Journal of Medicinal Chemistry

Subscriber access provided by University of Sussex Library

Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities

Yong Chen, Xiaoyan Wang, Wei Xiang, Lin He, Minghai Tang, Fang Wang, Taijin Wang, Zhuang Yang, Yuyao Yi, Hairong Wang, Ting Niu, Li Zheng, Lei Lei, Xiaobin Li, Hang Song, and LiJuan Chen *J. Med. Chem.*, Just Accepted Manuscript • DOI: 10.1021/acs.jmedchem.6b00579 • Publication Date (Web): 17 May 2016 Downloaded from http://pubs.acs.org on May 18, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of Medicinal Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

3	
4 5	University Song, Hang; Sichuan University, School of Chemical Engineering
6 7	Chen, LiJuan; State Key Laboratory of Biotherapy, West China Medical School
8	
10	
12	SCHOLARONE [™] Manuscripts
14	
15 16	
17 18	
19 20	
21	
23	
24 25	
26 27	
28 29	
30 31	
32 33	
34 35	
36 37	
38	
40	
41 42	
43 44	
45 46	
47 48	
49 50	
51 52	
53 54	
55 50	
56 57	
58 59	
60	

1	Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone
2	Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities
3	Yong Chen ^{a,b,§} , Xiaoyan Wang ^{a,§} , Wei Xiang ^{a,§} , Lin He ^{a,§} , Minghai Tang ^a , Fang Wang ^a ,
4	Taijin Wang ^a , Zhuang Yang ^a , Yuyao Yi ^c , Hairong Wang ^a , Ting Niu ^c , Li Zheng ^a , Lei
5	Lei ^a , Xiaobin Li ^a , Hang Song ^b and Lijuan Chen ^{a,*}
6	^a State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy
7	and Cancer Center, West China Hospital of Sichuan University; Chengdu, China.
8	^b School of Chemical Engineering, Sichuan University, Chengdu, China.
9	^c Department of Hematology and Research Laboratory of Hematology, West China
10	Hospital of Sichuan University, Chengdu, 610041, China.
11	[§] These authors contributed equally and should be considered as co-first authors
	ACC Deveron Dive Environment

12 ABSTRACT:

In the present study, a series of novel histone deacetylase (HDAC) inhibitors using the morpholinopurine as the capping group were designed and synthesized. Several compounds demonstrated significantly HDAC inhibitory activities and anti-proliferative effects against diverse human tumor cell lines. Among them, compound 100 was identified as a potent class I and IIb HDAC inhibitor with good pharmaceutical profile and drug-like properties. Western blot analysis further confirmed that **100** more effectively increased acetylated histone H3 than panobinostat (LBH-589) and vorinostat (SAHA) at the same concentration in vitro. In in vivo efficacy evaluations of HCT116, MV4-11, Ramos and MM1S xenograft models, 100 showed higher efficacy than SAHA or LBH-589 without causing significant loss of body weight and toxicity. All the results indicated that 100 could be a suitable candidate for treatment of both solid and hematological cancer.

25 INTRODUCTION

The histone proteins play important roles in the control of gene expression via modification of chemical reactions such as acetylation, phosphorylation, and methylation.^{1,2} In most cases, histone acetylation enhances transcription while histone deacetylation represses transcription.^{3, 4} Inhibition of histone deacetylases (HDACs) causes the accumulation of acetylated histories, bringing about a variety of cell type dependent responses such as apoptosis, differentiation, cell survival, and inhibition of proliferation.⁵ There are 18 HDAC isozymes and they are divided into four classes: class I (HDAC 1-3, and 8), class II (HDAC 4, 5, 6, 7, 9, 10) and class IV (HDAC 11)

2
3
4
4
5
6
7
0
0
9
10
11
12
12
13
14
15
16
17
10
18
19
20
21
20
22
23
24
25
26
20
27
28
29
30
00
31
32
33
34
35
00
36
37
38
30
40
40
41
42
43
ΔΛ
 1 E
40
46
47
48
10
49
50
51
52
53
50
54
55
56
57
52
50
59
60

1

34	are all zinc-dependent deacetylases, and class III isozymes including Sirt1 to Sirt7 are
35	NAD ⁺ -dependent isozymes. ^{6,7} Most HDAC inhibitors fit a three-motif
36	pharmacophoric model consisting of a zinc binding group (ZBG), a linker, and a
37	surface recognition cap region. ⁸⁻¹⁰ Hydroxamic acid is by far the most common ZBG
38	moiety in HDAC inhibitors owing to its ability to reliably chelate active-site zinc
39	ions. ^{11, 12} Several HDAC inhibitors such as vorinostat (SAHA) ^{13, 14} , panobinostat
40	(LBH-589) ¹⁵ , belinostat (PXD-101) ¹⁶ were approved by FDA for the treatment of
41	cutaneous T cell lymphoma (CTCL), T cell lymphoma or multiple myeloma. Among
42	them, LBH-589, as a pan-HDAC inhibitor, was approved by FDA for the treatment of
43	multiple myeloma in 2015. A number of HDAC inhibitors are currently at various
44	stages of clinical trials either as single agents or in combination treatment with other
45	chemotherapy drugs for the treatment of solid and hematologic malignancies such as
46	pracinostat (SB939) ¹⁷ , entinostat (MS275) ¹⁸ and rocilinostat (ACY-1215) ^{19, 20} .
47	The class I phosphatidylinositol 3-kinases (PI3Ks) are also attractive targets for
48	the treatment of cancer. ²¹⁻²³ The class I PI3Ks are classed into the class IA and class
49	IB including phosphoinositide 3-kinase α (PI3K α), phosphoinositide 3-kinase β
50	(PI3K β), phosphoinositide 3-kinase δ (PI3K δ), and phosphoinositide 3-kinase δ
51	(PI3K γ). ²⁴ Several PI3Ks inhibitors are currently in clinical trials for the treatment of
52	cancer such as apitolisib (GDC-0980) ²² and pictilisib (GDC-0941) ²⁵ . However, the

54 growth-related pathways. A potential strategy to overcome these limitations is to

efficacy of PI3Ks inhibitors is limited by concurrent activation of other survival- and

58 Figure 1. Clinically tested HDAC inhibitors.

In previous reports, Changgeng Qian group successfully achieved CUDC-907 by integrating HDAC inhibitory functionality (hydroxamic acid) into a core structure scaffold (morpholinopyrimidine) shared by several PI3Ks inhibitors.²⁷⁻²⁹ CUDC-907 is both a potent pan-inhibitor of HDACs and a PI3Ks inhibitor with IC₅₀ values at low nanomolar level. At present, CUDC-907 has been in phase II clinical trials at Curis and was assigned as orphan drug designation in the U.S.A. for the treatment of relapsed or refractory diffuse large B-cell lymphoma (DLBCL) in 2015. CUDC-907 is also in phase I clinical trials for the treatment of breast cancer and multiple myeloma.³⁰

68	Purine as the core scaffold structure has been applied in many drugs of PI3Ks
69	inhibitors, including VS-5584 ³¹ , IC-87114 ³² , and 3-MA ³³ (Figure S1). Importantly,
70	the morpholine ring is also an important functional group in many PI3Ks inhibitors. ³⁴
71	Encouraged by the success of Qian group, we thought of designing hybrid
72	pharmacophores to append HDAC recognition cap and hydroxamic acid as a
73	zinc-binding motif (Figure 2), in which morpholinopyrimidine was substituted with
74	morpholinopurine scaffold. We designed and synthesized a series of
75	morpholinopurine-based hydroxamic acid derivatives and evaluated their inhibitory
76	activities on the PI3Ks and HDACs. The most potent derivatives were then subjected
77	to in vitro and in vivo antitumor activities. As expected, 10s and 10t with pyrimidine
78	at C-2 position of morpholinopurine displayed dual-acting PI3K α and HDAC1
79	inhibitory activities. 10s showed the low IC ₅₀ values for HDAC1 and PI3K α with an
80	IC_{50} of 1.04 nM and 1.33 nM in comparison to 1.7 nM and 19 nM of CUDC-907,
81	respectively. ³⁰ Interestingly, when phenyl substituted groups were introduced at C-2
82	position of morpholinopurine, all these compounds still displayed excellent inhibitory
83	activities for HDAC1 with IC_{50} values ranging from 0.45 nM to 30.10 nM but lost the
84	activities of PI3Ks (IC ₅₀ > 1000 nM) as single-target inhibitors of HDACs. Among
85	them, 100 showed better inhibitory activities for class I and class IIb isoforms of
86	HDACs than CUDC-907. Further studies revealed that 100 showed greater in vitro
87	and in vivo tumor growth inhibition both in hematologic and solid malignancies than
88	LBH-589 and SAHA. Structure-activity relationship (SAR) and computer modeling
89	of these novel compounds were also investigated.

Page 7 of 57

91 Figure 2. Design of dual-acting HDACs and PI3Ks inhibitors.

92 CHEMISTRY

The general procedure to synthesize the target molecules 10a-y has been outlined in Scheme 1. Commercially available 2,6-dichloropurine (1) as the starting material reacted with morpholine to give 2, which was treated with CH₃I to obtain 3. Then the compound **3** was introduced an aldehyde group by reacting with DMF and n-BuLi, which got the compound 4. Then the compound was treated with methylamine methanol solution and NaBH₄ in sequence to produce the key intermediate 5. Treatment of 5 with 6 at room temperature in CH₃CN afforded 7. The corresponding compounds 9a-v were obtained by 7 reacting with boronic acid derivatives 8. Those compounds were directly converted into compounds 10a-y by NH₂OH.

