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An efficient highly diastereo- and enantioselective direct Michael

addition of nitroalkanes to nitroalkenes catalyzed by chiral squaramide

catalyst has been developed. This organocatalytic reaction with a low

catalyst loading (2 mol%) proceeded well to afford synthetically useful

1,3-dinitro compounds in high yields with high diastereoselectivities (up

to 95 :5 dr) and excellent enantioselectivities (up to 97% ee).

The conjugate addition of carboanion nucleophiles to electron-

deficient alkenes is widely recognized as one of the most important

carbon–carbon bond-forming reactions in organic synthesis.1,2

Owing to the strong electron-withdrawing character of the

nitro group and its facile transformations to other useful func-

tional groups, nitroalkanes are a valuable source of stabilized

carboanions as good Michael donors,3 and nitroalkenes serve

as excellent Michael acceptors.4 The Michael addition of

nitroalkanes to nitroalkenes is extremely attractive because it

can directly afford 1,3-dinitro compounds, which are useful

intermediates for a variety of further elaborated structures.5

Our group reported the first asymmetric version of this reaction

catalyzed by bis(oxazoline) or bis(thiazoline)–zinc(II) complexes,

which provided an easy access to optically active 1,3-dinitro

compounds.6 In recent years, some efforts have been also

devoted to this asymmetric Michael addition by other groups,

and a few efficient catalytic systems have been reported.7

Wang et al. revealed that a simply modified cinchona alkaloid

was a good promoter, albeit with moderate to good enantio-

selectivities.7a Feng and co-workers employed a La(OTf)3/

N,N0-dioxide complex to promote this reaction, and high

diastereoselectivities and excellent enantioselectivities were

obtained.7b Subsequently, two organocatalytic systems for this

process with excellent results were reported. Wulff and Rabalakos

developed a bifunctional DMAP-thiourea,7c while Wang et al.

reported a bifunctional amine-thiourea bearing multiple hydrogen-

bonding donors.7d Moreover, Maruoka et al. described an N-spiro

chiral ammonium bifluoride catalyzed indirect Michael addition

with silyl nitronates.8 Despite these successes, the development of

efficient catalytic systems in pursuit of excellent enantioselectivity,

low catalyst loading, andmild reaction conditions is still challenging

and in great demand.

The utilization of hydrogen bonding as an activation force is

widespread in organocatalysis.9 Chiral squaramide is a novel type of

good hydrogen-bonding donor organocatalyst.10,11 After the

pioneering work reported by Rawal et al.,11a a series of chiral

squaramide organocatalysts have been developed and successfully

applied in various asymmetric reactions.11 Recently, our group also

reported the chiral squaramide-catalyzed asymmetric Michael addi-

tion reactions.11f,g Herein, we would like to report our new advance

on the highly diastereo- and enantioselective Michael addition of

nitroalkanes to nitroalkenes catalyzed by chiral squaramide catalysts.

Initially, a small library of squaramide catalysts I–X (Fig. 1)

was readily prepared and their catalytic performance to promote

theMichael addition of nitroalkanes to nitroalkenes was evaluated.

The addition of nitroethane to b-nitrostyrene as a model

reaction for catalyst screening was performed in CH2Cl2 in

the presence of 5 mol% catalyst loading at room temperature

for 12 h. The screening results are shown in Table 1. Both

squaramides I and II derived from chiral cyclohexane-1,2-

diamine gave good yield and diastereoselectivity, but the

former exhibited much better enantioselectivity (79% ee)

(entries 1 and 2). The substituent of the tertiary amino group

as a Lewis base has an effect on the enantioselectivity. When

squaramides III and IV bearing a piperidinyl group were

Fig. 1 Screened squaramide catalysts.
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employed, an obvious increase in enantioselectivity was observed

(88% ee and 87% ee, respectively); however, squaramide III only

gave moderate diastereoselectivity and squaramide IV afforded

the product in low yield (entries 3 and 4). Squaramides V–VIII

derived from cinchona alkaloid, developed in our previous

report, were then screened (entries 5–8). Gratifyingly, quinine-

derived squaramide VII achieved a very good result (90% yield,

83 : 17 dr, 91% ee). Subsequently, C2-symmetric quinine/hydro-

quinine-derived squaramides IX and X were tested, and a better

result (94% yield, 85 : 15 dr, 93% ee) was obtained for squar-

amide IX. Therefore, squaramide IX was selected as the best

catalyst for further optimization.

