Article

Subscriber access provided by Kaohsiung Medical University

A Four-Component Reaction for the Synthesis of #-Quinoline Allylic Sulfones under Iron Catalysis

Fuhong Xiao, Chao Liu, Shanshan Yuan, Huawen Huang, and Guo-Jun Deng

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b01486 • Publication Date (Web): 03 Aug 2018

Downloaded from http://pubs.acs.org on August 3, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

A Four-Component Reaction for the Synthesis of β-Quinoline Allylic Sulfones under Iron Catalysis

Fuhong Xiao,* Chao Liu, Shanshan Yuan, Huawen Huang, Guo-Jun Deng*

Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory

of Environmentally Friendly Chemistry and Application of Ministry of Education, College of

Chemistry, Xiangtan University, Xiangtan 411105, China.

Fax: (+86)-731-58292251

48 examples, up to 95% yield

ABSTRACT: An efficient strategy for the preparation of allylic sulfones has been developed. In this protocol, readily available 2-methylquinolines or 2-methylbenzothiazoles, sodium sulfinates and dimethylacetamide (DMA) were successfully assembled under user-friendly iron catalysis. And DMA provided two carbons as a dual synthon. A broad range of functionalized heterocyclic allylic sulfones were accessed with a wide functional group tolerance.

■ INTRODUCTION

Quinoline derivatives widely exist in natural products, bioactive pharmaceutical drugs, and functional materials.¹ Among them, 2-alkenylquinoline regards as one of the typical molecular skeletons possessing significant bioactivities.² Moreover, quinoline compounds were also used as significant and versatile structural skeletal frameworks in molecular synthesis. As a result, direct quinoline functionalization has attracted considerable interest in organic

transformations. Alternatively, 2-methylquinolines frequently serve as a versatile nucleophilic coupling partner (*via* enamine intermediate), which undergoes nucleophilic addition reaction to construct the new C–C,³ C–N,⁴ C–O⁵ bonds and among others.⁶ For example, Huang and co-workers described an nucleophilic addition reaction between 2-alkyl azaarenes and the C=N double bonds of *N*-sulfonyl aldimines.⁷ Very recently, significant progress has been made on the C(sp³)–H bond functionalization of 2-alkyl azaarenes through oxidative cross dehydrogenative coupling (CDC).⁸ Given the highly pharmaceutical and synthetic importance of quinolines and other azaarenes in chemistry, the development of environmentally friendly strategies for their direct functionalization is still highly desirable.

Multicomponent reactions (MCRs) have been established as a powerful methodology in molecular synthesis to show overall considerable atom- and step-economy.⁹ Speciffically, many concise multicomponent approaches have been developed to construct C–S bond via the direct $C(sp^3)$ –H bond functionalization.¹⁰ In 2017, Wen and coworkers disclosed the chemoselective formation of allylic sulfones and allylic sulfides from methylketones with DMSO as multi-functional synthons, in which three molecules of DMSO were incorperated into the final products (Scheme 1a).¹¹ Recently, we reported on an iron-catalyzed three-component reaction with *N*,*N*-dimethylacetamide (DMA) as the dual carbon source and sodium sulfinates as the sulfone precursor to afford allylic sulfones (Scheme 1b).¹² As our continuing interest in C–H bond functionalization of methylquinolins including oxidative sulfonylation (Scheme 1c),¹³ herein, we developed a simple and efficient three-component four-molecular approach for the synthesis of allylic sulfones bearing quinoline and benzothiazole motifs from readily available 2-methylheterocycles, sodium sulfinates, and

DMA (Scheme 1d). In this protocol, earth-abundant, cheap and low-toxic iron(III) chloride was used as the most effective catalyst and DMA provides two carbons ($-CH_2$ - and $=CH_2$) as a dual synthon. Most importantly, this work provides a viable and sustainable access to highly functionalized quinolines and benzothiazoles.

Scheme 1. C-S Bond Formation via C(sp³)-H Bond Functionalization.

RESULTS AND DISCUSSION

Synthesis of β -Quinoline Allylic Sulfones. For the optimization of reaction conditions, we chosen 2-methylquinoline (1a) and sodium benzenesulfinate (2a) as starting materials (Table 1). To our pleasure, the corresponding product **3aa** was obtained in 52% yield when the reaction was carried out with FeCl₃ (10 mol%) and K₂S₂O₈ (3.5 equiv) in DMA at 110 °C for 14 h, while other metal salts such as NiCl₂ and CuCl₂ did not give the product (entries 1–3). Then, elevated or reduced reaction temperature could not enhance the transformation (entries 4–5). We also tried to modify the amount of the oxidant, in which 3.5 equiv of K₂S₂O₈ proved to be optimal (entries 6–8). To our delight, the reaction yield was significantly increased when

a mixture of DMA/H₂O (v/v = 10:1) was used as the solvent (entry 9). With this co-solvent system, some other iron catalysts such as Fe(NO₃)₃, Fe(acac)₃, Fe(SO₄)₂ •7H₂O and FeCl₂ •4H₂O provided lower yields (entries 10–13). The variation of the oxidant showed that K₂S₂O₈ was superior to Na₂S₂O₈, oxone and K₂S₂O₅ (entries 14–16). The addition of other protic solvents such as alcohol and CH₃COOH showed that H₂O gave the best result (entries 17–18). Decreasing or increasing the amount of H₂O did not enhance the reaction yields (entries 19–20). Moreover, the desired product was not observed when the reaction was carried out in the absence of the oxidant or iron catalyst (entries 21–22). Finally, air atmosphere found to be superior to oxygen and argon.

 Table 1. Screening reaction Conditions^a

	+ PhSO ₂ Na + N - catalyst solvent									
		1a 2a		3aa						
entry	catalyst	oxidant	solvent	temperature (°C)	yield ^b (%)					
1	NiCl ₂	$K_2S_2O_8$	DMA	110	0					
2	CuCl ₂	$K_2S_2O_8$	DMA	110	trace					
3	FeCl ₃	$K_2S_2O_8$	DMA	110	52					
4	FeCl ₃	$K_2S_2O_8$	DMA	100	24					
5	FeCl ₃	$K_2S_2O_8$	DMA	120	36					
6 ^{<i>c</i>}	FeCl ₃	$K_2S_2O_8$	DMA	110	42					
7^d	FeCl ₃	$K_2S_2O_8$	DMA	110	35					
8 ^e	FeCl ₃	$K_2S_2O_8$	DMA	110	43					
9	FeCl ₃	$K_2S_2O_8$	DMA: $H_2O = 10:1$	110	90					

The Journal of Organic Chemistry

10	Fe(NO ₃) ₃	$K_2S_2O_8$	DMA:H ₂ O = 10:1	110	21
11	Fe(acac) ₃	$K_2S_2O_8$	DMA:H ₂ O = 10:1	110	29
12	FeSO ₄ ·7H ₂ O	$K_2S_2O_8$	DMA:H ₂ O = 10:1	110	5
13	FeCl ₂ ·4H ₂ O	$K_2S_2O_8$	DMA:H ₂ O = 10:1	110	84
14	FeCl ₃	$Na_2S_2O_8$	DMA:H ₂ O = 10:1	110	66
15	FeCl ₃	Oxone	DMA:H ₂ O = 10:1	110	24
16	FeCl ₃	$K_2S_2O_5$	DMA:H ₂ O = 10:1	110	8
17	FeCl ₃	$K_2S_2O_8$	DMA:EtOH = 10:1	110	54
18	FeCl ₃	$K_2S_2O_8$	DMA:AcOH = 10:1	110	45
19	FeCl ₃	$K_2S_2O_8$	DMA: $H_2O = 5:1$	110	85
20	FeCl ₃	$K_2S_2O_8$	DMA: $H_2O = 20:1$	110	77
21	FeCl ₃	-	DMA:H ₂ O = 10:1	110	0
22	-	$K_2S_2O_8$	DMA:H ₂ O = 10:1	110	0
23 ^f	FeCl ₃	$K_2S_2O_8$	DMA:H ₂ O = 10:1	110	54
24 ^g	FeCl ₃	$K_2S_2O_8$	DMA:H ₂ O = 10:1	110	60

^{*a*} Conditions: **1a** (0.2 mmol), **2a** (0.5 mmol), catalyst (10 mol %), oxidant (3.5 equiv), DMA (2.0 mL), 110 ^oC, 14 h, under air atmosphere. ^{*b*} Isolated yield based on **1a**. ^{*c*} K₂S₂O₈ (3.0 equiv). ^{*d*} K₂S₂O₈ (2.5 equiv). ^{*e*} **2a** (1.5 equiv). ^{*f*} O₂ atmosphere. ^{*g*} Ar atmosphere.

Besides the established DMA as the one carbon synthon, we screened other small molecular compounds which can provide carbon sources for the present four-component reaction (Scheme 2). When *N*,*N*-dimethylpropionamide (DMPA) was used, moderate yield of **3aa** was

ACS Paragon Plus Environment

observed, while other candidates of carbon sources such as *N*,*N*-dimethylformamide (DMF), *N*,*N*-diethylformamide (DEF), dimethyl sulfoxide (DMSO), *N*-methylpyrrolidone (NMP) and tetramethylethylenediamine (TMEDA) did not afford the desired products. These results show the unique feature of DMA in the reaction system.

Scheme 2. One Carbon Synthons.^a

^a Conditions: **1a** (0.2 mmol), **2a** (0.5 mmol), FeCl₃ (10 mol %), K₂S₂O₈ (3.5 equiv), 'C1' (2.0 mL), 110 °C, 14 h, air atmosphere.

We also investigated other frequently employed sulfone sources for the formation of quinolinyl allylic sulfones (Scheme 3). Unexpectedly, the desired reaction did not occur with sulfonohydrazide and sulfonyl chloride, while modest yield of **3aa** was obtained when we use sulfonothioate instead of sodium benzenesulfinate. Notably, allylicthioether **3a** was formed when 4-methylbenzenethiol was subjected to the standard reaction conditions, while 1,2-di-*p*-tolyldisulfane could not afford the allylicthioether product.

Scheme 3. Other Sulfone Sources.