- **Scheme 1**. Synthesis of the compounds **10a**-y.^{*a*}

ACS Paragon Plus Environment

2
3
3
4
5
6
7
0
0
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
21
22
23
24
25
20
26
27
28
20
29
30
31
32
33
24
34
35
36
37
20
38
39
40
41
12
42
43
44
45
46
40
47
48
49
50
50 E4
51
52
53
54
54
55
56
57
58
50
29
60

105	^{<i>a</i>} Reagents and conditions: (a) morpholine, CH ₃ OH, 0 ^o C to rt, 2 h; (b) CH ₃ I, K ₂ CO ₃ ,
106	CH ₃ CN, rt, 3 h; (c) <i>n</i> -BuLi, TEMED, DMF, THF, -78 °C to -40 °C to -78 °C, 6 h; (d)
107	Methylamine, rt, 2 h; NaBH ₄ , 0 °C, 1 h; (e) 2-chloro-pyrimidine-5-carboxylate,
108	DIPEA, CH ₃ CN, rt, 5 h; (f) boronic acid derivatives, PdCl ₂ (dppf) ₂ , NaHCO ₃ ,
109	Toluene/EtOH/water (v/v/v, 7/3/2), 80 °C, 8 h; (g) NH ₂ OH, DCM/CH ₃ OH (v/v, 1/1),
110	rt, 2 h.
111	In order to study the structure and relationship analysis (SAR) of cap, we also

synthesized a series of compounds with *NH*-substitued analogues as the cap (**Scheme** 2). Alternatively, compound 2 was treated with 3,4–dihydropyran to obtain 11 and compounds 15a-1 were prepared according to the same synthetic procedures reported above. The protecting group THP was removed in HCl (con.) methanol solution to give the important intermediates 16a-1. A series of substituted groups were introduced to *N*–9 position of morpholinopurine to afford 17a-1. Those compounds were directly converted to hydroxamic acid compounds 18a-1 by NH₂OH.

119 Scheme 2. Synthesis of the compounds 18a-l.^{*a*}

^{*a*} Reagents and conditions: (a) DHP, *p*-TSA, DCM, rt, 2 h; (b) *n*-BuLi, TEMED, DMF, THF, -78 °C to -40 °C to -78 °C, 6 h; (c) Methylamine, rt, 2 h; NaBH₄, 0 °C, 1 h; (d) 2-chloro-pyrimidine-5-carboxylate, DIPEA, CH₃CN, rt, 5 h; (e) boronic acid derivatives, PdCl₂(dppf)₂, NaHCO₃, Toluene/EtOH/ater (v/v/v, 7/3/2), 80 °C, 8 h; (f) HCl, CH₃OH, 50 °C, 2 h; (g) R₁X, Cs₂CO₃, DMF, 80 °C, 4 h; (h) NH₂OH, DCM/CH₃OH (v/v, 1/1), rt, 2 h.

127 BIOLOGICAL RESULTS AND DISCUSSION

In vitro inhibitory activities of the phenyl substituted analogues. We primarily began our research by screening the inhibitory activities of these compounds on the PI3K α and HDAC1 isoform. As presented in **Table 1**, phenyl substituted analogues all showed potent HDAC1 inhibition activities but poor PI3K α inhibitory activities (IC₅₀ > 1000 nM). When hydroxyl as an electron-donating group was introduced to meta-position of benzene, **10b** reached an IC₅₀ as low as 0.55 nM against HDAC1. Similarly, **10c** showed equivalent potency with **10b** with an IC₅₀ of

0.45 nM when methoxyl group was introduced to para-position of benzene. In contrast, 10f decreased HDAC1 inhibition activity with an IC₅₀ of 5.10 nM when trifluoromethyl as an electron-withdrawing group was introduced to para-position of phenyl. These results suggest that electron-donating groups improve HDAC1 inhibition activity and electron-withdrawing groups decrease HDAC1 inhibition activity. As expected, 10e, 10g, 10h and 10j all displayed decreased inhibition activities toward HDAC1 according to the similar rule. When N-H of the aniline was substituted by methyl, ethyl, and isopentene group separately, 10p, 10q and 10r showed significant decrease in inhibitory activities with the extension of chain length of substituent groups.

To investigate the effects of chain length on HDAC1 inhibitory activity, **10k-n** were synthesized. Dramatically, the activity gradually decreased with the increase of chain length from methyl to t-butyl and IC₅₀ ranging from 1.00 nM to 10 nM. Interestingly, most compounds such as 10a-e, 10h-k and 10o-q all showed better inhibitory activity of HDAC1 isoform than CUDC-907, suggesting that morpholinopurine as a substituted core structure scaffold showed better HDAC1 activity than morpholinopyrimidine.

Table 1. IC₅₀ values for enzymatic inhibition of HDAC1 and PI3K α .

 $N = N^{-1} N^{$

ACS Paragon Plus Environment

2	
3	
Δ	
5	
5	
6	
7	
8	
õ	
9	
10	
11	
12	
13	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
30	
31	
32	
33	
34	
25	
35	
36	
37	
38	
20	
39	
40	
41	
42	
12	
43	
44	
45	
46	
17	
41	
48	
49	
50	
51	
50	
52	
53	
54	
55	
55	
30	
57	
58	
59	
60	
00	

Compd	Aryl	IC ₅₀ ^a	(nM)	Compd	Aryl	IC ₅₀ ^a	(nM)
		HDAC1	PI3Ka			HDAC1	PI3Ka
10a	Cl	1.10	>10000	10k	,, ,	1.00	>10000
10b	ОН	0.55	>10000	101	× C	1.98	>10000
10c	× Co	0.45	>10000	10m	× C	6.15	>10000
10d		1.02	>10000	10n	X	10.01	>10000
10e	O CF3	1.59	>10000	100	× NH ₂	0.65	>1000
10f	CF3	5.10	>10000	10p	× N	0.81	>10000
10g	CF CF3	30.10	>10000	10q) NH	1.10	>1000
10h		1.01	>10000	10r	×	10.00	>1000
10i		0.97	>1000	SAHA	~	11	>1000
10j	× s <o< th=""><th>0.85</th><th>>1000</th><th>CUDC-9</th><th>07</th><th>1.7</th><th>19</th></o<>	0.85	>1000	CUDC-9	07	1.7	19

^{*a*} IC₅₀ values for enzymatic inhibition of HDAC1 and PI3K α . The IC₅₀ values are the means of at least two experiments, with intra- and inter-assay variations of < 10%.

In vitro inhibition activities of six-membered *N*-containing heterocyclic analogues. When six-membered *N*-containing heterocyclic was introduced to instead of phenyl at C-2 position of morpholinopurine, we synthesized compounds 10s-y.

161	The enzyme inhibitory activities on HDAC1 and PI3K α were evaluated (Table 2).
162	10s-y all showed excellent inhibitory activity toward HDAC1 with nanomolar IC_{50}
163	values, but inhibitory activity for PI3K α differed obviously. 10s and 10t exhibited
164	potent inhibitory activity both on HDAC1 and PI3K α when pyrimidine was
165	introduced to the C-2 position of morpholinopurine. 10s with amino group at
166	para-position of the pyrimidine displayed stronger inhibitory activities on HDAC1
167	and PI3K α with respective IC ₅₀ values of 1.04 nM and 1.33 nM in comparison to 1.7
168	nM and 19 nM of CUDC-907. 10t without amino group displayed slightly lower
169	activity on PI3K α with an IC ₅₀ of 28.06 nM. In contrast, pyridine-based analogues
170	10u-y dramatically decreased PI3K α inhibition activity above micromolar level.
171	These results suggested that aminopyrimidine plays an important role to maintain the
172	dual-target inhibitory activities on HDAC1 and PI3K α .

174	4			
	Compd	Aryl	IC_{50}^{a} (nM)	
	_		HDAC1	PI3Ka
	10s	N NH ₂	1.04	1.33
	10t	N N	1.14	28.06
	10u	NH ₂	1.11	>1000

ACS Paragon Plus Environment

10v	>'N	1.60	>1000
10w	N O	1.00	>1000
10x	, N	0.49	>1000
10y) / N	0.55	>1000
SAHA		11	>10000
CUDC-907		1.7	19

^{*a*} IC₅₀ values for enzymatic inhibition of HDAC1 and PI3K α . The IC₅₀ values are the means of at least two experiments, with intra- and inter-assay variations of < 10%.

In vitro inhibition activities of *N*-H substituted analogues. To understand the structure-activity relationship of *N-H* substituted analogues, we synthesized **18a-l** to probe the effects of different substitutions on inhibitory potency of HDAC1 and PI3K α . As shown in **Table 3**, when R₁ changed from methyl to ethyl, the potency on HDAC1 was retained. However, when R₁ changed from ethyl to isopropyl and cyclopentyl, the potency on HDAC1 decreased significantly, the inhibitory activity of 18a on HDAC1 was 100-fold over 18b and 18c. The similar results were also observed in 18d-f, 18g-i, and 18j-l. These results indicated that methyl was crucial to contribute to improving the inhibition activities on HDAC1 and PI3K α . However, all these compounds did not improve the potency on PI3K α in comparison with **10s**. Table 3. In vitro HDAC1 and PI3Kα inhibitory activities.

Compd	Aryl	R ₁	IC_{50}^{a} (n	IC_{50}^{a} (nM)		Aryl R ₁ IC ₅		IC ₅₀ ^{<i>a</i>} (1	$\int_{0}^{a} (\mathbf{n}\mathbf{M})$	
			HDAC1	PI3Ka				HDAC1	PI3Ka	
10c		Me	0.45	>1000	10s		Me	1.04	1.33	
18 a	×	~~	1.00	>1000	18g	× N	~~	2.62	28.42	
18b	~ 0	×	110	>1000	18h	N NH ₂		240	>1000	
18c			125	>1000	18i			300	>1000	
100		Me	0.65	>1000	10w		Me	1.00	>1000	
18d	×	~~	1.37	>1000	18j	× N	~~~	1.60	>1000	
18e	~ NH ₂	, , ,	165	>1000	18k	~ 0		62	>1000	
18f			190	>1000	181			67	>1000	
SAHA		-	11	>10000	CUDC-9	07		1.7	19	

^{*a*} IC₅₀ values for enzymatic inhibition of HDAC1 and PI3K α . The IC₅₀ values are the means of at least two experiments, with intra- and inter-assay variations of < 10%.

191 In vitro cell growth inhibitory effects in MV4-11, A2780s, and HCT116 cells.

After the synthesis and evaluation for enzymatic activity assays of these compounds, anti-proliferative effects of these compounds against MV4-11 cells, A2780s cells, and HCT116 cells were tested using MTT assay. SAHA, LBH-589, and CUDC-907 were used as references (**Table 4**). A total of 29 compounds showed strong

Journal of Medicinal Chemistry

2	
3	
1	
-	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
22	
2J 24	
24 07	
25	
26	
27	
28	
20	
20	
30	
31	
32	
33	
34	
35	
36	
07	
31	
38	
39	
40	
41	
42	
12	
43	
44	
45	
46	
47	
48	
⊿0	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	
60	

196	anti-proliferative activity with most IC_{50} values less than 100 nM. Among them, 100,
197	10p, 10q, 10w and 10y showed comparable inhibitory activities to CUDC-907 and
198	LBH-589, but much stronger than SAHA against all three types of cancer cells.
199	Although 10s was the same as CUDC-907 to be a dual-target inhibitor, its inhibitory
200	activity on tumor cells was inferior to CUDC-907.

