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AbstractÐWhereas the major hydroxylation product of 3b-hydroxy-5a-androstan-17-one by Cephalospor-
ium aphidicola is the 11a-alcohol, the presence of a D5-double bond in the substrate leads to non-

stereospeci®c allylic hydroxylation at C±7. Hydroxylation at C±11 became a minor transformation and
there was no detectable hydroxylation at C±14. # 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

The factors that govern the microbiological hydrox-

ylation of steroids involve a combination of e�ects
based on the site, stereochemistry and nature of the
existing functional groups in the substrate. The rela-

tive contributions of these factors to hydroxylation
by di�erent organisms continues to attract
interest [1]. The fungus, Cephalosporium aphidicola,

has proved to be a useful organism for the micro-
biological hydroxylation of steroids. We have
shown [2] that it will hydroxylate progesterone
®rstly at C±11a and then at C±6b whilst testoster-

one is hydroxylated at C±6b with only minor trans-
formations taking place at C±11a and C±14a [3].
The introduction of unsaturation into ring B has

been shown to signi®cantly a�ect the positions of
hydroxylation by other organisms. Thus compound
1 was hydroxylated at C±15a by Fusarium grami-

nearium whilst the unsaturated analogue 5 was
attacked at the allylic position C±7 [4]. The fungus
Cunninghamella elegans has also been shown [5] to

hydroxylate 3b-hydroxy-androst-5-en-17-one (5) at
C±7a. However, compared to the information
available on the hydroxylation of D4-3-keto ster-
oids, less is known about the hydroxylation of the

D5-androstenes. We have therefore compared the
hydroxylation by C. aphidicola of the unsaturated
steroids 5 and 10 with that of the saturated

analogue 1.

RESULTS AND DISCUSSION

The substrates were incubated with C. aphidicola

for 8 days. The results are given in Table 1. The
sites of hydroxylation were established by the
changes in the 13C NMR spectra (see Table 2) [6]

whilst the stereochemistry followed from a compari-
son with the known 1H NMR patterns [7].
Incubation of 3b-hydroxy-5a-androstan-3-one (1)

with C. aphidicola gave three metabolites which
were separated by chromatography on silica. The
®rst metabolite was identi®ed as the known 3b, 14a-
dihydroxy-5a-androstan-17-one (2) [8] from the

down®eld shifts of the 13C NMR signals assigned
to C±8 (DdC 2.7 ppm), C±13 (DdC 5.0 ppm) and
C±15 (DdC 11.3 ppm) and the g-gauche up®eld

shifts for the signals assigned to C±7 (DdC
6.2 ppm), C±12 (DdC 6.4 ppm) and C±16 (DdC
6.0 ppm) when compared to the starting material.

The second metabolite was 3b, 5a-dihydroxy-5a-
androstan-17-one (3) [9]. There were down®eld
shifts for C±4 (DdC 7.2 ppm) and C±6 (DdC
6.5 ppm) and C±10 (DdC 3.8 ppm) and g-gauche
up®eld shifts for C±1 (DdC 4.6 ppm), C±7 (DdC
5.3 ppm) and C±9 (DdC 8.6 ppm). The H±3a proton
resonance appeared at low ®eld (dH 4.75) in accord-

ance with a transannular 1:3-diaxial interaction
with a hydroxyl group. The major metabolite was
3b,11a,17b-trihydroxy-5a-androstane (4) [10]. The
1H NMR spectrum contained signals characteristic
of H±3a (dH 3.91, t, J= 11 Hz, of t, J= 5 Hz),
H±11b (dH 4.24, t, J= 11.5 Hz, of d, J= 5.5 Hz)

and H±17a (dH 3.94, t, J= 9 Hz). The H±11b sig-
nal received an n.O.e. enhancement on irradiation
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of both the H±18 (dH 1.02) and H±19 (dH 1.11)

resonances of 3.5% and 4.7%, respectively.
Comparison of the 13C NMC spectrum with that of

3b, 17b-dihydroxy-5a-androstane [11] revealed
down®eld shifts for the resonances assigned to C±9

(DdC 6.1 ppm) and C±12 (DdC 12.3 ppm).