With the optimized reaction conditions established, a variety of sodium sulfinates were examined for the multi-component transformation (Scheme 4). Generally, a range of *para*-substituted phenyl sodium sulfinates reacted smoothly with **1a** to provide β -quinoline allylic sulfones (**3ab–3ai**) in moderate to high yields. A variety of functional groups on the benzene ring such as alkyl (**2b–2c**), methoxy (**2d**), nitro (**2e**), halo (**2f–2h**) and trifluoromethyl (**2i**) were all well tolerated. Notably, carbon–halogen bond cleavage of the substrates was not observed in the present system. The reaction yield decreased dramatically when sodium 4-nitrobenzenesulfinate (**2e**) was used as the substrate, probably because of the highly electron-withdrawing effect. Naphthylsulfinic acid sodium salts furnished the corresponding product **3aj** and **3ak** in 71% and 69% yield, respectively. To our delight, in addition to aromatic sodium sulfinates, relatively lower reactive cyclopropanesulfinate (**2l**) could also react with 2-methylquinoline, providing the desired products **3al** in 41% yield, while other aliphatic sodium sulfinates including sodium trifluoromethanesulfinate did not afford the corresponding products.

Scheme 4. Substrate Scope with Respect to Sodium Sulfinates.

Reaction conditions: 1a (0.2 mmol), 2 (0.5 mmol), FeCl₃ (10 mol %), $K_2S_2O_8$ (3.5 equiv), DMA (2.0 mL), H₂O (0.2 mL), 14 h, 110 °C, under air. Isolated yield based on 1a.

To further explore the generality and limitations of the multi-component sulfonylation, other 2-methylazaarenes were treated with sodium benzenesulfinate 2a (Scheme 5). Moderate yields were obtained for 2-methylquinolines with electron-donating groups such as methyl (1b), alkoxy (1c, 1l and 1m) and phenyl (1d) were presented at the C6 or C8-position. The quinolins bearing electron-withdrawing acetyl (1e), nitro (1f) and trifluoromethyl (1g) groups afforded the desired products in slightly lower yields. Notably, halogen substituted substrates reacted well under the conditions bulky optimized reaction (3ha-3ka). The 3-methylbenzo[*f*]quinoline (1n)also showed excellent reactivity. Apart from 2-methylquinolines, other methyl substituted quinolines such as 1-methylisoquinoline (10), 4-methylquinoline (1p) and 2-methylquinoxaline (1q) could also be applied in this reaction system to provide the corresponding products in moderate to good yields. However, very low yield was obtained when using 2-methylpyridine (1r) as the substrate. Unexpectedly, 2-methyl-1,4-naphthyridine bearing a 3-phenyl group could not convert to the corresponding

product, and instead sulfonylmethylation product 3sa was obtained.

Scheme 5. Substrate Scope with Respect to Methyl aza-Heterocycles.

Reaction conditions: 1 (0.2 mmol), 2a (0.5 mmol), FeCl₃ (10 mol %), $K_2S_2O_8$ (3.5 equiv), DMA (2.0 mL), H_2O (0.2 mL), 14 h, 110 °C, under air. Isolated yield based on 1.

Benzothiazole and its derivatives are widespread in pharmaceuticals, functional materials and biological systems.¹⁴ To our delight, 2-methylbenzothiazoles could also convert to the corresponding products with sodium sulfinates and DMA under the optimized reaction conditions (Scheme 6). The reaction of 2-methylbenzothiazole (4a) and sodium benzenesulfinate (2a)generated the corresponding 2-[3-(phenylsulfonyl)prop-1-en-2-yl]benzo[d]thiazole 5aa in 68% isolated yield. The haloand methoxyl-2-methylbenzothiazoles (5ba-5ea) were also smoothly reacted sodium benzenesulfinate (2a), affording the target products in moderate yields. The desired product 5fa was obtained in 50% yield when 2-methylnaphtho[2,1-d]thiazole (4f) was used as the substrate. Furthermore, The reactions with sodium benzenesulfinates bearing

electron-donating groups substituents at the *para*-position proceeded smoothly to give the desired products (**5ab**-**5ad**). Lower yields were obtained when sodium 4-nitrobenzenesulfinate (**2e**) and sodium 4-(trifluoromethyl)benzenesulfinate (**2i**) were used as the substrates, probably because of the highly electron-withdrawing effect. Under the optimized conditions, halogen substituents were all well tolerated and afforded the desired products (**5af**-**5ah**) in good yields.

Scheme 6. Substrate Scope with Respect to 2-Methylbenzothiazoles.

Reaction conditions: **4** (0.2 mmol), **2** (0.5 mmol), $FeCl_3$ (10 mol %), $K_2S_2O_8$ (3.5 equiv), DMA (2.0 mL), H_2O (0.2 mL), 14 h, 110 °C, under air. Isolated yield based on **4**.

The reaction convergence was reflected by the substrate limitations to above methyl *aza*-heterocycles. A range of other methylheterocycles such as 8-methylquinoline, 2-methylbenzo[d]imidazole, 2-methylbenzo[d]oxazole, 2-methylpyrazine, and so forth, failed to react with sodium sulfinates and DMA under the standard reaction conditions (Scheme 7a). When 2-methylindole was used, the sulfonylmethylation product 7 at C3-position of indole

was obtained in 35% yield (Scheme 7b). When the intramolecular competition reaction of 1-(3-methylquinoxalin-2-yl)ethanone **8** with **2a** was carried out under the standard reaction conditions, only the benzyl C–H sulfonylmethylation product **9** was obtained in 21% yield, while the α -methyl group to carbonyl did not participated (Scheme 7c).¹² Unexpectedly, the disulfonylmethylation product **11** was obtained when using 2,3-dimethylquinoxaline **10** as the substrate. To our delight, the reaction yield was significantly increased to 81% when 7.0 equiv. sodium benzenesulfinate (**2a**) was used. (Scheme 7d).

Scheme 7. Other Methylheterocycles.

a) failed methylheterocycles:

The 2-(3-(phenylsulfonyl)prop-1-en-2-yl)quinoline product **3aa** was obtained in 72% yield in a gram-scale reaction. We further evaluated the ozonolysis reaction of **3aa**. When **3aa** was dissolved in CH_2Cl_2 and cooled to -78 °C, O₃ gas was bubbled into the mixture for 20 min.

Then, The O_3 was removed by bubbled in N_2 (2 min), Me₂S was added dropwise. The mixture was stirred at -78 °C for about 10 min, then allowed to stir at r.t. 1 h. The product 2-(phenylsulfonyl)-1-(quinolin-2-yl)ethanone (12) was obtained in 49% yield (Scheme 8).

Scheme 8. Ozonolysis Reaction.

Mechanistically, the model reaction was significantly inhibited by the addition of 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) or butylated hydroxytoluene (BHT) as a radical scavenger under the standard conditions (Scheme 9a). Hence, we speculate that the present multi-component reaction proceed through a radical process. Moreover, we employed 2-vinylquinoline as the starting material under the standard conditions, in which the corresponding product **3aa** was obtained in 30% yield (Scheme 9b).

Scheme 9. Control Experiments.

According to our previous work and related references,^{12,15} a proposed mechanism is proposed in Figure 1. Initially, DMA was gradually oxidized to generate the iminium species **B** in the $[Fe]/K_2S_2O_8$ -based system. 2-methylquinoline **1a** can be isomerized to **C** by the Brønsted acid-promoted, and treatment of the iminium species **B** with intermediate **C** affords the intermediate product 2-vinylquinoline **1a**'. Then sodium benzenesulfinate **2a** with 2-vinylquinoline **1a**' undergoes Michael-type addition reaction to afford the anion intermediate **D**. Finally **D** and **B** undergoes nucleophilic addition reaction, followed by elimination methylamide to give the final product **3aa**.

Figure 1. Possible reaction mechanism.

CONCLUSIONS

In summary, we have developed an iron-catalyzed oxidative benzylic C–H functionalization of 2-methylquinolines and 2-methylbenzothiazoles with sodium sulfinates and DMA under mild conditions. In this system, two carbon-carbon bonds and one carbon-sulfur bond were formed with high chemo-selectivity. Moreover, the broad functional group tolerance makes this method attractive for the synthesis of highly functionalized quinoline and benzothiazole derivatives.

EXPERIMENTAL SECTION

General Methods. All reactions were carried out under an atmosphere of air. Column chromatography was performed using silica gel 48-75 µm. ¹H NMR and ¹³C NMR spectra were recorded on Bruker-AV (400 and 100 MHz, respectively) instrument internally referenced to tetramethylsilane (TMS) or chloroform signals. Mass spectra were measured on Agilent 5975

GC-MS instrument (EI). HRMS was conducted using electrospraying ionization (ESI) and was performed on a Thermo Scientific LTQ Orbitrap XL. The structures of known compounds were further corroborated by comparing their ¹H NMR, ¹³C NMR data and MS data with those of literature. Most reagents were obtained from commercial suppliers and used without further purification.

General Procedure for the Synthesis of 3 or 5. A 10 mL oven-dried reaction vessel was charged with $K_2S_2O_8$ (189.2 mg, 0.7 mmol), FeCl₃ (4.0 mg, 0.02 mmol), 2-methylquinoline (1a, 27.0 µL, 0.2 mmol), sodium benzenesulfinate (2a, 82.0 mg, 0.5 mmol), DMA (2.0 mL) and H₂O (0.2 mL) under air. The sealed reaction vessel was stirred at 110 °C for 14 h. After cooling to room temperature, the reaction was diluted with ethyl acetate (3.0 mL) and washed with saturated sodium chloride solution. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate for three times. The combined organic layer was dried over magnesium sulfate and the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) to yield the desired product 3aa as white solid (55.6 mg, 90% yield), mp = 92-95 °C.