201	For the series of compounds 10a-y, compounds with aromatic rings substituted
202	at the C-2 position of the purine ring $(10b-y)$ were generally more potent inhibitors
203	than the chlorine substituted (10a). Proper substitution of C-4 position amino of 10o,
204	such as double methyl (10p) and single ethyl (10q), caused a little decrease of the
205	anti-proliferative activities than the non-substituted (100); while double dimethylallyl
206	substituted analogue of amino (10r) resulted in a sharp decrease in potency over 10o.
207	As the substitution group length at C-4 position of benzene increased, from methyl to
208	<i>t</i> -butyl ($10k-n$), the compounds suffered a sharp decrease in anti-proliferative activity.
209	In corporation of trifluoromethyl group of phenyl ring (10f-h), the anti-proliferative
210	activities decreased.

211 Table 4. Cell growth inhibitory effects for all compounds, SAHA, LBH-589 and

Compd		$IC_{50} \pm SEM^a$ (nN	(1)
	MV4-11	A2780s	НСТ116
10a	37.39±6.32	85.73±12.16	66.55±2.86
10b	7.65±1.08	13.65±0.49	13.02±1.32
10c	4.80±1.43	31.81±3.08	14.84±5.47

212 CUDC-907.

	••••	er mediemar enemietry	
10d	0.95±0.07	39.31±3.56	15.38±1.5
10e	2.69±0.62	224±12	54.35±5.1
10f	3.67±0.32	45.78±1.58	10.63±1.1
10g	65.04±4.45	560±16	89.32±5.1
10h	148±12	300±6	381±25
10i	4.09±0.71	18.48±0.10	9.25±1.08
10j	1.04±0.09	12.53±1.58	7.85±2.10
10k	3.32±2.94	11.30±1.29	5.77±1.20
101	30.80±3.20	3.74±0.59	7.05±0.32
10m	35.30±3.20	52.06±8.37	57.63±6.5
10n	160±12	286±25	160±16
100	0.15±0.02	6.98±1.82	0.74±0.10
10p	0.89±0.10	2.36±0.89	4.73±1.07
10q	2.51±0.50	9.17±3.56	10.26±1.2
10r	44.77±13.27	127.10±12.40	76.46±9.8
10s	7.65±0.79	117.60±3.42	214.20±1
10t	59.8±3.20	75.08±4.93	46.66±3.2
10u	4.00±0.41	181±22	40.24±7.0
10v	7.46±0.72	129.50±8.15	9.22±0.34
10w	0.69±0.05	12.94±1.34	16.13±2.3
10x	1.15±0.28	51.69±0.51	13.99±2.3
10y	0.19±0.05	90.63±1.53	1.99±0.30
18a	78.82±12.16	107.60±24.73	241.10±2
18d	4.85±0.87	30.27±0.18	27.65±2.3

Journal of Medicinal Chemistry

18g	14.63±1.42	240±15	317±20
18j	8.85±0.87	37.28±0.18	17.95±2.09
SAHA	230±24.2	870 ± 68.4	1450±259.7
CUDC-907	0.43 ± 0.09	6.15 ± 1.02	7.34±1.98
LBH-589	2.97±0.11	8.32±2.33	3.36±0.36

^{*a*} IC_{50} = compound concentration required to inhibit tumor cell proliferation by 50%; data are expressed as the mean ± SEM from the dose-response curves of at least three independent experiments.

In vitro inhibition of the enzymatic activities of HDACs and PI3Ks. In our progress of research, we found that although 10b, 10c, 10d, 10i-k, 10o-q, 10v, and 10w-y all showed excellent HDAC inhibitory effects and anti-proliferative activities on tumor cells, most of these compounds had poor solubility in several solvents even dimethyl sulfoxide. Their disadvantages limited further dose administration in vivo evaluation. Considering the solubility and suitable administration as properties required for therapeutic application, we chose 10c, 10o, 10w, 10s, and 10y to ascertain the potency of selected compounds across the broader family of HDACs and PI3Ks isoforms, CUDC-907 and LBH-589 were also chosen as positive controls. The data were shown in Tables 5 and 6. As described previously, 10s displayed the most potent inhibition activities toward PI3Ks, as well as high potency toward HDACs as a dual-acting inhibitor. 10c, 10o, 10w and 10y all displayed remarkable inhibitory activities toward class I (HDACs 1-3, 8) and class IIb (HDACs 6, 10) isoforms of HDACs. In comparison to LBH-589 and CUDC-907, most of these compounds showed better isoforms selectivity for class I and class IIb isoforms over class IIa

231 (HDACs 4, 5, 7, 9), suggesting that 10c, 10o, 10w and 10y are all class I and class IIb

232 isoform inhibitors. Among them, only 10s was identified as a dual-acting inhibitor

toward PI3Ks and HDACs.

Table 5. The enzymatic activities for HDACs of the selected compounds.

Classes of	· 6	IC_{50}^{a} (nM)							
HDACs	ISOIOrms	10c	100	10w	10s	10y	CUDC-907	LBH-589	
	HDAC1	0.45	0.65	1.00	1.04	0.55	1.7	1.26	
oloss I	HDAC2	3.90	2.90	11.46	2.62	2.80	5.0	3.28	
Class I	HDAC3	2.55	3.40	4.65	3.29	2.70	1.8	2.27	
	HDAC8	92.92	24	217	22	11	191	4.86	
	HDAC4	>1000	>1000	>1000	653	>1000	409	337.8	
alaas Ha	HDAC5	>1000	750	>1000	484	>1000	674	190.3	
	HDAC7	>1000	>1000	>1000	650	895	426	4354	
	HDAC9	>1000	>1000	>1000	>1000	>1000	554	887.8	
alass IIb	HDAC6	7.78	6.40	18.22	22	2.70	27	4.16	
	HDAC10	6.85	2.80	17.55	2.83	0.86	2.8	4.45	
class IV	HDAC11	>10000	>1000	>1000	>1000	835	5.4	4112	

^{*a*} IC₅₀ values for enzymatic inhibition of HDACs. The IC₅₀ values are the means of at

least two experiments, with intra- and inter assay variations of < 10%.

Table 6. The enzymatic activities for class I PI3Ks of the selected compounds.

Class I	IC ₅₀ ^{<i>a</i>} (nM)							
	10c	100	10w	10s	10y	CUDC-907	LBH-589	

-	ΡΙ3Κα	>10000	>1000	>1000	1.33	>1000	19	>10000
	ΡΙ3Κβ	>10000	>10000	>1000	34	>10000	54	>10000
	ΡΙ3Κγ	>10000	>10000	255	8.10	>10000	311	>10000
	ΡΙ3Κδ	>10000	>10000	493	15	>10000	39	>10000

^{*a*} IC₅₀ values for enzymatic inhibition of PI3Ks. The IC₅₀ values are the means of at least two experiments, with intra- and inter assay variations of <10%.

In order to investigate whether the HDAC1 IC_{50} value of selected compounds is likely close to its actual IC_{50} , we performed a HDAC enzyme activity assay utilizing nuclear extracts from the cell line of HeLa. As shown in **Table 7**, **10c**, **10o**, **10s**, **10w**, and **10y** showed the similar inhibition to HDACs to CUDC-907 but superior to SAHA, the IC_{50} values of **10c**, **10o**, **10s**, **10w**, and **10y** on HDAC were 3.4, 3.2, 3.3, 6.1, 6.3 nM, respectively. LBH-589 exhibited the most inhibition on HDACs among these compounds.

Tubulin acetylation and histone H3 acetylation induction of selected compounds. Cytoblot experiments were performed to further evaluate the histone H3 acetylation (Ac-H3) and tubulin acetylation (Ac-Tub) of selected compounds. As exhibited in Table 7, 10s showed comparable Ac-H3 and Ac-Tub induction in cellular assays to CUDC-907, which were in line with the in vitro enzymatic data. 10c, 10o, 10w and 10y all showed the similar activities to LBH-589 but better activities than SAHA in tubulin acetylation and histone H3 acetylation induction.

Table 7. Tubulin acetylation and histone H3 acetylation induction and against HeLacells of selected compounds, LBH-589, CUDC-907, and SAHA.

ACS Paragon Plus Environment

Compd	$IC_{50}^{a}(nM)$	$\mathrm{EC}_{50}^{b}(\mathrm{nM})$	
	HeLa	Ac-Tub	Ac-H3
10c	3.40 ± 0.1	248.35±152.52	98.58±13.60
100	3.20 ± 0.1	211.05±37.69	112.96±46.58
10s	$3.30 {\pm} 0.8$	143.7±46.53	123.2±22.77
10w	6.10±1.0	198.6±17.11	117.65±5.44
10y	6.30±2.3	187.9±10.89	142.01±105.92
LBH-589	0.83 ± 0.1	150.71±111.01	169.5±4.67
CUDC-907	6.80 ± 0.4	221.75±52.40	126.25±4.03
SAHA	11.5±0.7	399.25±34.29	377.48±23.16

^{*a*} IC₅₀ values of HeLa Nuclear Extract HDAC inhibition. ^{*b*} EC₅₀ values of tubulin acetylation and Ac-H3 are based on cytoblot experiments run in duplicate in A2780s cells. Data are expressed as the mean \pm SEM from the dose–response curves of at least three independent experiments.

In order to confirm whether compound 10s is a dual-acting selective inhibitor toward PI3Ks and HDACs and 10c, 10o, 10w and 10y are all class I and class IIb isoform inhibitors, we selected two compounds 10s and 10o to examine the protein kinases inhibitory profile against 100 selected recombinant human protein kinases. As shown in **Tables 6** and **7**, compound **10s** exhibited excellent inhibitory activities for HDACs and PI3Ks, the IC₅₀ values of **10s** on HDAC1, PI3Kα, PI3Kβ, PI3Kγ and PI3Kδ were 1.04, 1.33, 34, 8.10 and 15 nM, respectively. In contrast, the IC₅₀ values of CUDC-907 on HDAC1, PI3K α , PI3K β , PI3K γ and PI3K δ were 1.7, 19, 54, 311 and 39 nM, respectively. 10s showed weak inhibitory activity against cKit, cSRC (h)

and Src (T341M) (the binding affinities were 38, 56 and 39 at 1 μ M). However, compound **10s** showed almost no inhibitory activity against the other selected protein kinases (**Table S1**). These data demonstrates that **10s** is a dual-acting selective inhibitor toward PI3Ks and HDACs. Compound **10o** only showed strong inhibitory activity against HDACs but had no inhibitory activity against the 100 selected recombinant human protein kinases, demonstrating that compound **10o** is a single-target class I and class IIb HDAC inhibitor.