The major metabolites obtained from 3b-
hydroxyandrost-5-en-17-one (5) were identi®ed as

the C±7a and C±7b alcohols 6 and 7, respectively,
by comparison of their 1H NMR spectral data with

literature values [5, 12]. Comparison of their 13C
NMR signals with those of the starting material [6]

revealed the anticipated down®eld shifts for C±6

(DdC 4.3 and 6.6 ppm) and C±8 (DdC 6.5 and

9.1 ppm) and a g-gauche shielding for C±9 (DdC 7.2

and 1.4 ppm). The fermentation also produced a
minor amount of 3b, 11a-dihydroxyandrost-5-en-
17-one (8). The 1H NMR spectrum possessed sig-
nals at dH 3.54, (t, J= 10.5 Hz of t, J = 5 Hz) and

dH 3.89 (t, J = 11 Hz, of d, J= 5 Hz) characteristic

of the H±3a and H±11b resonances. The other
minor product was 3b, 5a, 6b-trihydroxy-andro-
stan-17-one (9) which was identi®ed by comparison
with an authentic sample. 3b, 19-Dihydroxy-

androst-5-en-17-one (10) was relatively poorly
metabolized. The 17-ketone was reduced to the 17b-
alcohol (12) which was puri®ed as its triacetate (13).

The alkene was also converted to the 5a, 6b-diol
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(14). We were unable to isolate any products arising
from hydroxylation at C±7 or C±11.
In conclusion we have shown that the introduc-

tion of a (D5-double bond signi®cantly alters the
biotransformation of 3b-hydroxy-5a-androstan-17-
one by C. aphidicola leading to non-stereospeci®c

allylic hydroxylation at C±7 in place of attack at
C±14a and reducing the extent of hydroxylation at
C±11a. However, this allylic hydroxylation did not

appear to take place to any signi®cant extent in the
presence of a 19-hydroxyl group. The 5a, 6b-diols
were probably formed via the 5a, 6a-epoxide. In
this case hydroxylation at C±5a in the saturated

steroid has been replaced by epoxidation of the D5-
double bond.

EXPERIMENTAL

General experimental and fermentation details
have been described previously [13]. The fungus,
C. aphidicola was grown on shake culture.

Incubation of steroids

(a) 3b-Hydroxy-5a-androstan-17-one (1) (1 g) in

EtOH (50 ml) was evenly distributed between 50
¯asks of a 3 day old culture. After a further 7 days

the mycelium was ®ltered and the broth was
extracted with EtOAc. The extract was dried and

the solvent evaporated to give a residue which was
chromatographed on silica. Elution with EtOAc±

petrol (1:3) gave the starting material (137 mg).
Elution with EtOAc±petrol (1:1) gave 3b, 11a,17b-
trihydroxy-5a-androstane (4) (130 mg) which crys-
tallized from Me2CO as needles, mp 245±2478
(lit. [10], 247±2498), IR nmax cmÿ1: 3316. 1H NMR
(pyridine-d5, 500 MHz after 2H2O wash): d 1.02

(3H, s, H3±18), 1.11 (3H, s, H3±19), 3.91 (1H, tt,
J= 5 and 11 Hz, H±3a), 3.94 (1H, t, J = 9 Hz, H±

17a), 4.24 (1H, td, J = 11.5 and 5.5 Hz, H±11b).
Further elution gave 3b, 14a-dihydroxy-5a-andro-
stan-17-one (2) (23 mg) which crystallized from

EtOAc±petrol as needles, mp 217±2208 (lit. [8],
218±2208), IR nmax cmÿ1: 3342. 1H NMR (CDCl3):

d 0.85 (3H, s, H3±18), 1.00 (3H, s H3±19), 3.60
(1H, tt, J = 4.8 and 10.5 Hz, H±3a). Further

elution gave 3b,5a-dihydroxy-5a-androstan-17-one
(3) (43 mg) which crystallized from EtOAc as

needles, mp 279±2808 (lit. [9], 281±2828), IR nmax

cmÿ1: 3393, 1724. 1H NMR (pyridine-d5): d 0.80

(3H, s, H3±18), 1.03 (3H, s, H3±19), 4.75 (1H, tt,
J= 5.3 and 10.3 Hz, H±3a).
(b) 3b-Hydroxyandrost-5-en-17-one (5) (1.5 g) in