2-[3-(Phenylsulfonyl)prop-1-en-2-yl]quinoline (3aa). White solid (55.6 mg, 90% yield), mp = 92-95 °C. ¹H NMR (400 MHz, CDCl₃) *δ* 7.99 (d, *J* = 8.6 Hz, 1H), 7.80-7.75 (m, 3H), 7.70 (d, *J* = 8.1 Hz, 1H), 7.65-7.62 (m, 1H), 7.57 (d, *J* = 8.6 Hz, 1H), 7.49-7.45 (m, 1H), 7.23-7.17 (m, 3H), 6.18 (s, 1H), 5.88 (s, 1H), 4.87 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) *δ* 154.6, 146.7, 138.9, 137.1, 136.3, 132.9, 129.4, 128.5, 128.4, 127.2, 126.9, 126.6, 124.1, 117.6, 58.9. HRMS (ESI) calcd. for: C₁₈H₁₅NO₂S⁺ (M+H)⁺ 310.0896, found 310.0899.

2-(3-Tosylprop-1-en-2-yl)quinoline (3ab). White solid (59.5 mg, 92% yield), mp = 149-152 °C. ¹H

NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 8.6 Hz, 1H), 7.77 (d, J = 8.4 Hz, 1H), 7.71 (d, J = 8.1 Hz, 1H), 7.65-7.57 (t, 4H), 7.49-7.45 (m, 1H), 6.93 (d, J = 8.0 Hz, 2H), 6.16 (s, 1H), 5.86 (s, 1H), 4.83 (s, 2H), 2.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 146.8, 144.0, 137.4, 136.2, 136.0, 129.5, 129.3, 129.0, 128.5, 127.1, 126.9, 126.7, 124.1, 117.9, 59.2, 21.2. HRMS (ESI) calcd. for: C₁₉H₁₈NO₂S⁺ (M+H)⁺ 324.1053, found 324.1055.

2-{3-[(4-tert-Butylphenyl)sulfonyl]prop-1-en-2-yl}quinoline (3ac). White solid. (38.0 mg, 52% yield), mp = 157-160 °C.¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.6 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.67-7.59 (m, 4H), 7.53 (d, J = 8.7 Hz, 1H), 7.44 (t, J = 7.5 Hz, 1H), 7.08 (d, J = 8.5 Hz, 2H), 6.19 (s, 1H), 5.94 (s, 1H), 4.85 (s, 2H), 0.97 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 156.7, 154.5, 146.7, 137.3, 136.19, 135.6, 129.4, 128.5, 127.1, 126.8, 126.6, 125.2, 124.2, 117.6, 58.9, 34.7, 30.6. HRMS (ESI) calcd. for: C₂₂H₂₄NO₂S⁺ (M+H)⁺ 366.1522, found 366.1524.

2-{3-[(4-Methoxyphenyl)sulfonyl]prop-1-en-2-yl}quinoline (3ad). White solid (40.7 mg, 60% yield), mp = 151-154 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 8.6 Hz, 1H), 7.81 (d, J = 7.5 Hz, 1H), 7.72 (d, J = 8.1 Hz, 1H), 7.65-7.63 (m, 3H), 7.57 (d, J = 8.7 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H), 6.57 (d, J= 8.7 Hz, 2H), 6.16 (s, 1H), 5.87 (s, 1H), 4.83 (s, 2H), 3.54 (d, J = 0.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 154.8, 146.7, 137.5, 136.3, 130.7, 130.4, 129.4, 127.2, 126.9, 126.6, 124.1, 117.9, 113.6, 59.4, 55.3. HRMS (ESI) calcd. for: C₁₉H₁₈NO₃S⁺ (M+H)⁺ 340.1002, found 340.1007.

2-{3-[(4-Nitrophenyl)sulfonyl]prop-1-en-2-yl}quinoline (3ae). Yellow solid (18.4 mg, 26% yield), mp = 200-203 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.6 Hz, 1H), 7.92-7.87 (m, 4H), 7.69 (d, J = 8.1 Hz, 1H), 7.62-7.60 (m, 3H), 7.48-7.4 (m, 1H), 6.27 (s, 1H), 6.01 (s, 1H), 4.92 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 153.8, 149.8, 146.4, 144.7, 136.6, 130.0, 129.8, 128.9, 127.4, 127.2, 126.9, 124.8, 123.3, 117.5, 59.4. HRMS (ESI) calcd. for: C₁₈H₁₅N₂O₄S⁺ (M+H)⁺ 355.0747, found 355.0751. 2-{3-[(4-Fluorophenyl)sulfonyl]prop-1-en-2-yl}quinoline (3af). White solid (48.5 mg, 74% yield), mp
= 222-225 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.6 Hz, 1H), 7.79-7.73 (m, 4H), 7.67-7.62 (t, 1H), 7.58 (d, J = 8.7 Hz, 1H), 7.51-7.46 (m, 1H), 6.87-6.77 (m, 2H), 6.20 (s, 1H), 5.91 (s, 1H), 4.86 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.3 (d, J = 254.16 Hz), 154.3, 146.7, 137.1, 136.4, 136.0, 135.0, 131.4 (d, J = 9.52 Hz), 129.4 (d, J = 37.57 Hz), 127.2, 126.9, 126.8, 124.2, 117.5, 115.5 (d, J = 22.72 Hz), 59.0. HRMS (ESI) calcd. for: C₁₈H₁₅FNO₂S⁺ (M+H)⁺ 328.0802, found 328.0804.

2-{3-[(4-Chlorophenyl)sulfonyl]prop-1-en-2-yl}quinoline (3ag). White solid. (65.3 mg, 95% yield), mp = 251-254 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.6 Hz, 1H), 7.74 (d, J = 7.5 Hz, 2H), 7.70-7.65 (m, 3H), 7.59 (d, J = 8.7 Hz, 1H), 7.51 (dd, J₁ = 11.4, J₂ = 4.5 Hz, 1H), 7.11 (d, J = 8.6 Hz, 2H), 6.21 (s, 1H), 5.92 (s, 1H), 4.87 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 154.3, 146.6, 139.8, 137.44, 137.42, 137.0, 136.5, 130.0, 129.7, 129.1, 128.6, 127.3, 126.9, 124.4, 117.6, 59.2. HRMS (ESI) calcd. for: C₁₈H₁₅CINO₂S⁺ (M+H)⁺ 344.0507, found 344.0508.

2-{3-[(4-Bromophenyl)sulfonyl]prop-1-en-2-yl}quinoline (3ah). White solid. (73.0 mg, 94% yield), mp = 234-237 °C.¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.6 Hz, 1H), 7.73 (d, J = 8.7 Hz, 2H), 7.69-7.67 (m, 1H), 7.58-7.55 (m, 3H), 7.51-7.47 (m, 1H), 7.27-7.25 (m, 2H), 6.20 (s, 1H), 5.91 (s, 1H), 4.85 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 154.3, 146.6, 138.0, 137.1, 136.5, 131.6, 130.0, 129.7, 129.2, 128.4, 127.3, 126.9, 124.4, 117.6, 59.3. HRMS (ESI) calcd. for: C₁₈H₁₅BrNO₂S⁺ (M+H)⁺ 388.0001, found 388.0004.

2-{3-[(4-(Trifluoromethyl)phenyl)sulfonyl]prop-1-en-2-yl}quinoline (3ai). White solid. (47.5 mg, 63% yield), mp = 249-251 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.7 Hz, 1H), 7.83 (d, J = 8.1 Hz, 2H), 7.68 (d, J = 8.1 Hz, 1H), 7.64-7.58 (m, 2H), 7.55 (d, J = 8.7 Hz, 1H), 7.49-7.45 (m, 1H), 7.34 (d, J = 8.2 Hz, 2H), 6.22 (s, 1H), 5.96 (s, 1H), 4.89 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 154.0, 146.4,

 142.4, 136.9, 136.4, 134.4 (q, J = 3.69 Hz), 129.7, 129.2, 128.9, 127.2, 126.9, 126.8, 125.3 (q, J = 32.79 Hz), 124.5, 122.8 (q, J = 271.43 Hz), 117.4, 59.2. HRMS (ESI) calcd. for: $C_{19}H_{15}F_3NO_2S^+$ (M+H)⁺ 378.0770, found 378.0773. **2-[3-(Naphthalen-1-ylsulfonyl)prop-1-en-2-yl]quinoline (3aj).** White solid. (51.0 mg, 71% yield), mp = 203-206 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.95 (d, J = 8.7 Hz, 1H), 8.04 (dd, $J_1 = 7.3$, $J_2 = 1.2$ Hz, 1H), 7.87 (d, J = 8.6 Hz, 1H), 7.73-7.60 (m, 4H), 7.50-7.38 (m, 4H), 7.25-7.21 (m, 2H), 6.12 (s, 1H), 5.88 (s, 1H), 5.05 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 146.5, 137.2, 136.0, 134.6, 134.3, 133.8, 130.8, 129.2, 129.1, 128.7, 128.3, 127.0, 126.7, 126.6, 126.4, 124.8 124.1, 123.7, 117.7, 58.7. HRMS (ESI) calcd. for: $C_{22}H_{18}NO_2S^+$ (M+H)⁺ 360.1053, found 360.1057. **2-[3-(Naphthalen-2-ylsulfonyl)prop-1-en-2-yl]quinoline (3ak).** White solid. (49.6 mg, 69% yield), mp

= 200-203 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.84 (s, 1H), 7.84 (m, 1H), 7.75-7.72 (m, 2H), 7.60-7.43 (m, 7H), 7.39-7.37(m, 1H), 6.16 (s, 1H), 5.90 (s, 1H), 4.95 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 154.6, 146.5, 137.4, 136.1, 135.8, 134.8, 131.6, 130.3, 129.2, 129.1, 128.9, 128.7, 128.5, 127.5, 127.1, 127.0, 126.7, 126.4, 124.1, 123.2, 117.7, 59.4.HRMS (ESI) calcd. for: C₂₂H₁₈NO₂S⁺ (M+H)⁺ 360.1053, found 360.1054.