To further confirm the selectivity of **10s** and **10o** on PI3Ks and HDACs. The effects of **10s** and **10o** on the activities of mTOR, PI3K and Akt in HCT116 cells treated with indicated concentrations for 6 h were investigated by western blot analysis (Figure S2). 10s reduced the levels of mTOR, PI3K and Akt phosphorylations in a concentration dependent manner. However, the levels of phosphorylation of mTOR, PI3K and Akt were not obviously altered by 10o. The data further demonstrates that **10s** is a dual-acting selectivity inhibitor toward PI3Ks and HDACs and **100** is a single-target class I and class IIb HDAC inhibitor.

Molecular Docking Study. To better understand the different activities of 10s and 10o on PI3K α , the molecular docking was performed (Figure 3A and Figure S3). From the docking results, we found that the oxygen of the morpholine group of 10s forms a hydrogen bond interaction with the backbone *NH* group of Val-851 in the hinge region, the morpholine ring has the hydrophobic contacts with the residues of Val-851, Met-922, Ile-932, and the purine core forms hydrophobic interactions with the side chains of Met-772 and Ile-932. These interactions are considered as critical

291	forces which determine the binding capacity of PI3K α inhibitors. And the tail of
292	hydroxamic acid could interact with Ser-854 on the entrance of the ATP pocket. The
293	pyrimidine ring linked with hydroxamic acid could interact with the indole ring of
294	Trp-780 by means of π - π stacking. More importantly, the amino group on the pyridine
295	ring of 10s forms two hydrogen bonds to the residues of Asp-810 and Asp-933, while
296	the pyrimidine nitrogen atoms form additional hydrogen interactions with the
297	phenolic hydroxyl of Tyr-836 and the catalytic lysine Lys-802. In contrast, due to the
298	replacement of pyrimidine ring, the aniline of 100 could not form additional hydrogen
299	interactions with the residues of Tyr-836 and Lys-802. And, with the stronger
300	hydrogen bonding capabilities, compound 10s may have higher inhibitory activity
301	against PI3K α than compound 100. In according with the enzymatic inhibition level
302	described previously, 10s could inhibit PI3K α efficiently with IC ₅₀ value of 1.33 nM,
303	but 100 showed weak inhibitory activity on PI3K α (IC ₅₀ > 1000 nM).
304	The molecular docking with compound 10s and 10o in HDAC1 was also

performed (Figure 3B and Figure S4). The catalytic Zn^{2+} is coordinated by the hydroxamic acid, Asp-264, Asp-176 and His-178. Also, the hydroxamic acid tail forms hydrogen interaction with the residues of His-140 and Tyr-303. In the cap region, the purine ring forms a π - π stacking interaction with residues of Phe-150 and Phe-205. And the nitrogen atoms, linking the pyrimidine ring in 10s and benzene ring in 10o, form hydrogen interaction with Gln-26, respectively.

Figure 3. (A) Proposed binding mode of compound 10s (green stick) and 10o (yellow stick) within the ATP pocket of PI3K α (PDB code 4L23). And the dash lines represent the H-bond interaction between compound 10s and PI3K α . (B) Representation of the predicted binding modes of 10s (yellow stick) and 10o (green stick) in the active site of HDAC1 (PDB code 4BKX), yellow dash lines indicate the H-bond interaction between 10o and HDAC1. For clarity, oxygen and nitrogen atoms are shown in red and blue respectively.

Anti-tumor activity in vivo. Since 10s, 10c, 10w and 10y all exhibited good in vitro anti-proliferative activities, we primarily established a MV4-11 xenograft NOD/SCID mouse model to investigate the effects of 10c, 10s, 10w, 10y, and 10o on tumor growth, with SAHA administrated for comparison. The administration, dosing schedules, and results are presented in Table 8.

Table 8. Summary of tumor growth inhibition of selected compounds.

	administration		max bouy	survivors	tumor
Tumor compd schedule ^a doso (mg/k	route g)	significance ^b	weight loss(%)(day)	(day)	mass change(%)

	10c	Q2D×11	10	iv	***	8.1(7)	4/6	65.3
	10s	Q2D×11	10	iv	**	6.4(13)	4/6	45.1
MV4-11	10w	Q2D×11	10	iv	***	14.9(11)	5/6	63.4
	10y	Q2D×11	10	iv	***	2.1(19)	5/6	64.3
	100	Q2D×11	10	iv	***	3.6(19)	6/6	65.6
	SAHA	Q2D×11	50	ip	ns	3.0(17)	6/6	0
	100	Q2D×8	2.5	iv	***	3.9(4)	6/6	49.4
HCT116	100	Q2D×8	5	iv	***	2.1(12)	6/6	53.3
	100	Q2D×8	10	iv	***	1.4(10)	6/6	68.2
	SAHA	Q2D×8	50	ip	**	5.2(8)	6/6	32.4
Ramos	100	Q2D×6	10	iv	***	0.8(12)	8/8	83.9
	LBH-589	Q2D×6	10	ip	***	1.9(7)	5/8	16.6
	100	Q2D×6	2.5	iv	***	2.4(12)	7/7	45.1
MM1S	100	Q2D×6	5	iv	***	3.1(9)	7/7	69.2
	100	Q2D×6	10	iv	***	2.1(12)	7/7	75.1
	LBH-589	Q2D×6	10	ip	***	5.1(12)	7/7	49.2

^a Q2D, every 2 days. ^b One-way ANOVA followed by Dunnett's multiple comparison test was used to determine the statistical significance of tumor volume between a treatment group and the control (vehicle) group: ns=not significant, (**) p<0.01, and (***) p<0.001.⁵

As displayed in **Table 8**, 10c, 10w, 10y, and 10o all exhibited antitumor activities. The tumor growth on MV4-11 was significantly suppressed by 65.3, 63.4, 64.3 and 65.6% (tumor growth inhibitory rate [TGI], as indicated the percentage of tumor mass change values) after intravenous administration of 10c, 10w, 10y, and 10o

Journal of Medicinal Chemistry

at 10 mg/kg, respectively. In contrast, SAHA had no inhibitory activity at 50 mg/kg ip administration on the MV4-11 xenograft model. 10s showed the worst inhibitory effect with the TGI of 45.1% which is in consistent with in vitro potency. In addition, **10c** and **10s** exhibited some toxicity and two of mice died during the treatment period. At the same dose, 10w and 10y both retained potent inhibition on MV4-11 but both still caused one mouse death. 100 could inhibit tumor growth with TGI of 65.6%. Among the five compounds, **100** exhibited the most potent antitumor activity without significant toxicity: slight body weight change and no death of mice were observed during the treatment period. Furthermore, **100** showed the best water-solubility among the five compounds. Hence, 100 was selected for further in vitro and in vivo antitumor evaluation in solid tumor and hematological models.

We then established HCT116 xenograft model since this model had been successfully used for HDAC inhibitors evaluation such as dacinostat³⁵ and belinostat³⁶. As displayed in **Table 8** and **Figure 4A**, iv administration of **100** dose-dependently inhibited tumor growth, the significant antitumor activity was observed at dose as low as 2.5 mg/kg (TGI = 49.4%, p<0.001), 5 and 10 mg/kg of **100** caused respective TGI of 53.3% and 68.2%. In contrast, SAHA only showed 32.4% of TGI at 50 mg/kg ip administration. In addition, 100 did not cause significant weight loss in HCT116 xenograft model during the treatment period.

In vitro and in vivo anti-proliferative activities of 100 in hematological tumor cells.

As most HDAC inhibitors are used for hematological cancer treatment, **100** was further investigated the anti-proliferative activities against 8 kinds of hematological tumors including multiple myeloma (U266, RPMI-8226 and MM1S cells) and B cell lymphoma (OCI-LY1, HBL-1, Ramos, Raji and SUDHL4 cells) by MTT, and LBH-589 was chosen as a positive control (**Table S2**). **100** showed better or comparable anti-proliferative potential to LBH-589, and the IC₅₀ values were ranging from 0.78 to 12.85 nM in these tumor cell lines.

It was recently announced that LBH-589 had been approved by FDA for the treatment of multiple myeloma as a new HDAC pan-inhibitor. LBH-589 has also been licensed or at various stages of clinical evaluation for the treatment of B cell lymphoma. We further established a multiple myeloma MM1S and a B cell lymphoma Ramos NOD/SCID xenograft models to validate the antitumor effect of 100 (Table 8, Figure 4B and 4C). In MM1S tumor model, 100 dose-dependently inhibited tumor growth, low-dose administration of 100 (2.5 mg/kg iv) could effectively inhibit tumor growth and the TGI was 45.1%, which was comparable to LBH-589 at 10 mg/kg ip treatment (TGI, 49.2%). However, 10o at 5 mg/kg iv treatment showed much more efficacious in inhibiting tumor growth than LBH-589 and the TGI was up to 69.2%. Further increased dose of 10 mg/kg of **100** caused the TGI to 75.1%. In addition, there is no significant weight loss of NOD/SCID mice during the treatment period. Surprisingly, in B cell lymphoma Ramos NOD/SCID xenograft model, 100 at 10 mg/kg iv treatment caused significantly tumor growth inhibition, the TGI was 83.89%. In contrast, LBH-589 was not sensitive to this model and had no activity (TGI, 16.6%), and three of eight mice died during experimental period. These results confirmed that 100 showed superior antitumor to LBH-589 and could be used as a novel HDAC inhibitor to be further researched on the therapy of both hematological tumors and solid tumors.

Figure 4. Antitumor activities of 100, SAHA and LBH-589 on the xenograft models. (A) Antitumor growth of 100 on the HCT116 xenograft model. (B) Antitumor growth of 100 on Ramos xenograft model. (C) Antitumor growth of 100 on MM1S xenograft model. 100 was dissolved in physiological saline containing 20% captisol with the pH adjusted to 6). SAHA (50 mg/kg) was dissolved in physiological saline containing 5% DMSO and 30% PEG400. LBH-589 was dissolved in physiological saline containing 2% DMSO, 2% Tween 80 and 15% PEG400.

