; Rahmani, M.; Go, R.; Taufiq-Yap, Y. H. *Molecules* 2011, *16*, 9721.
- (a) Zhao, B.-L.; Du, D.-M. *Tetrahedron: Asymmetry* 2014, 25, 310. For related studies, see: (b) Robinson, E. R. T.; Fallan, C.; Simal, C.; Slawin, A. M. Z.; Smith, A. D. *Chem. Sci.* 2013, 4, 2193. (c) Itoh, K.; Hasegawa, M.; Tanaka, J.; Kanemasa, S. *Org. Lett.* 2005, 7, 979.
- For reviews, see: (a) Dzięgielewski, M.; Pięta, J.; Kamińska, E.; Albrecht, Ł. *Eur. J. Org. Chem.* 2015, 677. (b) Monge, D.; Jiang, H.; Alvarez-Casao, Y. *Chem. Eur. J.* 2015, 21, 4494.
- (a) Kowalczyk, D.; Albrecht, Ł. Chem. Commun. 2015, 51, 3981.
 (b) Kowalczyk, D.; Albrecht, Ł. J. Org. Chem. 2016, 15, 6800.
- For selected reviews on the enantioselective Brønsted base catalysis, see: (a) Marcelli, T.; van Maarseveen, J. H.; Hiemstra, H. Angew. Chem. Int. Ed. 2006, 45, 7496. (b) Jew, S.-S.; Park, H.-G. Chem. Commun. 2009, 7090. (c) Palomo, C.; Oiarbide, M.; López R. Chem. Soc. Rev. 2009, 38, 632. (d) Quigley, C.; Rodríguez-Docampo, Z.; Connon, S. J. Chem. Commun. 2012, 48, 1443. (e) Krawczyk, H.; Dzięgielewski, M.; Deredas, D.; Albrecht, A.; Albrecht, Ł. Chem. Eur. J. 2015, 21, 10268.
- 11. X. Chang, Q. Wang, Y. Wang, H. Song, Z. Zhou, C. Tang, *Eur. J. Org. Chem.* **2013**, *11*, 2164.

Graphical Abstract

- Stereoselective approach to bicyclic δ -lactones bearing a fused cyclohexanone scaffold.
- Bioinspired targets.
- Accepter Convenient starting materials. •