2-[3-(Cyclopropylsulfonyl)prop-1-en-2-yl]quinoline (3al). White solid (22.4 mg, 41% yield). mp = $131-134 \,^{\circ}C.^{1}H$ NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.7 Hz, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.82 (d, J = 8.7 Hz, 2H), 7.74-7.70 (m, 1H), 7.57-7.53 (m, 1H), 6.31 (s, 1H), 6.04 (s, 1H), 4.79 (s, 2H), 2.31-2.24 (m, 1H), 1.16-1.11 (m, 2H), 0.67-0.63 (m, 2H). ^{13}C NMR (100 MHz, CDCl₃) δ 155.1, 147.1, 137.1, 136.7, 129.9, 129.4, 127.5, 127.3, 126.9, 124.3, 117.7, 56.7, 29.9, 4.9. HRMS (ESI) calcd. for: $C_{15}H_{16}NO_2S^+$ (M+H)⁺ 274.0896, found 274.0898.

6-Methyl-2-[3-(phenylsulfonyl)prop-1-en-2-yl]quinoline (3ba). White solid (39.5 mg, 61% yield), mp

= 153-156 °C. ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.89 (d, *J* = 8.6 Hz, 1H), 7.77-7.75 (m, 2H), 7.67 (d, *J* = 8.5 Hz, 1H), 7.53 (d, *J* = 8.6 Hz, 1H), 7.46-7.44 (m, 2H), 7.26-7.17 (m, 3H), 6.14 (s, 1H), 5.85 (s, 1H), 4.85 (s, 2H), 2.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 153.8, 145.3, 138.9, 137.2, 136.6, 135.6, 132.9, 131.7, 129.1, 128.5, 128.3, 127.0, 126.1, 123.6, 117.6, 58.9, 21.6. HRMS (ESI) calcd. for: C₁₉H₁₈NO₂S⁺ (M+H)⁺ 324.1053, found 324.1057.

6-Methoxy-2-[3-(phenylsulfonyl)prop-1-en-2-yl]quinolone (3ca). White solid (50.9 mg, 75% yield), mp = 153-157 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.6 Hz, 1H), 7.77-7.74 (m, 2H), 7.66 (d, *J* = 9.1 Hz, 1H), 7.53 (d, *J* = 8.7 Hz, 1H), 7.28-7.17 (m, 4H), 6.96 (d, *J* = 2.8 Hz, 1H), 6.12 (s, 1H), 5.81 (s, 1H), 4.84 (s, 2H), 3.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.9, 152.2, 142.7, 138.9, 137.0, 135.0, 132.9, 130.8, 128.5, 128.3, 127.9, 123.0, 122.0, 117.9, 104.8, 58.9, 55.5. HRMS (ESI) calcd. for: C₁₉H₁₈NO₃S⁺ (M+H)⁺ 340.1002, found 340.1003.

6-Phenyl-2-[3-(phenylsulfonyl)prop-1-en-2-yl]quinolone (3da). White solid (34.7 mg, 45% yield), mp = 157-160 °C. ¹H NMR (400 MHz, CDCl3) δ 8.03 (d, J = 8.6 Hz, 1H), 7.91-7.86 (m, 3H), 7.80-7.78 (m, 2H), 7.72-7.70 (m, 2H), 7.60 (d, J = 8.7 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 7.42 (dd, J = 4.8, 3.7 Hz, 1H), 7.26-7.22 (m, 3H), 6.19 (s, 1H), 5.88 (s, 1H), 4.88 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 154.6, 146.1, 140.1, 139.3, 138.9, 137.1, 136.5, 133.0, 129.8, 129.1, 129.0, 128.6, 128.4, 127.8, 127.3, 127.1, 124.9, 124.1, 118.1, 58.9. HRMS (ESI) calcd. for: C₂₄H₂₀NO₂S⁺ (M+H)⁺ 386.1209, found 386.1212.

2-[3-(Phenylsulfonyl)prop-1-en-2-yl]quinoline-6-carboxylate (3ea). Yellow solid (17.6 mg, 24% yield), mp = 173-176 °C. ¹H NMR (400 MHz, CDCl3) δ 8.49-8.48 (m, 1H), 8.24-8.21 (m, 1H), 8.12 (d, J = 8.6 Hz, 1H), 7.87 (d, J = 8.7 Hz, 1H), 7.78-7.76 (m, 2H), 7.67 (d, J = 8.7 Hz, 1H), 7.26-7.20 (m, 3H), 6.26 (s, 1H), 5.96 (s, 1H), 4.87 (s, 2H), 4.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 156.8, 148.7, 139.0, 137.6, 137.0, 133.1, 130.3, 129.7, 129.1, 128.6, 128.5, 128.1, 126.1, 125.5, 118.5, 58.9,

52.5. HRMS (ESI) calcd. for: $C_{20}H_{18}NO_4S^+$ (M+H)⁺ 368.0951, found 368.0954.

6-Nitro-2-[3-(phenylsulfonyl)prop-1-en-2-yl]quinolone (3fa). Yellow solid (19.8 mg, 28% yield), mp = 174-177 °C. ¹H NMR (400 MHz, CDCl3) δ 8.70 (d, *J* = 2.5 Hz, 1H), 8.42-8.40 (m, 1H), 8.22 (d, *J* = 8.7 Hz, 1H), 7.95 (d, *J* = 9.2 Hz, 1H), 7.87-7.66 (m, 3H), 7.33-7.23 (m, 3H), 6.32 (s, 1H), 6.00 (s, 1H), 4.85 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.1, 148.9, 145.5, 138.9, 138.1, 136.6, 133.3, 131.0, 128.59, 128.55, 126.7, 125.7, 124.0, 123.1, 119.6, 58.7. HRMS (ESI) calcd. for: C₁₈H₁₅N₂O₄S⁺ (M+H)⁺ 355.0747, found 355.0749.

2-[3-(Phenylsulfonyl)prop-1-en-2-yl]-6-(trifluoromethyl)quinoline (3ga). White solid (35.5 mg, 47% yield), mp = 135-138 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.7 Hz, 1H), 8.03 (s, 1H), 7.92 (d, J = 8.8 Hz, 1H), 7.82-7.77 (m, J = 8.3, 6.2, 1.8 Hz, 3H), 7.71 (d, J = 8.7 Hz, 1H), 7.31-7.22 (m, 3H), 6.26 (s, 1H), 5.95 (s, 1H), 4.85 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 156.8 147.8, 138.9 137.1 136.8, 133.1, 130.6, 129.1, 128.2, 128.53, 128.49, 125.94 (q, J = 169.58 Hz), 125.90, 125.5, 125.1 (q, J = 2.78 Hz), 118.9, 58.8. HRMS (ESI) calcd. for: C₁₉H₁₅F₃NO₂S⁺ (M+H)⁺ 378.0770, found 378.0772.

6-Chloro-2-[3-(phenylsulfonyl)prop-1-en-2-yl]quinoline (3ha). White solid (50.3 mg, 73% yield), mp = 91-94 °C.¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.7 Hz, 1H), 7.78-7.69 (m, 4H), 7.62-7.55 (m, 2H), 7.28-7.20 (m, 3H), 6.19 (s, 1H), 5.89 (s, 1H), 4.83 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 154.9, 145.1, 138.9, 136.8, 135.5, 133.1, 132.4, 131.0, 130.4, 128.5, 128.4, 127.5, 125.9, 124.7, 118.5, 58.8. HRMS (ESI) calcd. for: C₁₈H₁₅ClNO₂S⁺ (M+H)⁺ 344.0507, found 344.0509.

6-Bromo-2-[3-(phenylsulfonyl)prop-1-en-2-yl]quinoline (3ia). White solid (59.0 mg, 76% yield), mp = 195-198 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.7 Hz, 1H), 7.87 (d, J = 1.9 Hz, 1H), 7.77-7.75 (m, 2H), 7.71-7.65 (m, 2H), 7.61 (d, J = 8.7 Hz, 1H), 7.28-7.20 (m, 3H), 6.20 (s, 1H), 5.90 (s, 1H), 4.83 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 155.0, 145.3, 138.9, 136.9, 135.4, 133.1, 133.0, 131.0,

129.3, 128.6, 128.5, 128.0, 124.8, 120.6, 118.6, 58.8. HRMS (ESI) calcd. for: for: C₁₈H₁₅BrNO₂S⁺ (M+H)⁺ 388.0001, found 388.0005.

6-Iodo-2-[3-(phenylsulfonyl)prop-1-en-2-yl]quinoline (3ja). White solid (47.9 mg, 55% yield), mp = 119-121 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 1.6 Hz, 1H), 7.95-7.87 (m, 2H), 7.79-7.77 (m, 2H), 7.62 (d, J = 8.7 Hz, 2H), 7.30-7.22 (m, 3H), 6.22 (s, 1H), 5.92 (s, 1H), 4.85 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 155.1, 145.7, 138.9, 138.2, 136.9, 136.0, 135.1, 133.1, 131.1, 128.5, 128.4, 124.7, 118.3, 92.2, 58.8. HRMS (ESI) calcd. for: C₁₈H₁₅INO₂S⁺ (M+H)⁺ 435.9863, found 435.9864.

7-Chloro-2-[3-(phenylsulfonyl)prop-1-en-2-yl]quinoline (3ka). Yellow solid (37.1 mg, 54% yield), mp = 102-105 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.6 Hz, 1H), 7.78-7.76 (m, 3H), 7.65-7.58 (m, 2H), 7.43-7.40 (m, 1H), 7.30-7.22 (m, 3H), 6.20 (s, 1H), 5.89 (s, 1H), 4.82 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 147.1, 139.0, 136.9, 136.1, 135.2, 133.0, 128.47, 128.46, 128.4, 128.3, 127.6, 125.2, 124.8, 117.8, 58.9. HRMS (ESI) calcd. for: C₁₈H₁₅CINO₂S⁺ (M+H)⁺ 344.0507, found 344.0508. *8-Methoxy-2-[3-(phenylsulfonyl)prop-1-en-2-yl]quinoline (3la).* White solid (48.2 mg, 71% yield), mp = 138-141 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.6 Hz, 1H), 7.78-7.76 (m, 2H), 7.56 (d, J = 8.6 Hz, 1H), 7.42-7.38 (m, 1H), 7.29-7.27 (m, 1H), 7.20-7.13 (m, 3H), 6.99 (d, J = 7.7 Hz, 1H), 6.12 (s, 1H), 5.82 (s, 1H), 4.92 (s, 2H), 4.05 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 153.6, 138.72, 138.69, 137.3, 136.2, 132.7, 128.6, 128.11, 128.06, 126.9, 123.7, 119.1, 118.4, 108.1, 59.1, 55.9. HRMS (ESI) calcd. for: C₁₉H₁₈NO₃S⁺ (M+H)⁺ 340.1002, found 340.1003.