Formation of salts is a well-known technique to modify and optimize the solubility to improve the pharmacokinetics and increase the bioavailability. As depicted in **Table S3**, the oral bioavailability of **100** was 4.83%, which is comparable to LBH-589 (4.62%, Female Balb/c nude mice).³⁷ However, the oral bioavailability of **100**·**CH**₃**SO**₃**H** in SD rats was increased to 14.21%, much higher than LBH-589. Encouragingly, the oral bioavailability of ·**CH**₃**SO**₃**H** in beagle dogs was up to 41.82%. The low clearance, rapid elimination half-life and good bioavailability indicated that **100** may be suitable both for oral and intravenous dosing for further development as an anticancer agent.

Upregulation effects of histone H3 and α-tubulin. We attempted to validate the observed biochemical potencies of the 100 in a cellular context by examining its HDACs activity in comparison with SAHA and LBH-589. The effects of 100 on the acetylation level of histone H3 (a known substrate for HDACs 1-3) and α -tubulin (a known substrate for HDAC6), the biomarkers of HDAC inhibition³⁸, in MV4-11 and HCT116 cells treated with different concentrations are shown in Figure 5. As expected, in agreement with the relative potency in class I (HDAC 1-3, 8) inhibition, 100 induced a concentration-dependent increase of the acetylated histone H3 from $0.02 \mu M$ to $2 \mu M$, which is comparable to LBH-589, however, SAHA only slightly upregulated the acetylated histone H3 at concentration of 2 μ M. Furthermore, both **100** and LBH-589 upregulated acetylated α -tubulin in a concentration-dependent manner, but SAHA induced acetylated α -tubulin increase at slightly higher concentration. These results showed that 100 was a class I and class IIb isforms HDAC inhibitor.

Figure 5. Western blot analysis of acetylated α-tubulin, acetylated histone H3 in
MV4-11 and HCT116 cell lines after 6 h treatment with compounds 100, LBH-589 at
0.02, 0.2, 2 μM and SAHA at 0.2, 2 μM. GAPDH was used as a loading control.

CONCLUSIONS

We chose morpholinopurine as a core structure scaffold of cap group, and a series of hydroxamic acid analogues were prepared and evaluated for bioactivity in vitro and in vivo. The inhibitory activities on the HDAC1 and PI3K α isoforms of the synthesized compounds and a SAR analysis revealed that the strategy successfully achieved the target to find novel and highly efficient small molecule inhibitors of HDACs. The most potent dual-target inhibitor **10s** displayed efficient activities for

2
3
4
5
6
7
1
8
9
10
11
12
13
14
14
15
16
17
18
19
20
20
21
22
23
24
25
26
27
20
28
29
30
31
32
33
24
34
35
36
37
38
39
40
11
41
42
43
44
45
46
47
10
40
49
50
51
52
53
5/
54
55
56
57
58
59
60
00

422	PI3K α with an IC ₅₀ of 1.33 nM, as well as a potent pan-HDAC inhibitor. Because of
423	toxicity and poor water-solubility, 10s could be further optimized to improve
424	water-solubility and reduce toxicity. Compound 10o showed better activities for class
425	I and class IIb isoforms over other isoforms of HDACs. Subsequently, the western
426	blot analytical results further confirmed that 100 displayed excellent potency toward
427	HDACs. 100 displayed anti-proliferative activity with IC_{50} values of 0.15-12.85 nM
428	against diverse cancer cell lines including non-solid and solid tumor cells. Most
429	importantly, 100 showed substantial antitumor activity with tumor growth inhibition
430	of 65.6% and 68.2% in MV4-11 and HCT116 xenograft models after iv treatment
431	with 10 mg/kg, respectively, which was greater than SAHA groups (0 and 32.4%
432	respectively to MV4-11 and HCT116 xenograft models, 50 mg/kg, ip). In MM1S
433	xenograft model, 100 inhibited tumor growth up to 75.1%, much stronger than
434	LBH-589 (49.2%) at the same dose. Surprisingly, 10o showed much higher antitumor
435	activity in B cell lymphoma Ramos model, further underlying mechanism should be
436	investigated in near future. Moreover, 100·CH ₃ SO ₃ H has a better oral bioavailability
437	of 14.21% in SD rats than LBH-589 (4.62%), and excellent bioavailability in beagle
438	dogs (41.82%), suggesting that 10o is suitable both for oral and intravenous dosing
439	for treating cancers. In future work, the antitumor properties of 100·CH ₃ SO ₃ H via
440	oral administration would be evaluated. By far, the existing data indicated that 100 is
441	a potential promising histone deacetylase inhibitor for the therapy of both
442	hematological tumors and solid tumors.

443 Experimental Section

2
2
3
4
4
5
õ
6
7
'
8
0
9
10
4.4
TT
12
10
13
14
15
16
10
17
19
10
19
20
20
21
22
າາ
23
24
~ -
25
26
20
27
20
20
29
~~
30
31
51
32
33
55
34
2 E
35
36
07
37
38
50
39
<u>10</u>
-+0
41
10
42
43
11
44
45
46
47
- 1
48
10
+3
50
E 4
DI
52
53
54
55
56
00
57
E0
ЭQ
59
~~
1-11

444	Chemistry. All the chemical solvents and reagents, which were analytically pure
445	without further purification, were commercially available. TLC was performed on
446	0.20 mm Silica Gel 60 F_{254} plates (Qingdao Haiyang Chemical, China). ¹ H NMR and
447	¹³ C NMR spectra were recorded on a BrukerAvance400 spectrometer (Bruker
448	Company, Germany) or Varian spectrometer (Varian, Palo Alto, CA), using TMS as an
449	internal standard. Chemical shifts were given in ppm (parts per million). Mass spectra
450	were recorded on Q-TOF Priemier mass spectrometer (Micromass, Manchester, UK).
451	The purity of each compound (>95%) was determined on an Waters e2695 series LC
452	system (column, Xtimate C18, 4.6 mm $\times 150$ mm, 5 μm ; mobile phase, methanol
453	(60%)/H ₂ O (40%); low rate, 1.0 mL/min; UV wavelength, 254-400 nM;
454	temperature, 25 °C; injection volume, 10 µL).

455 General Procedures of Method A for the Synthesis of 10a-y.

4-(2-chloro-9H-purin-6-yl)morpholine (2). To the mixture of 1 (18.9 g, 100 456 mmol, 1 equiv) in methanol (500 ml) was added morpholine (13 ml, 150 mmol, 1.5 457 equiv) slowly under ice-bath. The mixture was stirred for 10 minutes, and stirred at 458 459 room temperature for another 2 hours. Upon the reaction completed, large amounts of precipitates formed. The precipitates were collected by filtration and the filtrate was 460 461 removed under reduced pressure to get the solid. The solid was dissolved in CH₂Cl₂, 462 washed by diluted HCl solution, water and saturated brine three times. The combined organic layers were dried over Na₂SO₄, filtered and the solvent was removed under 463 464 reduced pressure. The combined solids were crude product without purification. Yield

465	95%, white power solid. ¹ H NMR (400 MHz, DMSO- d_6) δ : 3.72 (t, 4H, J = 4.8 Hz),
466	4.18 (m, 4H), 8.15 (s, 1H), 13.21 (s, 1H). MS (ESI), m/z: 240.2 [M+H] ⁺ .
467	4-(2-chloro-9-methyl-9 <i>H</i> -purin-6-yl)morpholine (3). To the mixture of 2 (23.9 g,
468	100 mmol, 1 equiv) in acetonitrile (500 ml) was added Cs ₂ CO ₃ (48.75 g, 150 mmol,
469	1.5 equiv), followed by CH_3I (9.4 ml, 150 mmol, 1.5 equiv) slowly. The mixture was
470	stirred at room temperature for 4 hours. The mixture was filtrated to get filtrate A and
471	residue. The residue was washed by CH_2Cl_2 three times to get filtrate B. The
472	combined filtrates were concentrated under reduced pressure to get solid. The solid
473	was recrystallized by ethyl acetate. Yield 80% as white solid. ¹ H NMR (400 MHz,
474	CDCl ₃) δ : 3.79 (s, 3H), 3.82 (t, 4H, J = 4.8 Hz), 4.19-4.48 (m, 4H), 7.67 (s, 1H). MS
475	(ESI), m/z: 254.1 $[M+H]^+$.
476	2-chloro-9-methyl-6-morpholino-9 <i>H</i> -purine-8-carbaldehyde (4). To a solution of
477	3 (2.53 g, 10 mmol, 1 equiv) in anhydrous THF (150 ml) at -78 $^{\rm o}C$ under N_2
478	atmosphere was added TEMED (2.4 ml, 16 mmol, 1.6 equiv), followed by
479	n-butyllithium (16 ml, 16 mmol, 1.6 equiv) dropwise. The reaction mixture was
480	stirred for 30 min, then warmed to -40 °C for 1 h. DMF (1.5 ml, 20 mmol, 2.0 equiv)
481	was added when the mixture was cooled to -78 $^{\rm o}{\rm C}$ and stirred for 2 h. The reaction
482	was quenched with water, and the aqueous layer was extracted with $\mathrm{CH}_2\mathrm{Cl}_2$. The
483	combined organic layers were dried over Na_2SO_4 and concentrated. The crude was not
484	purified further. Yield, 51%. ¹ H NMR (400 MHz, CDCl ₃) δ : 3.79 (s, 3H), 3.92 (t, 4H,
485	J = 4.8 Hz), 4.20-4.59 (m, 4H), 9.87 (s, 1H). MS (ESI), m/z: 282.1 [M+H] ⁺ .