DMSO±EtOH (5:1, 30 ml) was evenly distributed
between 50 ¯asks of a 3 day old culture. After a

further 8 days, the mycelium was ®ltered and the
broth was extracted with EtOAc. The extract was

dried and the solvent evaporated to give a residue
which was chromatographed on silica. Elution with

Table 1. Incubation of Steroids with C. aphidicola

Substrate Product %
Yield

3b-Hydroxy-5a-androstan-17-one (1)
3b, 11a, 17b-trihydroxy-5a-androstane (4) 12
3b, 14a-dihydroxy-5a-androstan-17-one (2) 2
3b, 5a-dihydroxy-5a-androstan-17-one (3) 4

3b-Hydroxyandrost-5-en-17-one (5)
3b, 7a-dihydroxyandrost-5-en-17-one (6) 25
3b, 7b-dihydroxyandrost-5-en-17-one (7) 31
3b, 11a-dihydroxyandrost-5-en-17-one (8) 6
3b, 5a, 6b-trihydroxyandrostan-17-one (9) 6

3b, 19-Dihydroxyandrost-5-en-17-one (10)
3b, 17b, 19-trihydroxyandrost-5-ene (12)+ 6
3b, 5a, 6b, 19-tetrahydroxyandrostan-17-one (14) 8

+isolated as the triacetate (13)

Table 2. 13C NMR signals of androstanes determined in CDCl3 at 75 MHz

Compound

Carbon 1 2 3+ 4+ 5 6 7 9 10 11a 13b 14+

1 36.9 36.9 32.3 40.0 37.2 37.5 37.6 32.3 33.9 33.9 33.9 33.9
2 31.4 31.1 31.9 32.1 31.5 32.0 32.0 33.2 31.9 28.2 28.2 32.5
3 70.9 70.8 66.6 68.5 71.4 70.9 71.0 67.3 70.8 73.5 73.6 67.4
4 38.0 37.7 45.2 39.7 42.2 43.4 43.0 42.6 42.7 38.5 38.5 42.7
5 44.8 44.4 74.2 45.9 141.3 145.2 142.7 75.8 137.5 135.2 135.0 75.6
6 28.4 28.0 34.9 29.8 120.8 125.0 127.8 75.9 126.8 126.4 124.6 76.2
7 30.9 24.7 25.3 31.0 31.5 63.7 72.4 34.4 32.1 32.0 31.3 33.0
8 35.0 37.7 34.8 35.4 31.5 38.0 40.6 30.8 32.8 32.9 33.1 32.1
9 54.5 47.2 45.8 61.0 50.3 43.1 48.9 46.0 50.8 50.6 50.4 46.6
10 35.6 35.6 39.4 37.9 36.7 37.8 37.0 39.2 41.7 40.3 40.1 43.9
11 20.5 17.1 21.0 70.5 20.4 20.5 20.8 20.9 21.0 21.3 21.5 21.7
12 31.6 25.2 31.5 49.8 30.8 32.4 32.6 32.4 30.4 30.6 37.3 29.7
13 47.7 52.7 48.1 44.1 47.5 47.3 47.9 48.0 47.8 48.0 42.9 48.6
14 51.4 81.0 51.5 50.8 51.8 45.6 51.9 51.4 52.5 52.5 51.9 52.4
15 21.8 33.1 22.0 23.9 21.8 22.3 25.0 22.0 21.8 22.2 23.9 22.1
16 35.8 29.8 36.1 33.0 35.8 36.0 36.2 35.9 35.8 36.2 27.9 36.1
17 220.8 219.7 220.5 81.1 221.3 220.1 220.3 220.1 221.2 221.2 83.0 220.4
18 13.8 17.9 14.1 13.0 13.5 13.4 13.6 13.8 13.9 14.1 12.5 14.4
19 12.3 12.1 16.2 13.1 19.4 18.4 19.1 17.0 62.6 64.8 64.9 64.7

+determined in pyridine-d5
aacetates 21.5, 21.8 and 171.0 (�2)
bacetates 21.6, 21.8 (�2), 171.0, 171.2 and 171.7
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EtOAc±petrol (1:1) gave 3b, 7b-hydroxyandrost-5-
en-17-one (7) (482 mg) which crystallized from