8-Ethoxy-2-[3-(phenylsulfonyl)prop-1-en-2-yl]quinoline (3ma). White solid (55.8 mg, 79% yield), mp
= 105-108 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.7 Hz, 1H), 7.76-7.74 (m, 2H), 7.65 (d, J = 9.2 Hz, 1H), 7.51 (d, J = 8.7 Hz, 1H), 7.27-7.26 (m, 4H), 6.94 (d, J = 2.7 Hz, 1H), 6.10 (s, 1H), 5.80 (s, 1H), 4.84 (s, 2H), 4.11 (q, J = 7.0 Hz, 2H), 1.47 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ

157.2, 152.1, 142.6, 138.9, 137.0, 135.0, 132.9, 130.7, 128.5, 128.3, 128.0, 122.9, 122.2, 117.8, 105. 5,
63.7, 58.9, 14.7. HRMS (ESI) calcd. for: C₂₀H₂₀NO₃S⁺ (M+H)⁺ 354.1158, found 354.1158. **3-[3-(Phenylsulfonyl)prop-1-en-2-yl]benzo[f]quinoline (3na).** Yellow solid (54.6 mg, 76% yield), mp
= 124-127 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.72 (d, J = 8.7 Hz, 1H), 8.49 (d, J = 7.8 Hz, 1H),
7.88-7.86 (m, 2H), 7.79-7.75 (m, 2H), 7.70-7.60 (m, 4H), 7.18-7.16 (m, 3H), 6.19 (s, 1H), 5.85 (s, 1H),
4.87 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 154.1, 146.6, 138.8, 136.8, 133.0, 131.6, 131.0, 130.7,

129.2, 128.6, 128.5, 128.3, 128.0, 127.2, 127.0, 124.0, 123.8, 122.6, 117.7, 58.9. HRMS (ESI) calcd. for: C₂₂H₁₈NO₂S⁺ (M+H)⁺ 360.1053, found 360.1055.

1-[3-(Phenylsulfonyl)prop-1-en-2-yl]isoquinoline (30a). White solid (35.9 mg, 58% yield), mp = 92-95 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.32-8.30 (m, 2H), 7.76 (d, J = 8.2 Hz, 1H), 7.68-7.61 (m, 3H), 7.59-7.55 (m, 1H), 7.44 (d, J = 5.6 Hz, 1H), 7.31-7.27 (m, 1H), 7.15 (t, J = 7.8 Hz, 2H), 5.97 (s, 1H), 5.72 (s, 1H), 4.75 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 157.8, 140.9, 138.6, 136.8, 134.4, 133.1, 130.1, 128.4, 128.0, 127.4, 127.3, 126.90, 126.87, 126.2, 120.2, 62.7. HRMS (ESI) calcd. for: C₁₈H₁₆NO₂S⁺ (M+H)⁺ 310.0896, found 310.0899.

4-[3-(Phenylsulfonyl)prop-1-en-2-yl]quinoline (3pa). Yellow oli (50.0 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.73 (d, *J* = 4.4 Hz, 1H), 8.09 (d, *J* = 8.4 Hz, 1H), 7.87 (d, *J* = 7.8 Hz, 1H), 7.73-7.64 (m, 3H), 7.54-7.49 (m, 2H), 7.34 (t, *J* = 7.9 Hz, 2H), 7.07 (d, *J* = 4.4 Hz, 1H), 5.84 (s, 1H), 5.62 (s, 1H), 4.35 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 149.6, 148.3, 146.3, 138.4, 133.7, 133.2, 130.0, 129.4, 128.9, 128.1, 127.2, 126.9, 125.5, 124.7, 119.9, 63.0. HRMS (ESI) calcd. for: C₁₈H₁₆NO₂S⁺ (M+H)⁺ 310.0896, found 310.0897.

2-[3-(Phenylsulfonyl)prop-1-en-2-yl]quinoxaline (3qa). White solid (29.2 mg, 47% yield), mp = 164-167 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.02 (s, 1H), 8.02-8.00 (m, 1H), 7.83-7.77 (m, 3H),

7.73-7.69 (m, 2H), 7.28-7.23 (m, 3H), 6.33 (s, 1H), 5.98 (s, 1H), 4.78 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 149.5, 142.2, 141.0, 140.7, 138.6, 135.1, 133.3, 130.2, 130.0, 129.3, 128.8, 128.6, 128.5, 125.8, 58.5. HRMS (ESI) calcd. for: C₁₇H₁₅N₂O₂S⁺ (M+H)⁺ 311.0849, found 311.0850.

2-[3-(Phenylsulfonyl)prop-1-en-2-yl]pyridine (3ra). White solid (8.9 mg, 17% yield), mp = 133-135 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 3.8 Hz, 1H), 7.81-7.76 (m, 2H), 7.64 (m, 1H), 7.52-7.48 (m, 2H), 7.39 (t, J = 7.7 Hz, 2H), 7.14 (m, 1H), 6.03 (s, 1H), 5.63 (s, 1H), 4.66 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 155.4, 148.4, 138.8, 136.6, 136.5, 133.3, 128.6, 123.3, 122.5, 120.3, 59.1. HRMS (ESI) calcd. for: C₁₄H₁₆NO₂S⁺ (M+H)⁺ 262.0896, found 262.0899.

2-Phenyl-3-[2-(phenylsulfonyl)ethyl]quinoxaline (3sa). Yellow solid (37.4 mg, 50% yield), mp = 122-124 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.11-8.09 (m, 1H), 7.97-7.95 (m, 1H), 7.80 (d, J = 7.4 Hz, 2H), 7.75-7.72 (m, 2H), 7.68-7.52 (m, 6H), 7.44 (t, J = 7.6 Hz, 2H), 3.83-3.80 (m, 2H), 3.53-3.49 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 154.4, 150.7, 140.8, 140.7, 139.0, 137.8, 133.5, 129.90, 129.85, 129.3, 129.2, 129.1, 128.82, 128.78, 128.4, 128.0, 53.8, 28.9. HRMS (ESI) calcd. for: C₂₂H₁₉N₂O₂S⁺ (M+H)⁺ 375.1162, found 375.1165.

2-[3-(phenylsulfonyl)prop-1-en-2-yl]benzo[d]thiazole (5aa). White solid (42.9 mg, 68% yield), mp = 125-128 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.84 (m, 2H), 7.76 (d, J = 8.4 Hz, 2H), 7.42-7.30 (m, 5H), 6.20 (s, 1H), 5.93 (s, 1H), 4.64 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 154.1, 138.5, 133.6, 133.5, 131.8, 128.9, 128.73, 128.69, 127.6, 126.2, 122.4, 119.7, 58.9. HRMS (ESI) calcd. for: C₁₆H₁₄NO₂S₂⁺ (M+H)⁺ 316.0461, found 316.0466.

5-Fluoro-2-[3-(phenylsulfonyl)prop-1-en-2-yl]benzo[d]thiazole (5ba). White solid (44.0 mg, 66% yield), mp = 131-134 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.83 (m, 2H), 7.70-7.66 (m, 1H), 7.46-7.33 (m, 4H), 7.14-7.10 (m, 1H), 6.21 (s, 1H), 5.93 (s, 1H), 4.61 (s, 2H). ¹³C NMR (100 MHz,

CDCl₃) δ 168.6, 162.8, 160.4, 153.8 (J = 12.0 Hz), 138.4, 133.5, 131.8, 130.08 (d, J = 1.9 Hz), 128.7, 127.3, 122.1(d, J = 8.89 Hz), 114.5 (d, J = 24.9 Hz), 109.4 (d, J = 23.4 Hz), 58.9. HRMS (ESI) calcd. for: C₁₆H₁₃FNO₂S₂⁺ (M+H)⁺ 334.0366, found 334.0368.

5-Chloro-2-[3-(phenylsulfonyl)prop-1-en-2-yl]benzo[d]thiazole (5ca). Yellow solid (44.0 mg, 63% yield), mp = 150-153 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 7.7 Hz, 2H), 7.76 (s, 1H), 7.68 (d, J = 8.6 Hz, 1H), 7.46-7.29 (m, 4H), 6.23 (s, 1H), 5.97 (s, 1H), 4.62 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 153.7, 138.4, 133.6, 133.0, 132.2, 131.7, 128.7, 127.6, 126.3, 123.1, 122.1, 58.9. HRMS (ESI) calcd. for: C₁₆H₁₃ClNO₂S₂⁺ (M+H)⁺ 350.0071, found 350.0073.

5-Bromo-2-[3-(phenylsulfonyl)prop-1-en-2-yl]benzo[d]thiazole (5da). Yellow solid (39.4 mg, 50% yield), mp = 146-149 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.85 (d, *J* = 7.6 Hz, 2H), 7.62 (d, *J* = 8.4 Hz, 1H), 7.46-7.35 (m, 4H), 6.22 (s, 1H), 5.97 (s, 1H), 4.61 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 154.0, 138.4, 133.6, 133.5, 131.7, 128.9, 128.73, 128.68, 127.6, 126.2, 122.4, 119.7, 58.8. HRMS (ESI) calcd. for: C₁₆H₁₃BrNO₂S₂⁺ (M+H)⁺ 393.9566, found 393.9561.

5-Methoxy-2-[3-(phenylsulfonyl)prop-1-en-2-yl]benzo[d]thiazole(5ea). Yellow oil (38.0 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.85 (m, 2H), 7.61 (d, *J* = 8.8 Hz, 1H), 7.41-7.34 (m, 3H), 7.27 (m, 1H), 7.02-7.00 (m, 1H), 6.20 (s, 1H), 5.88 (s, 1H), 4.63 (s, 2H), 3.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 158.9, 154.0, 138.4, 133.5, 131.8, 128.73, 128.66, 126.6, 126.5, 121.6, 116.2, 105.5, 59.0, 55.6. HRMS (ESI) calcd. for: C₁₇H₁₆NO₃S₂⁺ (M+H)⁺ 346.0566, found 346.0569.