2
3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
27
28
20
20
30
31
32
33
34
35
36
37
38
30
40
40
41
42
43
44
45
46
47
48
49
50
51
50
52
ວ ວ
54
55
56
57
58
59
60

486	1-(2-chloro-9-methyl-6-morpholino-9 <i>H</i> -purin-8-yl)-N-methylmethanamine (5).
487	To a solution of 4 (4 g, 14 mmol, 1 equiv) in MeOH at 25 °C was added methylamine
488	(25-30% in MeOH, 56 mmol) and stirred for 30 min, After the mixture was cooled to
489	0 °C, NaBH ₄ (1.0 g, 28 mmol, 2 equiv) was added portionwise. Then the reaction
490	mixture was warmed to 25 °C, and stirred for an additional 1 h. The solvent was
491	removed under reduced pressure, extracted with water and CH ₂ Cl ₂ . The organic layer
492	was separated and washed with saturated NaHCO3 and brine. After dried over Na2SO4,
493	the organic phase was concentrated to afford the desired crude 5. The crude product
494	was purified by flash chromatograph to yield 5 as white powder. ¹ H NMR (400 MHz,
495	DMSO- d_6) δ : 2.29 (s, 3H), 3.67 (s, 3H), 3.71 (t, 4H, $J = 4.8$ Hz), 3.85 (s, 1H),
496	4.02-4.30 (m, 4H). MS (ESI), m/z: 297.1 [M+H] ⁺ .
497	Ethyl
497 498	Ethyl 2-(((2-chloro-9-methyl-6-morpholino-9 <i>H</i> -purin-8-yl)methyl)(methyl)amino)pyrimidin
497 498 499	Ethyl 2-(((2-chloro-9-methyl-6-morpholino-9 <i>H</i> -purin-8-yl)methyl)(methyl)amino)pyrimidin e-5-carboxylate (7). To a solution of 5 (296 mg, 1 mmol, 1 equiv) in CH ₃ CN at room
497 498 499 500	Ethyl 2-(((2-chloro-9-methyl-6-morpholino-9 <i>H</i> -purin-8-yl)methyl)(methyl)amino)pyrimidin e-5-carboxylate (7). To a solution of 5 (296 mg, 1 mmol, 1 equiv) in CH ₃ CN at room temperature was added DIPEA (330 μl, 2 mmol, 2 equiv) and 6 (205.7 mg, 1.1 mmol,
497 498 499 500 501	Ethyl 2-(((2-chloro-9-methyl-6-morpholino-9 <i>H</i> -purin-8-yl)methyl)(methyl)amino)pyrimidin e-5-carboxylate (7). To a solution of 5 (296 mg, 1 mmol, 1 equiv) in CH ₃ CN at room temperature was added DIPEA (330 μl, 2 mmol, 2 equiv) and 6 (205.7 mg, 1.1 mmol, 1.1 equiv). About 2 h later, large amounts of precipitate came up. After filtration, the
497 498 499 500 501 502	Ethyl 2-(((2-chloro-9-methyl-6-morpholino-9 <i>H</i> -purin-8-yl)methyl)(methyl)amino)pyrimidin e-5-carboxylate (7). To a solution of 5 (296 mg, 1 mmol, 1 equiv) in CH ₃ CN at room temperature was added DIPEA (330 μ l, 2 mmol, 2 equiv) and 6 (205.7 mg, 1.1 mmol, 1.1 equiv). About 2 h later, large amounts of precipitate came up. After filtration, the precipitate was obtained. Yield 81% as white powder. ¹ H NMR (400 MHz, CDCl ₃) δ :
497 498 499 500 501 502 503	Ethyl 2-(((2-chloro-9-methyl-6-morpholino-9 <i>H</i> -purin-8-yl)methyl)(methyl)amino)pyrimidin e-5-carboxylate (7). To a solution of 5 (296 mg, 1 mmol, 1 equiv) in CH ₃ CN at room temperature was added DIPEA (330 μ l, 2 mmol, 2 equiv) and 6 (205.7 mg, 1.1 mmol, 1.1 equiv). About 2 h later, large amounts of precipitate came up. After filtration, the precipitate was obtained. Yield 81% as white powder. ¹ H NMR (400 MHz, CDCl ₃) δ : 1.38 (t, 3H, <i>J</i> = 7.2 Hz), 3.30 (s, 3H), 3.73 (s, 3H), 3.82 (t, 4H, <i>J</i> = 4.4 Hz), 4.18-4.40
497 498 499 500 501 502 503 504	Ethyl 2-(((2-chloro-9-methyl-6-morpholino-9 <i>H</i> -purin-8-yl)methyl)(methyl)amino)pyrimidin e-5-carboxylate (7). To a solution of 5 (296 mg, 1 mmol, 1 equiv) in CH ₃ CN at room temperature was added DIPEA (330 μ l, 2 mmol, 2 equiv) and 6 (205.7 mg, 1.1 mmol, 1.1 equiv). About 2 h later, large amounts of precipitate came up. After filtration, the precipitate was obtained. Yield 81% as white powder. ¹ H NMR (400 MHz, CDCl ₃) δ : 1.38 (t, 3H, <i>J</i> = 7.2 Hz), 3.30 (s, 3H), 3.73 (s, 3H), 3.82 (t, 4H, <i>J</i> = 4.4 Hz), 4.18-4.40 (m, 4H), 4.36 (q, 2H, <i>J</i> = 7.2 Hz), 5.19 (s, 2H), 8.92 (s, 2H); MS (ESI), m/z: 447.2
 497 498 499 500 501 502 503 504 505 	Ethyl 2-(((2-chloro-9-methyl-6-morpholino-9 <i>H</i> -purin-8-yl)methyl)(methyl)amino)pyrimidin e-5-carboxylate (7). To a solution of 5 (296 mg, 1 mmol, 1 equiv) in CH ₃ CN at room temperature was added DIPEA (330 μ l, 2 mmol, 2 equiv) and 6 (205.7 mg, 1.1 mmol, 1.1 equiv). About 2 h later, large amounts of precipitate came up. After filtration, the precipitate was obtained. Yield 81% as white powder. ¹ H NMR (400 MHz, CDCl ₃) δ : 1.38 (t, 3H, <i>J</i> = 7.2 Hz), 3.30 (s, 3H), 3.73 (s, 3H), 3.82 (t, 4H, <i>J</i> = 4.4 Hz), 4.18-4.40 (m, 4H), 4.36 (q, 2H, <i>J</i> = 7.2 Hz), 5.19 (s, 2H), 8.92 (s, 2H); MS (ESI), m/z: 447.2 [M+H] ⁺ .
 497 498 499 500 501 502 503 504 505 506 	Ethyl 2-(((2-chloro-9-methyl-6-morpholino-9 <i>H</i> -purin-8-yl)methyl)(methyl)amino)pyrimidin e-5-carboxylate (7). To a solution of 5 (296 mg, 1 mmol, 1 equiv) in CH ₃ CN at room temperature was added DIPEA (330 µl, 2 mmol, 2 equiv) and 6 (205.7 mg, 1.1 mmol, 1.1 equiv). About 2 h later, large amounts of precipitate came up. After filtration, the precipitate was obtained. Yield 81% as white powder. ¹ H NMR (400 MHz, CDCl ₃) δ : 1.38 (t, 3H, <i>J</i> = 7.2 Hz), 3.30 (s, 3H), 3.73 (s, 3H), 3.82 (t, 4H, <i>J</i> = 4.4 Hz), 4.18-4.40 (m, 4H), 4.36 (q, 2H, <i>J</i> = 7.2 Hz), 5.19 (s, 2H), 8.92 (s, 2H); MS (ESI), m/z: 447.2 [M+H] ⁺ . Ethyl

2	
3 ⊿	
5	
6 7	
8 9	
10	
11 12	
13 14	
15	
16 17	
18 19	
20	
21	
23 24	
25 26	
27	
28 29	
30 31	
32	
34	
35 36	
37 38	
39	
40 41	
42 43	
44	
45 46	
47 48	
49 50	
51	
52 53	
54 55	
56	
57 58	
59 60	

508	carboxylate (9a-y). 7 (224 mg, 0.5 mmol, 1 equiv) was dissolved in
509	toluene/ethanol/water (v:v:v, 7:3:2, 3 ml) and treated with 8 (0.6 mmol, 1.2 equiv),
510	PdCl ₂ (dppf) ₂ , and NaHCO ₃ (84 mg, 1 mmol, 2 equiv). The vial was sealed and heated
511	with stirring at 80 °C for 8 h. The crude reaction mixture was purified by flash
512	chromatograph to afford 9a-y . Yield 70% as white powder.

513 *N*-hydroxy-2-(methyl((9-methyl-6-morpholino-2-phenyl-9*H*-purin-8-yl)methyl)a 514 mino)pyrimidine-5-carboxamide (**10a**–**y**). To a mixture of **9a**–**y** in CH₂Cl₂/CH₃OH 515 (v:v, 1:1) at room temperature was added the solution of NH₂OH in CH₃OH. The 516 reaction was stirred at room temperature for 2 h. The solution was quenched with 517 water, then pH was adjusted to 7-8, and extracted with ethyl acetate. The solvent was 518 removed under reduced pressure to afford the crude **10a–y** and purified by flash 519 chromatograph. Yield, 90%.

520 *N*-hydroxy-2-(((2-chloro-9-methyl-6-morpholino-9*H*-purin-8-yl)methyl)(methyl) 521 amino)pyrimidine-5-carboxamide (**10a**). **10a** was obtained from **9a** as described for 522 method A. mp. 187-189 °C. ¹H NMR (400 MHz, DMSO- d_6) δ : 3.20 (s, 3H), 3.63-3.69 523 (m, 7H), 3.83-4.33 (m, 4H), 5.14 (s, 2H), 8.70 (s, 2H); HRMS (ESI), m/z: 447.1605 524 [M+H]⁺.