With the optimal catalyst in hand, the effect of solvents,

temperature, and catalyst loading was further investigated for

the optimal reaction conditions. The results are summarized in

Table 2. A solvent screening was first performed, and CH2Cl2
was proved to be the best reaction medium (entries 1–7).

Notably, when the model reaction was carried out in neat

nitroethane, lower yield and enantioselectivity were obtained

(entry 8). Lowering the temperature led to an increase in both

diastereoselectivity and enantioselectivity (entries 9 and 10).

When the reaction was performed at �20 1C for 48 h, the adduct

was obtained in high yield with high diastereoselectivity and

excellent enantioselectivity (95 : 5 dr, 97% ee). Subsequently,

catalyst loading was screened. Interestingly, increasing the

catalyst loading (10 mol%) resulted in a decrease in both

diastereoselectivity and enantioselectivity, while high diastereo-

selectivity and excellent enantioselectivity were maintained with a

reduced catalyst loading (2 or 1 mol%) (entries 11–13). The

phenomenon of increased enantioselectivity with decreased

catalyst loading may be ascribed to the decreased self-association

of this type of hydrogen-bonding catalyst, as it is reported that

urea and thiourea based organocatalysts can form hydrogen-

bonded aggregates.12 This phenomenon is a notable feature in

squaramide-catalyzed reactions. Considering the yield, 2 mol%

catalyst loading was chosen. Additionally, the loading of

nitroethane 2a was also simply examined, but no better result

was observed (entries 14 and 15).

Having established the optimal reaction conditions, we explored

the scope of the asymmetric Michael addition of nitroalkanes to

nitroalkenes. The results are presented in Table 3. Generally, a wide

array of aromatic nitroalkenes bearing electron-neutral, electron-

withdrawing or electron-donating substitutions reacted smoothly

with nitroethane 2a to afford the corresponding adducts in good to

high yields with high diastereoselectivities and excellent enantio-

selectivities (95–97% ee) (entries 1–10). These results indicated that

the position and the electronic property of the substituent on the

aromatic ring had a limited effect on both diastereoselectivity and

enantioselectivity. Heteroaromatic nitroalkenes were also suitable

substrates, and the desired products were obtained with excellent

enantioselectivities albeit with lower yields (entries 11 and 12).

When aliphatic nitroalkene 1m served as an acceptor, very low

yield (16%) and a significant decrease in both diastereoselectivity

and enantioselectivity (67 : 33 dr, 80% ee) were observed (entry 13).

Nitropropane 2b as a donor worked well with aromatic nitroalkenes

to give good to high diastereoselectivities and excellent

enantioselectivities albeit with lower reactivity (entries 14–18).

Further substrate scope was investigated. The reaction of

branched 2-nitropropane 4 and b-nitrostyrene 1a was performed,

but no reaction occurred. Nitrodienes 5 as acceptors reacted with

nitroethane 2a to afford the 1,4-addition product 6 in moderate

yields with good diastereoselectivities and high enantioselectivities

(Scheme 1). To further evaluate the synthetic potential of this

squaramide catalytic system, the gram-scale preparation and

transformation of 3a were performed. As shown in Scheme 2, 1a

Table 1 Screening of squaramide catalysts for the asymmetric
Michael addition of nitroethane to b-nitrostyrenea

Entry Catalyst Yieldb (%) drc (syn/anti) eed (%)