2-[3-(Phenylsulfonyl)prop-1-en-2-yl]naphtho[2,1-d]thiazole (5fa). White solid (36.5 mg, 50% yield), mp = 155-158 °C.¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, J = 8.1 Hz, 1H), 7.91 (d, J = 8.1 Hz, 1H), 7.86 (d, J = 7.6 Hz, 2H), 7.76 (s, 2H), 7.66 (t, J = 7.5 Hz, 1H), 7.58 (t, J = 7.5 Hz, 1H), 7.18 (t, J = 7.5 Hz, 2H), 7.11-7.10 (m, 1H), 6.24 (s, 1H), 5.96 (s, 1H), 4.77 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ $165.1,\,149.1,\,138.5,\,133.3,\,132.2,\,131.8,\,131.5,\,128.7,\,128.5,\,128.4,\,128.0,\,126.9,\,126.7,\,126.2,\,125.7,\,126.2,\,125.7,\,126.2,\,125.7,\,126.2,\,$

123.8, 118.6, 59.3. HRMS (ESI) calcd. for: $C_{20}H_{16}NO_2S_2^+$ (M+H)⁺ 366.0617, found 366.0618.

2-(3-Tosylprop-1-en-2-yl)benzo[d]thiazole (5ab). White solid (55.9 mg, 86% yield), mp = 133-136 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (t, J = 6.2 Hz, 2H), 7.70 (d, J = 7.2 Hz, 2H), 7.41 (t, J = 7.5 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.07 (d, J = 7.6 Hz, 2H), 6.19 (d, J = 3.5 Hz, 1H), 5.93 (s, 1H), 4.60 (s, 2H), 2.13 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 152.9, 144.6, 135.5, 134.7, 132.2, 129.3, 128.7, 126.8, 126.1, 125.7, 123.3, 121.4, 59.3, 21.3. HRMS (ESI) calcd. for: C₁₇H₁₆NO₂S₂⁺ (M+H)⁺ 330.0617, found 330.0623.

2-(3-((4-(tert-Butyl)phenyl)sulfonyl)prop-1-en-2-yl)benzo[d]thiazole (5ac). Yellow solid (31.1 mg, 53% yield), mp = 128-131 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.74-7.71 (m, 4H), 7.38-7.29 (m, 2H), 7.23 (d, J = 8.5 Hz, 2H), 6.19 (s, 1H), 5.99 (s, 1H), 4.62 (s, 2H), 1.02 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 157.3, 152.8, 135.1 134.6, 132.2, 128.7, 126. 9, 126.1, 125.7, 125.5, 123.3, 121.3, 59.1, 34.8, 30.6. HRMS (ESI) calcd. for: C₂₀H₂₂NO₂S₂⁺ (M+H)⁺ 372.1087, found 372.1090.

2-{3-[(4-Methoxyphenyl)sulfonyl]prop-1-en-2-yl}benzo[d]thiazole (5ad). Yellow solid (41.0 mg, 59% yield), mp = 152-155 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77-7.42 (m, 4H), 7.42-7.32 (m, 2H), 6.72-6.70 (m, 2H), 6.19 (s, 1H), 5.92 (s, 1H), 4.59 (s, 2H), 3.58 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 163.5, 153.0, 134.7, 132.3, 130.9, 130.0, 126.8, 126.1, 125.7, 123.4, 121.3, 113.8, 59.5, 55.4. HRMS (ESI) calcd. for: C₁₇H₁₆NO₃S₂⁺ (M+H)⁺ 346.0566, found 346.0570.

2-{3-[(4-Nitrophenyl)sulfonyl]prop-1-en-2-yl}benzo[d]thiazole (5ae). Yellow solid (16.4 mg, 22% yield), mp = 181-184 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.09-8.06 (m, 2H), 8.02-8.00 (m, 2H), 7.76-7.74 (m, 1H), 7.62-7.60 (m, 1H), 7.40-7.32 (m, 1H), 6.25 (s, 1H), 6.05 (s, 1H), 4.70 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 152.5, 150.5, 144.2, 134.4, 131.5, 130.3, 127.7, 126.6, 126.3, 123.6,

123.0, 121.6, 59.4. HRMS (ESI) calcd. for: $C_{16}H_{13}N_2O_4S_2^+$ (M+H)⁺ 361.0307, found 361.0311.

2-{3-[(4-Fluorophenyl)sulfonyl]prop-1-en-2-yl}benzo[d]thiazole (5af). Yellow solid (47.6 mg, 71% yield), mp = 140-143 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.83 (m, 4H), 7.76 (t, J = 8.0 Hz, 2H), 7.44-7.34 (m, 4H), 6.97 (t, J = 8.5 Hz, 2H), 6.22 (s, 1H), 5.97 (s, 1H), 4.64 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 165.7 (J = 255 Hz), 152.9, 134.7, 132.0, 131.8, 131.7, 127.1, 126.4, 126.1, 123.3, 121.5, 116.0 (J = 22 Hz), 59.2. HRMS (ESI) calcd. for: C₁₆H₁₃FNO₂S₂⁺ (M+H)⁺ 334.0366, found 334.0369.

2-{3-[(4-Chlorophenyl)sulfonyl]prop-1-en-2-yl}benzo[d]thiazole (5ag). Yellow solid (60.4 mg, 87% yield), mp = 158-161 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (q, J = 8.3 Hz, 4H), 7.43 (t, J = 7.7 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 7.26 (d, J = 8.3 Hz, 2H), 6.22 (s, 1H), 5.97 (s, 1H), 4.63 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 152. 8, 140.4, 137.0, 134.6, 131.9, 130.2, 128.9, 127.1, 126.4, 126.1, 123.3, 121.4, 59.3. HRMS (ESI) calcd. for: C₁₆H₁₃ClNO₂S₂⁺ (M+H)⁺ 350.0071, found 350.0074.

2-{3-[(4-Bromophenyl)sulfonyl]prop-1-en-2-yl}benzo[d]thiazole (5ah). Yellow solid (63.1 mg, 80% yield), mp = 139-142 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.9 Hz, 1H), 7.73 (d, *J* = 8.1 Hz, 1H), 7.68 (d, *J* = 8.4 Hz, 2H), 7.46-7.41 (m, 3H),, 7.37 (d, *J* = 7.7 Hz, 1H), 6.21 (s, 1H), 5.96 (s, 1H), 4.63 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 152.8, 137.5, 134.6, 131.9, 130.3, 129.1, 127.1, 126.4, 126.0, 123.3, 121.4, 59.3. HRMS (ESI) calcd. for: C₁₆H₁₃BrNO₂S₂⁺ (M+H)⁺ 393.9566, found 393.9569.

2-(3-((4-(Trifluoromethyl)phenyl)sulfonyl)prop-1-en-2-yl)benzo[d]thiazole (5ai). White solid (27.5 mg, 36% yield), mp = 163-166 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.1 Hz, 2H), 7.75-7.73 (m, 1H), 7.65-7.63 (m, 1H), 7.51 (d, *J* = 8.2 Hz, 2H), 7.41-7.32 (m, 2H), 6.23 (s, 1H), 6.01 (s, 1H), 4.67 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 152.6, 142.0, 135.0 (q, J = 33.0 Hz), 134.4, 131.7,

129.4, 127.4, 126.4, 126.1, 125.6 (q, J = 3.3 Hz), 123.1, 122.8 (q, J = 270.2 Hz), 121.4, 59.3. HRMS (ESI) calcd. for: $C_{17}H_{13}F_3NO_2S_2^+$ (M+H)⁺ 384.0334, found 384.0337.

2-*J*3-(*p*-tolylthio)prop-1-en-2-yl/quinoline (3a). Yellow oil (21.0 mg, 36% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.13-8.08 (m, 2H), 7.79 (d, J = 8.0 Hz, 1H), 7.72-7.67 (m, 2H), 7.51 (t, J = 7.2 Hz, 1H), 7.29 (d, J = 8.1 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 5.88 (s, 1H), 5.51 (s, 1H), 4.31 (s, 2H), 2.30 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 156.7, 147.6, 144.5, 136.4, 136.1, 132.8, 131.0, 129.8, 129.5, 129.4, 127.3, 126.4, 118.8, 118.4, 38.0, 21.0. HRMS (ESI) calcd. for: C₁₈H₁₆NS⁺ (M+H)⁺ 278.0998, found 278.1000. 2-*Methyl-3-[(phenylsulfonyl)methyl]-1H-indole (7).* Yellow oil (19.9 mg, 35% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.65-7.63 (m, 2H), 7.54 (t, J = 7.5 Hz, 1H), 7.37 (t, J = 7.8 Hz, 2H), 7.22 (d, J = 8.1 Hz, 1H), 7.15 (d, J = 7.9 Hz, 1H), 7.10-7.06 (m, 1H), 6.99-6.94 (m, 1H), 4.47 (s, 2H), 2.10 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 138.3, 135.9, 134.8, 133.4, 128.8, 128.7, 128.1, 121.6, 120.1, 117.9, 110.3, 99.2, 53.9, 11.4. HRMS (ESI) calcd. for: C₁₆H₁₅NO₂SNa⁺ (M+Na)⁺ 308.0716 found 308.0718.

1-{3-[2-(Phenylsulfonyl)ethyl]quinoxalin-2-yl}ethanone (9). White solid (14.3 mg, 21% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 8.2 Hz, 1H), 7.98 (d, J = 7.6 Hz, 3H), 7.86-7.77 (m, 2H), 7.63-7.53 (m, 3H), 3.88-3.85 (m, 2H), 3.77-3.73 (m, 2H), 2.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.2, 151.5, 146.4, 142.2, 139.7, 139.1, 133.6, 132.3, 130.2, 129.8, 129.2, 128.6, 128.2, 53.9, 29.6, 27.6. HRMS (ESI) calcd. for: C₁₈H₁₇N₂O₃S⁺ (M+H)⁺ 341.0954, found 341.0958.