525 *N*-hydroxy-2-(((2-(3-hydroxyphenyl)-9-methyl-6-morpholino-9*H*-purin-8-yl)met 526 hyl)(methyl)amino)pyrimidine-5-carboxamide (**10b**). **10b** was obtained from **9b** as 527 described for method A. mp. 204-206 °C. ¹H NMR (400 MHz, DMSO- d_6) δ : 3.22 (s, 528 3H), 3.73-3.79 (m, 4H), 3.75 (s, 3H), 4.23-4.33 (m, 4H), 5.18 (s, 2H), 6.82 (s, 1H),

529	7.24-7.28 (m, 1H), 7.84-7.92 (m, 2H), 8.73 (s, 2H); HRMS (ESI), m/z: 492.2162
530	$[M+H]^+.$
531	<i>N</i> -hydroxy-2-(((2-(4-methoxyphenyl)-9-methyl-6-morpholino-9 <i>H</i> -purin-8-yl)met
532	hyl)(methyl)amino)pyrimidine-5-carboxamide (10c). 10c was obtained from 9c as
533	described for method A. mp. 191-193 °C. ¹ H NMR (400 MHz, DMSO- d_6) δ : 3.23(s,
534	3H), 3.72-3.78(m, 4H), 3.75(s, 3H), 3.81 (s, 3H), 4.18-4.22 (m, 4H), 5.17 (s, 2H), 7.01
535	(d, J = 8.8 Hz, 2H), 8.33 (d, J = 8.8 Hz, 2H), 8.72 (s, 2H), 9.03 (s, 1H), 11.09 (s, 1H);
536	HRMS (ESI), m/z: 506.2328 [M+H] ^{+.}
537	<i>N</i> -hydroxy-2-(methyl((9-methyl-6-morpholino-2-(3,4,5-trimethoxyphenyl)-9 <i>H</i> -p
538	urin-8-yl)methyl)amino)pyrimidine-5-carboxamide (10d). 10d was obtained from 9d
539	as described for method A. mp. 197-199 °C. ¹ H NMR (400 MHz, DMSO- d_6) δ : 3.21
540	(s, 3H), 3.69-3.76 (m, 7H), 3.77 (s, 3H), 3.87 (s, 6H), 4.18-4.31 (m, 4H), 5.16 (s, 2H),
541	7.72 (s, 2H), 8.70 (s, 2H); HRMS (ESI), m/z: 566.2218 [M+H] ⁺ .
542	N-hydroxy-2-(((2-(2-methoxy-5-(trifluoromethyl)phenyl)-9-methyl-6-morpholin
543	o-9H-purin-8-yl)methyl)(methyl)amino)pyrimidine-5-carboxamide (10e). 10e was
544	obtained from 9e as described for method A. mp. 166-168 °C. ¹ H NMR (400MHz,
545	DMSO- <i>d</i> ₆) δ: 3.22 (s, 3H), 3.58-3.64 (m, 4H), 3.70 (s, 3H), 3.84 (s, 3H), 4.11-4.21 (m,
546	4H), 5.18 (s, 2H), 7.30 (d, <i>J</i> = 8.8 Hz, 1H), 7.76 (d, <i>J</i> = 8.4 Hz, 1H), 7.80 (s, 1H), 8.71
547	(s, 2H); HRMS (ESI), m/z: 574.2054 [M+H] ⁺ .
548	N-hydroxy-2-(methyl((9-methyl-6-morpholino-2-(4-(trifluoromethyl)phenyl)-9H
549	-purin-8-yl)methyl)amino)pyrimidine-5-carboxamide (10f). 10f was obtained from 9f
550	as described for method A. mp. 201-203 °C. ¹ H NMR (400 MHz, DMSO- d_6) δ : 3.16

551	(s, 3H), 3.74 -3.77 (m, 7H), 4.21-4.32 (m, 4H), 5.16 (s, 2H), 7.82 (d, <i>J</i> = 8.4 Hz, 2H),
552	8.58 (d, <i>J</i> = 8.4 Hz, 2H), 8.64 (s, 2H); HRMS (ESI), m/z: 527.1817 [M-H] ⁻ .
553	<i>N</i> -hydroxy-2-(((2-(3,5-bis(trifluoromethyl)phenyl)-9-methyl-6-morpholino-9 <i>H</i> -p
554	urin-8-yl)methyl)(methyl)amino)pyrimidine-5-carboxamide (10g). 10g was obtained
555	from 9g as described for method A. mp. 211-213 °C. ¹ H NMR (400 MHz, DMSO- d_6)
556	δ: 3.25 (s, 3H), 3.63-3.74 (m, 4H), 3.82 (s, 3H), 4.24-4.30 (m, 4H), 5.20 (s, 2H), 8.21
557	(s, 1H), 8.72 (s, 2H), 8.90 (s, 2H); HRMS (ESI), m/z: 612.2064 [M+H] ⁺ .
558	N-hydroxy-2-(((2-(4-chloro-3-(trifluoromethyl)phenyl)-9-methyl-6-morpholino-
559	9H-purin-8-yl)methyl)(methyl)amino)pyrimidine-5-carboxamide (10h). 10h was
560	obtained from 9h as described for method A. mp. 197-199 °C. ¹ H NMR (400 MHz,
561	CDCl ₃) δ: 3.30 (s, 3H), 3.81 (s, 3H), 3.83-3.91 (m, 4H), 4.26-4.40 (m, 4H), 7.55 (d, J
562	= 8.4 Hz, 1H), 8.54 (d, <i>J</i> = 8.4 Hz, 1H), 8.77 (s, 2H), 8.95 (s, 1H); HRMS (ESI), m/z:
563	578.1648 [M+H] ⁺ .
564	<i>N</i> -hydroxy-2-(((2-(benzo[d][1,3]dioxol-5-yl)-9-methyl-6-morpholino-9 <i>H</i> -purin-8
565	-yl)methyl)(methyl)amino)pyrimidine-5-carboxamide (10i). 10i was obtained from 9i
566	as described for method A. mp. 208-210 °C. ¹ H NMR (400 MHz, DMSO- d_6) δ : 3.21
567	(s, 3H), 3.64-3.72 (m, 4H), 3.74 (s, 3H), 4.17-4.27 (m, 4H), 5.16 (s, 2H), 6.08 (s, 2H),
568	6.90 (d, <i>J</i> = 8.4 Hz, 1H), 7.87 (s, 1H), 7.99 (d, <i>J</i> = 8.4 Hz, 1H), 8.71 (s, 2H); HRMS
569	(ESI), m/z: 520.2074 [M+H] ⁺ .
570	<i>N</i> -hydroxy-2-(methyl((9-methyl-2-(4-(methylsulfonyl)phenyl)-6-morpholino-9 <i>H</i>
571	-purin-8-yl)methyl)amino)pyrimidine-5-carboxamide (10j). 10j was obtained from 9j

as described for method A. mp. 213-215 °C. ¹H NMR (400 MHz, DMSO- d_6) δ : 3.25

Journal of Medicinal Chemistry

57	(s, 6H), 3.70-3.77 (m, 4H), 3.79 (s, 3H), 4.20-4.35 (m, 4H), 5.20 (s, 2H), 8.02 (d, J =
57	4 8.0 Hz, 2H), 8.61 (d, $J = 8.0$ Hz, 2H), 8.73 (s, 2H); HRMS (ESI), m/z: 554.2016
57	5 $[M+H]^+$.
57	<i>N</i> -hydroxy-2-(methyl((9-methyl-6-morpholino-2-(p-tolyl)-9 <i>H</i> -purin-8-yl)methyl)
57	amino)pyrimidine-5-carboxamide (10k). 10k was obtained from 9k as described for
57	method A. mp. 193-195 °C. ¹ H NMR (400 MHz, DMSO- d_6) δ : 2.36 (s, 3H), 3.21 (s,
57	9 3H), 3.72 (s, 4H), 3.75 (s, 3H), 4.18-4.30 (m, 4H), 5.17 (s, 2H), 7.27 (d, $J = 8.0$ Hz,
58	2H), 8.29 (d, $J = 8.0$ Hz, 2H), 8.71 (s, 2H); HRMS (ESI), m/z: 490.2350 [M+H] ⁺ .
58	<i>N</i> -hydroxy-2-(((2-(4-ethylphenyl)-9-methyl-6-morpholino-9 <i>H</i> -purin-8-yl)methyl
58	2)(methyl)amino)pyrimidine-5-carboxamide (101). 101 was obtained from 91 as
58	described for method A. mp. 191-193 °C. ¹ H NMR (400 MHz, DMSO- d_6) δ : 1.21 (t, J
58	= 7.2 Hz, 3H), 2.66 (q, $J = 7.2$ Hz, 2H), 3.23 (s, 3H), 3.68-3.80 (m, 7H), 4.17-2.27 (m,
58	5 4H), 5.18 (s, 2H), 7.29 (d, $J = 7.6$ Hz, 2H), 8.30 (d, $J = 7.6$ Hz, 2H), 9.05 (s, 1H),
58	6 11.12 (s, 1H); HRMS (ESI), m/z: 504.2475 $[M+H]^+$.
58	<i>N</i> -hydroxy-2-(methyl((9-methyl-6-morpholino-2-(4-propylphenyl)-9 <i>H</i> -purin-8-y
58	l)methyl)amino)pyrimidine-5-carboxamide (10m). 10m was obtained from 9m as
58	described for method A. mp. 172-174 °C. ¹ H NMR (400 MHz, DMSO- d_6) δ : 0.92 (t,
59	J = 7.2 Hz, 3H), 1.62 (m, $J = 7.4$ Hz, 2H), 2.60 (t, $J = 7.5$ Hz, 2H), 3.22 (s, 3H),
59	1 3.69-3.74 (m, 4H), 3.76 (s, 3H), 4.17-4.27 (m, 4H), 5.18 (s, 2H), 7.28 (d, $J = 8.0$ Hz,
59	2 2H), 8.29 (d, $J = 7.9$ Hz, 2H), 8.72 (s, 2H); HRMS (ESI), m/z: 516.2615 [M-H] ⁻ .
59	<i>N</i> -hydroxy-2-(((2-(4-(tert-butyl)phenyl)-9-methyl-6-morpholino-9 <i>H</i> -purin-8-yl)
59	4 methyl)(methyl)amino)pyrimidine-5-carboxamide (10n). 10n was obtained from 9n

2
3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
20
21
28
29
30
31
32
33
34
35
20
30
37
38
39
40
41
42
13
44
45
46
47
48
49
50
51
52
52
23
54
55
56
57
58
59
60

595	as described for method A. mp. 198-200 °C. ¹ H NMR (400 MHz, DMSO- d_6) δ : 1.32
596	(s, 9H), 3.23 (s, 3H), 3.67-3.75 (m, 4H), 3.76 (s, 3H), 4.17-4.29 (m, 4H), 5.18 (s, 2H),
597	7.48 (d, <i>J</i> = 8.4 Hz, 2H), 8.29 (d, <i>J</i> = 8.4 Hz, 2H), 8.73 (s, 2H), 9.06 (s, 1H), 11.12 (s,
598	1H); HRMS (ESI), m/z: 530.2073 [M-H] ⁻ .
599	<i>N</i> -hydroxy-2-(((2-(4-aminophenyl)-9-methyl-6-morpholino-9 <i>H</i> -purin-8-yl)methy
600	l)(methyl)amino)pyrimidine-5-carboxamide (100). 100 was obtained from 90 as
601	described for method A. mp. 218-220 °C. ¹ H NMR (400 MHz, DMSO- d_6) δ : 3.17 (s,
602	3H), 3.64-3.72 (m, 7H), 4.15-4.25 (m, 4H), 5.13 (s, 2H), 5.44 (s, 2H), 6.59 (d, <i>J</i> = 8.4

Hz, 2H), 8.09 (d, J = 8.4 Hz, 2H), 8.70 (s, 2H), 9.01 (s, 1H),11.2 (s, 1H); HRMS (ESI),
m/z: 491.2105 [M+H]⁺.