1 I 70 85 : 15 79
2 II 74 80 : 20 43
3 III 82 75 : 25 88
4 IV 32 80 : 20 87
5 V 75 83 : 17 �82
6 VI 67 83 : 17 �67
7 VII 90 83 : 17 91
8 VIII 62 81 : 19 86
9 IX 94 85 : 15 93
10 X 96 80 : 20 91

a Reactions were carried out with b-nitrostyrene (0.2 mmol) and

nitroethane (1.0 mmol) in CH2Cl2 (0.5 mL). b Isolated yields after

column chromatography purification. c Determined by chiral HPLC

analysis. d Enantiomeric excess for the major syn-diastereomer was

determined by chiral HPLC analysis.

Table 2 Optimization of reaction conditions for the asymmetric
Michael addition of nitroethane to b-nitrostyrenea

Entry Solvent Loading T/ 1C t/h Yieldb (%)
drc

(syn/anti)
eed,e

(%)

1 CH2Cl2 5 rt 12 94 85 : 15 93
2 THF 5 rt 12 58 91 : 9 86
3 PhMe 5 rt 12 20 90 : 10 93
4 MeOH 5 rt 12 72 83 : 17 53
5 CHCl3 5 rt 12 78 82 : 18 91
6 CH2ClCH2Cl 5 rt 12 62 87 : 13 90
7 CCl4 5 rt 12 93 66 : 34 83
8 EtNO2 5 rt 12 69 83 : 17 82
9 CH2Cl2 5 0 24 85 91 : 9 94
10 CH2Cl2 5 �20 48 92 95 : 5 97
11 CH2Cl2 10 �20 48 84 90 : 10 95
12 CH2Cl2 2 �20 48 94 95 : 5 97
13 CH2Cl2 1 �20 48 85 94 : 6 97
14f CH2Cl2 2 �20 48 79 94 : 6 97
15g CH2Cl2 2 �20 48 96 90 : 10 95

a Reactions were carried out with b-nitrostyrene (0.2 mmol) and

nitroethane (1.0 mmol) in solvent (0.5 mL). b Isolated yields after

column chromatography purification. c Determined by chiral HPLC

analysis. d Enantiomeric excess for the major syn-diastereomer was

determined by chiral HPLC analysis. e The configuration of the major

syn-diastereomer was assigned to be (S,S) by comparison of the optical

rotation with literature data.6,7 f Nitroethane (0.4 mmol) was used.
g Nitroethane (2.0 mmol) was used.
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(1.49 g, 10.0 mmol) reacted with nitroethane 2a with 1 mol%

catalyst IX to afford the product 3a in 82% yield with 92 : 8 dr

and 94% ee (99% ee was obtained after a simple crystallization).

The transformation of the 1,3-dinitro compound 3a (2.35 g,

10.5 mmol) to the corresponding chiral cyclic thiourea 8 was also

readily gram-scaled without change in enantioselectivity.

In summary, we have developed a squaramide-catalyzed highly

diastereo- and enantioselective direct Michael addition of nitro-

alkanes to nitroalkenes. This catalytic system with a low catalyst

loading (2 mol%) was very effective to afford the corresponding

Michael adducts in high yields with high diastereoselectivities (up

to 95 : 5 dr) and enantioselectivities (up to 97% ee). This process

provides an easy access to optically active 1,3-dinitro compounds.

Moreover, the gram-scale preparation and transformation of the

1,3-dinitro compounds to chiral cyclic thiourea can be performed

well, demonstrating the synthetic potential of this chiral squara-

mide organocatalytic system. Further studies on asymmetric reac-

tions catalyzed by squaramides are underway in our laboratory.
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was assigned to be (S,S) by comparison of the optical rotation with

literature data.6,7

Scheme 1 Further investigation of substrate scope.

Scheme 2 The gram-scale preparation and transformation of 3a.
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