2,3-Bis[2-(phenylsulfonyl)ethyl]quinoxaline (11). Yellow oil (28.0 mg, 30% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 7.3 Hz, 4H), 7.87-7.84 (m, 2H), 7.67-7.60 (m, 4H), 7.55 (t, J = 7.5 Hz, 4H), 3.91-3.87 (m, 4H), 3.44-3.40 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 150.8, 140.4, 139.1, 133. 8, 129.6, 129.4, 128.5, 128.0, 53.0, 27.1. HRMS (ESI) calcd. for: C₂₄H₂₃N₂O₄S₂⁺ (M+H)⁺ 467.1094,

found 467.1094.

2-(*Phenylsulfonyl*)-1-(*quinolin-2-yl*)*ethanone* (12). White solid (15.8 mg, 49% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 8.5 Hz, 1H), 8.06 (dd, *J* = 8.4, 6.7 Hz, 2H), 8.08-8.04 (m, 2H), 7.96-7.94 (m, 2H), 7.86 (d, *J* = 8.2 Hz, 1H), 7.79 (td, *J* = 7.0, 3.5 Hz, 1H), 7.69-7.65 (m, 1H), 7.56-7.52 (m, 1H), 7.49-7.45 (m, 2H), 5.36 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 189.8, 151.3, 146.8, 139.6, 137.4, 133.8, 130.6, 130.3, 129.8, 129.4, 129.0, 128.5, 127.6, 118.1, 61.0. HRMS (ESI) calcd. for: C₁₇H₁₃NO₃S⁺ (M+Na)⁺ 334.0508, found 334.0511.

■ ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI:

10.1020/acs.joc.0000000

Copies of ¹H and ¹³C NMR spectra of the products (PDF)

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: fhxiao@xtu.edu.cn.

*E-mail: gjdeng@xtu.edu.cn.

ORCID

Fuhong Xiao: 0000-0003-0862-0557

Guo-Jun Deng: 0000-0003-2759-0314

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENT

This work was supported by the National Natural Science Foundation of China (21502160, 21572194), Hunan Provincial Natural Science Foundation of China (16JJ3112), the Scientific Research Fund of Hunan Provincial Education Department (YB2016B024),

REFERENCE

(1) (a) Teguh, S. C.; Klonis, N.; Duffy, S.; Lucantoni, L.; Avery, V. M.; Hutton, C. A.; Baell, J. B.; Tilley, L. Novel Conjugated Quinoline-Indoles Compromise Plasmodium Falciparum Mitochondrial Function and Show Promising Antimalarial Activity. J. Med. Chem. 2013, 56, 6200-6215. (b) Guantai, E. M.; Ncokazi, K.; Egan, T. J.; Gut, J.; Rosenthal, P. J.; Smith, P. J.; Chibale, K. Design, Synthesis and in Vitro Antimalarial Evaluation of Triazole-linked Chalcone and Dienone Hybrid Compounds. Bioorg. Med. Chem. 2010, 18, 8243-8256. (c) Yu, Z. Y.; Shi, G. Y.; Sun, Q.; Jin, H.; Teng, Y.; Tao, K.; Zhou, G. P.; Liu, W.; Wen, F.; Hou, T. P. Design, Synthesis and in Vitro Antibacterial/antifungal Evaluation of Novel 1-Ethyl-6-fluoro-1,4-dihydro-4-oxo-7(1-piperazinyl)quinoline-3-carboxylic Acid Derivatives. Eur. J. Med. Chem. 2009, 44, 4726-4733. (d) Narender, P.; Srinivas, U.; Ravinder, M.; Ananda, R. B.; Ramesh, C.; Harakishore, K.; Gangadasu, B.; Murthy, U. S. N.; Rao, V. J. Synthesis of Multisubstituted Quinolines from Baylis-Hillman Adducts Obtained from Substituted 2-Chloronicotinaldehydes and Their Antimicrobial Activity. Bioorg. Med. Chem. 2006, 14, 4600-4609. (e) Hu, L. M.; Yan, S.; Luo, Z. G.; Han, X.; Wang, Y. J.; Wang, Z. Y.; Zeng, C. C. Design, Practical Synthesis, Biological and Evaluation of Novel 6-(Pyrazolylmethyl)-4-quinoline-3-carboxylic Acid Derivatives as HIV-1 Integrase Inhibitors. Molecules, 2012, 17, 10652-10666. (f) Ahmed, N.; Brahmbhatt, K. G.; Sabde, S.; Mitra, D.; Singh,

I. P.; Bhutani, K. K. Synthesis and Anti-HIV Activity of Alkylated Quinoline 2,4-Diols. *Bioorg. Med. Chem.* **2010**, *18*, 2872-2879.

(2) (a) Mahajan, J. P.; Suryawanshi, Y. R.; Mhaske, S. B. Pd-Catalyzed Imine Cyclization: Synthesis of Antimalarial Natural Products Aplidiopsamine A, Marinoquinoline A, and Their Potential Hybrid NCLite-M1. *Org. Lett.* **2012**, *14*, 5804-5807. (b) Ding, D.; Dwoskin, L. P.; Crooks, P. A. Efficient Synthesis of *cis*-2,6-di-(2-quinolylpiperidine). *Tetrahedron Lett.* **2013**, *54*, 5211-5213.

(3) For recent examples, see: (a) Srinivasulu, A.; Shantharjun, B.; Kumar, R. A.; Reddy, K. R. Iron-Catalyzed Csp³–Csp³ Bond Formation *via* Dehydrative Cross Coupling Reaction: Facile Access to New Hybrid Dihydroquinazolines Having Quinoline, Isoquinoline, Quinoxaline and Azoles. *Tetrahedron Lett.* **2017**, *58*, 1501-1506. (b) Feng, T.; Li, H.; Young, D. J.; Lang, J. P. Ligand-Free RuCl₃-Catalyzed Alkylation of Methylazaarenes with Alcohols. *J. Org. Chem.* **2017**, *82*, 4113-4120. (c) Sharma, R.; Abdullaha, M.; Bharate, S. B. Oxidant-Controlled $C-sp^2/sp^3-H$ Cross-Dehydrogenative Coupling of *N*-Heterocycles with Benzylamines. *J. Org. Chem.* **2017**, *82*, 9786-9793. (d) Lei, S.; Mai, Y.; Yan, C.; Mao, J.; Cao, H. A Carbonylation Approach Toward Activation of C_{sp2} –H and C_{sp3} –H Bonds: Cu-Catalyzed Regioselective Cross Coupling of Imidazo[1,2-a]pyridines with Methyl Hetarenes. *Org. Lett.* **2016**, *18*, 3582-3585.

(4) For recent examples, see: (a) Li, Z.; Wu, S.; Luo, Z.; Liu, W.; Feng, C.; Ma, S.
Copper-Promoted Double Oxidative C-H Amination Cascade for the Synthesis of Imidazo[1,5-*a*]quinolines. *J. Org. Chem.* 2016, *81*, 4386-4392. (b) Guo, S.; Wan, G; Sun, S.; Jiang, Y.; Yu, J. T.; Cheng, J. Iodine-Catalyzed Ammoxidation of Methyl Arenes. *Chem. Commun.* 2015, *51*, 5085-5088. (c) Huang, Y.; Chen, T.; Li, Q.; Zhou, Y.; Yin, S. F. Copper Catalysed Direct

Amidation of Methyl Groups with N–H Bonds. *Org. Biomol. Chem.* **2015**, *13*, 7289-7293. (d) Dai, C.; Deng, S.; Zhu, Q.; Tang, X. Synthesis of Pyrrolo[1,2-*a*]quinoxalines *via* Copper or Iron-Catalyzed Aerobic Oxidative Carboamination of C_{sp3} -H Bonds. *RSC Adv.* **2017**, *7*, 44132-44135. (e) Gao, X.; Zhang, F.; Deng, G.; Yang, L. Brønsted Acid Catalyzed Benzylic C–H Bond Functionalization of Azaarenes: Nucleophilic Addition to Nitroso Compounds. *Org. Lett.* **2014**, *16*, 3664-3667. (f) Yaragorla, S.; Babu, P. V. Oxidative C_{sp3} –H Functionalization of 2-Methylazaarenes: A Practical Synthesis of 2-Azaarenyl-Benzimidazoles and Benzothiazoles. *Tetrahedron Lett.* **2017**, *58*, 1879-1882.

(5) (a) Liu, M.; Chen, T.; Yin, S. F. Copper-Catalysed Aerobic Oxidative Esterification of N-heteroaryl Methanes with Alcohols. Catal. Sci. Technol. 2016, 6, 690-693. (b) Dong, D.; Zhang, H.; Wang, Z. L. Synthesis of Benzyl Esters from the Commercially Available Alcohols Catalyzed by TBAI via C(sp3)-H Bond Functionalization. RSC Adv. 2017, 7, 3780-3782. (c) Sakaguchi, S.; Shibamoto, A.; Ishii, Y. Remarkable Effect of Nitrogen Dioxide for *N*-Hydroxyphthalimide-Catalyzed Aerobic Oxidation of Methylquinolines. *Chem. Commun.* 2002, 0, 180-181. (d) Jiang, L.; Huang, Y.; Yan, Y.; Xie, Y. Metal-Free $C(sp^3)$ -H Oxidation of 2-Methylquinolines with PIDA under Microwave Irradiation. Tetrahedron Lett. 2016, 57, 4149 -4151.(e) Nagasawa, Y.; Tachikawa, Y.; Yamaguchi, E.; Tada, N.; Miura, T.; Itoh, A. Catalytic Aerobic Photo-oxidation of a Methyl Group on a Heterocycle to Produce an Aldehyde via Homolytic C-I Bond Cleavage caused by Irradiation with Visible Light. Adv. Synth. Catal. 2016, 358,178-182.