EtOAc±petrol as needles, mp 2078 (lit. [11], 2158),
IR nmax cmÿ1; 3440, 1726. 1H NMR (pyridine-d5):
d 0.84 (3H, s, H3±18), 0.99 (3H, s, H3±19), 3.85

(1H, tt, J = 5 and 10.5 Hz, H±3a), 4.15 (1H, d,
J = 7.5 Hz, H±7a), 5.71 (1H, s, H±6). Elution with
EtOAc±petrol (3:2) gave 3b, 7a-dihydroxyandrost-
5-en-17-one (6) (389 mg) which crystallized from
EtOAc±petrol as needles, mp 1778 (lit. [11],
182±1838), IR nmax cmÿ1: 3400, 1723. 1H NMR

(pyridine-d5): d 0.86 (3H, s, H3±18), 1.02 (3H, s
H3±19), 3.75 (1H, tt, J = 4.5 and 11 Hz, H±3a),
4.15 (1H, br.s., H±7b), 5.89 (1H, br.s, H±6). Elution
with EtOAc±petrol (7:3) gave 3b, 11a-dihydroxy-
androst-5-en-17-one (8) (95 mg) which crystallized
from EtOA±petrol as prisms, mp 2108 (lit. [10],
211±2138), IR nmax cmÿ1: 3595, 1740. 1H NMR

(CDCl3): d 1.15(3H, s, H3±18), 1.33 (3H, s, H3±19),
3.54 (1H, tt, J = 5 and 10.5 Hz, H±3a), 3.89 (1H, t,
J = 11 Hz of d, J= 5 Hz, H±11b), 5.41 (1H, d,

J = 1.5 Hz, H±6). Elution with EtOAc±petrol (9:1)
gave 3b, 5a, 6b-trihydroxyandrostan-17-one (9)
(89 mg) which crystallized from EtOAc as prisms,

mp 298±3018 (lit. [14], 292±2978) IR nmax cm
ÿ1 3551,

3444, 3348, 1726. 1H NMR (pyridine-d5): d 0.82
(3H, s, H3±18), 1.59 (3H, s, H3±19), 4.16 (1H, s,
H±6), 4.82 (1H, tt, J= 5.5 and 10.5 Hz, H±3a).
(c) 3b, 19-Dihydroxyandrost-5-en-17-one (10)

(1.6 g) in DMSO±EtOH (5:1, 30 ml) was evenly dis-
tributed between 50 ¯asks of a 3 day old culture.

After a further 8 days, the mycelium was ®ltered
and the broth extracted with EtOAc. The extract
was dried and the solvent evaporated to give a resi-

due which was chromatographed on silica. Elution
with EtOAc±petrol (7:3) gave the starting material
(635 mg). Elution with EtOAc±petrol (4:1) gave a
mixture of the starting material and a second com-

pound which was further puri®ed by acetylation
with Ac2O-pyridene overnight and chromatography.
Elution with EtOAc±petrol (1:4) gave 3b,17b,19-
triacetoxy-androst-5-ene (13) (102 mg) which crys-
talized from EtOAc±petrol as plates, mp 908
(lit. [15], 88±898), 1H NMR (CDCl3): d 0.82 (3H, s,

H3±18), 2.03, 2.04 and 2.05 (each 3H, s, OAc), 3.96
and 4.49 (1H, d, J = 12 Hz, H±19), 4.60 (1H, t,
J = 8.5 Hz, H±17a), 4.63 (1H, tt, J= 5 and 11 Hz,

H±3a), 5.66 (1H, br.s, H±6). Elution of the original
column with MeOH±EtOAc (1:9) gave 3b,5a,6b,19-

tetrahydroxyandrostan-17-one (14) (146 mg) which
crystallized from EtOAc as prisms, mp 264±2668
(Found: C, 67.0; H, 8.9. C19H30O5 requires C, 67.4;
H, 8.9%). IR nmax cmÿ1: 3200 (br), 1730 1H NMR
(pyridine-d5): d 0.78 (3H, s, H3±18), 3.94 (1H, d,

J= 2 Hz, H±6), 4.03 and 4.66 (1H, d, J= 12 Hz,
H±19), 4.70 (1H, tt, J = 5 and 10.5 Hz, H±3a).
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