(6) (a) Hettstedt, C.; Kostler, P.; Ceylan, E.; Karaghiosoff, K. Synthesis of the First Representatives of Amino Bis(picolyl) and Amino Bis(quinaldinyl) Phosphines. *Tetrahedron*,

, *72*, 3162-3170. (b) Frej, A.; Goeschen, C.; Näther, C.; Lüning, U.; Herges, R. Synthesis and Properties of Di- and Trinitrobenzyl Substituted Pyridine Derivates. *J. Phys. Org. Chem.* **2010**, *23*, 1093-1098. (c) Chu, X.; Duan, T.; Liu, X.; Feng, L.; Jia, J.; Ma, C. *N*-Iodosuccinimide Involved One-Pot Metal-Free Synthesis of 2-Heteroaromatic Benzothiazole Compounds. *Org. Biomol. Chem.* **2017**, *15*, 1606-1611. (d) Rahim, A.; Shaik, S. P.; Baig, M. F.; Alarific, A.; Kamal, A. Iodine Mediated Oxidative Cross-Coupling of Unprotected Anilines and Heteroarylation of Benzothiazoles with 2-Methylquinoline. *Org. Biomol. Chem.* **2018**, *16*, 635-644. (e) Liu, J.; Zhao, S.; Yan, X.; Zhang, Y.; Zhao, S.; Zhuo, K.; Yue, Y. Elemental-Sulfur-Promoted $C(sp^3)$ -H Activation of Methyl Heteroarenes Leading to Thioamides. *Asian J. Org. Chem.* **2017**, *6*, 1764-1768. (f) Xie, Y.; Li, L. Microwave-Assisted *α*-Halogenation of 2-Methylquinolines with Tetrabutylammonium Iodide and 1,2-Dichloroethane (1,2-Dibromoethane). *Tetrahedron Lett.* **2014**, *55*, 3892-3895.

(7) Qian, B.; Guo, S.; Shao, J.; Zhu, Q.; Yang, L.; Xia, C.; Huang, H. Palladium-Catalyzed Benzylic Addition of 2-Methyl Azaarenes to *N*-Sulfonyl Aldimines via C-H Bond Activation. *J. Am. Chem. Soc.* **2010**, *132*, 3650-3651.

(8) (a) Li, C. J. From C-H to C-C Bonds Cross-Dehydrogenative-Coupling, RSC Publishing, Cambridge, **2014**. (b) Fang, L.; Li, Z.; Jiang, Z.; Tan, Z.; Xie, Y. A Metal-Free Oxidative Cross-Dehydrogenative Coupling of *N*-Aryl Tetrahydroisoquinolines and 2-Methylazaarenes Using a Recyclable Oxoammonium Salt as Oxidant in Aqueous Media. *Eur. J. Org. Chem.* **2016**, 3559-3567. (c) Zhu, Z. Q.; Bai, P.; Huang, Z. Z. Dehydrogenative Cross-Coupling Reaction by Cooperative Transition-Metal and Brønsted Acid Catalysis for the Synthesis of β -Quinolinyl α -Amino Acid Esters. *Org. Lett.* **2014**, *16*, 4881-4883. (d) Zhou, S. L.; Guo, L. N.; Duan, X. H. Copper-Catalyzed Regioselective Cross-Dehydrogenative Coupling of Coumarins with Benzylic C_{sp3}-H Bonds. *Eur. J. Org. Chem.* **2014**, 8094-8100.

(9) (a) Zhu, J.; Bienayme, H. Multicomponent Reactions, Wiley-VCH: Weinheim, 2005. (b) Brauch, S.; van Berkel, S. S.; Westermann, B. Higher-Order Multicomponent Reactions: Beyond Four Reactants. *Chem. Soc. Rev.* 2013, *42*, 4948-4962; (c) Marson, C. M. Multicomponent and Sequential Organocatalytic Reactions: Diversity with Atom-Economy and Enantiocontrol. *Chem. Soc. Rev.* 2012, *41*, 7712-7722. (d) Estévez, V.; Villacampa, M.; Menéndez, J. C. Recent Advances in The Synthesis of Pyrroles by Multicomponent Reactions. *Chem. Soc. Rev.* 2014, *43*, 4633-4657.
(e) Levi, L.; Müller, T. J. J. Multicomponent Syntheses of Functional Chromophores. *Chem. Soc. Rev.* 2016, *45*, 2825-2846. (f) Rotstein, B. H.; Zaretsky, S.; Rai, V.; Yudin, A. K. Small Heterocycles in Multicomponent Reactions. *Chem. Rev.* 2014, *114*, 8323-8359.

(10) (a) Liao, Y.; Peng, Y.; Qi, H.; Deng, G. J.; Gong, H.; Li, C. J. Palladium-Catalyzed Benzothieno[2,3-b]indole Formation via Dehydrative-Dehydrogenative Double C-H Sulfuration using Sulfur Powder, Indoles and Cyclohexanones. *Chem. Commun.* 2015, *51*, 1031-1034. (b) Chen, J.; Li, G.; Xie, Y.; Liao, Y.; Xiao, F.; Deng, G. J. Four-Component Approach to N-Substituted Phenothiazines under Transition-Metal-Free Conditions. *Org. Lett.* 2015, *17*, 5870-5873. (c) Wang, Z.; Qu, Z.; Xiao, F.; Huang, H.; Deng, G. J. One-Pot Synthesis of 2,3,5-Trisubstituted Thiophenes through Three-Component Assembly of Arylacetaldehydes, Elemental Sulfur, and 1,3-Dicarbonyls. *Adv. Synth. Catal.* 2018, *360*, 796-800. (d) Nguyen, T. B.; Pasturaud, K.; Ermolenko, L.; Al-Mourabit, A. Concise Access to 2-Aroylbenzothiazoles by Redox Condensation Reaction between *o*-Halonitrobenzenes, Acetophenones, and Elemental Sulfur. *Org. Lett.*, 2015, *17*, 2562-2565. (e) Nguyen, T. B.; Ermolenko, L.; Al-Mourabit, A.

Nitro-Methyl Redox Coupling: Efficient Approach to 2-Hetarylbenzothiazoles from 2-Halonitroarene, Methylhetarene, and Elemental Sulfur. *Org. Lett.*, **2013**, *15*, 4218-4221. (f) Xue, W.; Guo, Y.; Gao, F.; Li, H.; Wu, A. X. A Novel Self-Sequence Reaction Network Involving a Set of Six Reactions in One Pot: The Synthesis of Substituted Benzothiazoles from Aromatic Ketones and Anilines. *Org. Lett.*, **2013**, *15*, 890-893.

(11) Wen, Z. K.; Liu, X. H.; Liu, Y. F.; Chao, J. B. Acid Promoted Direct Cross-Coupling of Methyl Ketones with Dimethyl Sulfoxide: Access to Ketoallyl Methylsulfides and -sulfones. *Org. Lett.* **2017**, *19*, 5798-5801.

(12) Xiao, F.; Liu, C.; Wang, D.; Huang, H.; Deng, G. J. Concise Synthesis of Ketoallyl Sulfones through An Iron-Catalyzed Sequential Four-Component Assembly. *Green Chem.* 2018, 20, 973-977.

(13) (a) Xie, H.; Cai, J.; Wang, Z.; Huang, H.; Deng, G. J. A Three-Component Approach to 3,5-Diaryl-1,2,4-thiadiazoles under Transition-Metal-Free Conditions. *Org. Lett.* 2016, *18*, 2196-2199. (b) Li, G.; Xie, H.; Chen, J.; Guo, Y.; Deng, G. J. Three-Component Synthesis of 2-Heteroaryl-Benzothiazoles under Metal-Free Conditions. *Green Chem.* 2017, *19*, 4043-4047. (c) Xiao, F.; Chen, S.; Chen, Y.; Huang, H.; Deng, G. J. Efficient 2-Sulfolmethyl Quinoline Formation from 2-Methylquinolines and Sodium Sulfinates under Transition-Metal Free Conditions. *Chem.* 2015, *51*, 652-654.

(14) (a) Bradshaw, T. D.; Wrigley, S.; Shi, D. F.; Schultz, R. J.; Paull, K. D.; M. Stevens, F. G.
2-(4-Aminophenyl)benzothiazoles: Novel Agents with Selective Profiles of in Vitro Anti-Tumour Activity. *Br. J. Cancer*, **1998**, *77*, 745-752. (b) Mortimer, C. G; Wells, G; Crochard, J. P.; Stone, E.
L.; Bradshaw, T. D.; Stevens, M. F. G; Westwell, A. D. Antitumor Benzothiazoles. 26.¹

2-(3,4-Dimethoxyphenyl)-5-fluorobenzothiazole (GW 610, NSC 721648), a Simple Fluorinated
2-Arylbenzothiazole, Shows Potent and Selective Inhibitory Activity against Lung, Colon, and
Breast Cancer Cell Lines *J. Med. Chem.* 2006, *49*, 179-185. (c) Zhang, J. P.; Zhang, Y. B.; Lin, J.
B.; Chen, X. M. Metal Azolate Frameworks: From Crystal Engineering to Functional Materials. *Chem. Rev.* 2012, *112*, 1001-1033. (d) Westwell, A. D.; Weekes, A. A. 2-Arylbenzothiazole as a
Privileged Scaffold in Drug Discovery. *Curr. Med. Chem.* 2009, *16*, 2430-2440. (e) Alavez, S.;
Vantipalli, M. C.; D. Zucker, J. S. I; Klang, M.; Lithgow, G. J. Amyloid-Binding Compounds
Maintain Protein Homeostasis During Ageing and Extend Lifespan. *Nature*, 2011, *472*, 226-229.

(15) (a) Lou, S.; Xu, D.; Shen, D.; Wang, Y.; Liu, Y.; Xu, Z. Y. Highly Efficient Vinylaromatics Generation via Iron-Catalyzed sp3 C–H Bond Functionalization CDC Reaction: a Novel Approach to Preparing Substituted Benzo[α]phenazines. *Chem. Commun.* 2012, *48*, 11993-11995. (b) Li, Y.; Guo, F.; Zha, Z.; Wang, Z. Iron-Catalyzed Synthesis of 2-Vinylquinolines via sp³ C-H Functionalization and Subsequent C-N Cleavage. *Chem. Asian J.* 2013, *8*, 534-537.