605 *N*-hydroxy-2-(((2-(4-(dimethylamino)phenyl)-9-methyl-6-morpholino-9*H*-purin-606 8-yl)methyl)(methyl)amino)pyrimidine-5-carboxamide (**10p**). **10p** was obtained from 607 **9p** as described for method A. mp. 202-204 °C. ¹H NMR (400 MHz, DMSO- d_6) δ : 608 2.97 (s, 6H), 3.21 (s, 3H), 3.69 (m, 7H), 4.21 (m, 4H), 5.16 (s, 2H), 6.75 (d, J = 8.2609 Hz, 2H), 8.22 (d, J = 8.2 Hz, 2H), 8.73 (s, 2H), 9.06 (s, 1H), 11.12 (s, 1H); HRMS 610 (ESI), m/z: 519.2615 [M+H]⁺.

611 *N*-hydroxy-2-(((2-(4-(ethylamino)phenyl)-9-methyl-6-morpholino-9*H*-purin-8-yl 612)methyl)(methyl)amino)pyrimidine-5-carboxamide (**10q**). **10q** was obtained from **9q** 613 as described for method A. mp. 206-208 °C. ¹H NMR (400 MHz, DMSO-*d6*) δ : 1.18 614 (t, *J* = 7.2 Hz, 3H), 3.05-3.12 (q, *J* = 7.2 Hz, 2H), 3.21 (s, 3H), 3.67-3.75 (m, 7H), 615 4.15-4.26 (m, 4H), 5.16 (s, 2H), 5.53-5.66 (m, 1H), 6.59 (d, *J* = 8.8 Hz, 2H), 8.14 (d, *J*

Journal of Medicinal Chemistry

616	= 8.8 Hz, 2H), 8.72 (s, 2H), 9.05(s, 1H), 11.11(s, 1H); HRMS (ESI), m/z: 517.2565
617	[M-H] ⁻ .
618	N-hydroxy-2-(((2-(4-(bis(3-methylbut-2-en-1-yl)amino)phenyl)-9-methyl-6-mor
619	pholino-9 <i>H</i> -purin-8-yl)methyl)(methyl)amino)pyrimidine-5-carboxamide (10r). 10r
620	was obtained from $9r$ as described for method A. mp. 156-158 °C. ¹ H NMR (400
621	MHz, DMSO- <i>d</i> 6) δ: 1.70 (d, <i>J</i> = 3.6 Hz, 12H), 3.21 (s, 3H), 3.67-3.76 (m, 7H), 3.92
622	(d, $J = 5.6$ Hz, 4H), 414-4.26 (m, 4H), 5.12-5.20 (m, 4H), 6.68 (d, $J = 8.8$ Hz, 2H),
623	8.18 (d, <i>J</i> = 8.8 Hz, 2H), 8.73 (s, 2H), 9.05 (s, 1H), 11.10 (s, 1H); HRMS (ESI), m/z:
624	627.3517 [M+H] ^{+.}
625	N-hydroxy-2-(((2-(2-aminopyrimidin-5-yl)-9-methyl-6-morpholino-9H-purin-8-
626	yl)methyl)(methyl)amino)pyrimidine-5-carboxamide (10s). 10s was obtained from 9s
627	as described for method A. mp. 220-222 °C. ¹ H NMR (400 MHz, DMSO- d_6) δ : 3.22
628	(s, 3H), 3.71-3.82 (m, 7H), 4.17-4.27 (m, 4H), 5.16 (s, H), 7.03 (s, 2H), 8.73 (s, 2H),
629	9.11 (s, 2H); HRMS (ESI), m/z: 491.2091 [M-H] ⁻ .
630	N-hydroxy-2-(methyl((9-methyl-6-morpholino-2-(pyrimidin-5-yl)-9H-purin-8-yl
631)methyl)amino)pyrimidine-5-carboxamide (10t). 10t was obtained from 9t as
632	described for method A. mp. 216-218 °C. ¹ H NMR (400 MHz, DMSO- d_6) δ : 3.25 (s,
633	3H), 3.68-3.76 (m, 4H), 3.80 (s, 3H), 4.15-4.35 (m, 4H), 5.19 (s, 2H), 8.72 (s, 2H),
634	9.26 (s, 1H), 9.62 (s, 2H); HRMS (ESI), m/z: 476.2609 [M-H] ⁻ .
635	<i>N</i> -hydroxy-2-(((2-(6-aminopyridin-3-yl)-9-methyl-6-morpholino-9 <i>H</i> -purin-8-yl)
636	methyl)(methyl)amino)pyrimidine-5-carboxamide (10u). 10u was obtained from 9u
637	as described for method A. mp. 214-216 °C. ¹ H NMR (400 MHz, DMSO- d_6) δ : 3.14

2
3
4
5
5
6
7
8
õ
3
10
11
12
13
10
14
15
16
17
10
10
19
20
21
22
22
23
24
25
26
20
27
28
29
20
30
31
32
33
31
04
35
36
37
20
50
39
40
41
12
7 <u>~</u> 40
43
44
45
46
47
47
48
49
50
51
51
52
53
54
55
55
56
57
58
50
09

638	(s, 3H), 3.65-3.82 (m, 7H), 4.12-4.30 (m, 4H), 5.13 (s, 2H), 6.33 (s, 2H), 6.49 (d, <i>J</i> =
639	8.4 Hz, 1H), 8.29 (d, J = 8.4 Hz, 1H), 8.66 (s, 2H), 8.93 (s, 1H); HRMS (ESI), m/z:
640	492.2602 [M+H] ⁺ .
641	<i>N</i> -hydroxy-2-(methyl((9-methyl-6-morpholino-2-(quinolin-3-yl)-9 <i>H</i> -purin-8-yl)
642	methyl)amino)pyrimidine-5-carboxamide (10v). 10v was obtained from 9v as
643	described for method A. mp. 223-225 °C. ¹ H NMR (400 MHz, DMSO- d_6) δ : 3.21 (s,
644	3H), 3.72-3.78 (m, 4H), 3.82 (s, 3H), 4.25-4.35 (s, 4H), 5.19 (s, 2H), 7.65 (t, <i>J</i> = 7.6
645	Hz, 1H), 7.80 (t, J = 7.6 Hz, 1H), 8.07 (d, J = 8.4 Hz, 1H), 8.16 (d, J = 8.0 Hz, 1H),
646	8.71 (s, 2H), 9.21 (s, 1H), 9.87 (s, 1H); HRMS (ESI), m/z: 527.2330 [M+H] ⁺ .
647	N-hydroxy-2-(((2-(6-methoxypyridin-3-yl)-9-methyl-6-morpholino-9H-purin-8-y
648	l)methyl)(methyl)amino)pyrimidine-5-carboxamide (10w). 10w was obtained from
649	9 w as described for method A. mp. 192-194 °C. ¹ H NMR (400 MHz, DMSO- d_6) δ :
650	3.23 (s, 3H), 3.68-3.74 (m, 4H), 3.76 (s, 3H), 3.92 (s, 3H), 4.18-4.28 (m, 4H), 5.17 (s,
651	2H), 6.91 (d, J = 8.4 Hz, 1H), 8.58 (d, J = 8.4 Hz, 1H), 8.72 (s, 2H), 9.14 (s, 1H);
652	HRMS (ESI), m/z: 505.2260 [M-H] ⁻ .
653	N-hydroxy-2-(methyl((9-methyl-6-morpholino-2-(pyridin-3-yl)-9H-purin-8-yl)m
654	ethyl)amino)pyrimidine-5-carboxamide ($10x$). $10x$ was obtained from $9x$ as described
655	for method A. mp. 217-219 °C. ¹ H NMR (400 MHz, DMSO- d_6) δ : 3.23 (s, 3H),
656	3.68-3.75 (m, 4H), 3.79 (s, 3H), 4.17-4.32 (m, 4H), 7.45-7.51 (m, 1H), 8.60-8.68 (m,
657	2H), 8.72 (s, 2H), 9.53 (s, 1H); HRMS (ESI), m/z: 475.1937 [M-H] ⁻ .
658	<i>N</i> -hydroxy-2-(methyl((9-methyl-6-morpholino-2-(pyridin-4-yl)-9 <i>H</i> -purin-8-yl)m

ethyl)amino)pyrimidine-5-carboxamide (10y). 10y was obtained from 9y as described

Journal of Medicinal Chemistry

2
3
4
5
5
6
7
8
9
10
11
10
12
13
14
15
16
17
10
10
19
20
21
22
23
20
24
25
26
27
28
20
29
30
31
32
33
3/
25
35
36
37
38
30
40
40
41
42
43
44
45
16
40
4/
48
49
50
51
52
52
53
54
55
56
57
50
00
59
60

for method A. mp. 234-236 °C. ¹H NMR (400 MHz, DMSO-*d6*) δ: 3.24 (s, 3H),
3.72-3.78 (m, 4H), 3.80 (s, 3H), 4.16-4.32 (m, 4H), 5.20 (s, 2H), 8.26 (s, 2H),
8.71-8.78 (m, 4H), 9.05 (s, 1H), 11.07 (s, 1H); HRMS (ESI), m/z: 475.2047 [M-H]⁻.

663 **Biological Assay Methods**

664 HDAC Enzymes Inhibition Assays. The HDAC activity of various compounds 665 in vitro were performed by Chempartner company (Shanghai, China) with fluorigenic 666 release of 7-amino-4-methylcoumarin (AMC) from substrate upon deacetylase 667 enzymatic activity. Briefly, the release of AMC was promoted in the existence of 668 trypsin. The compounds, diluted to the indicated concentrations, with full-length 669 recombinant HDAC enzymes (BPS Biosciences), incubated at room temperature for 670 15 min, then followed by adding trypsin as well as Ac-peptide-AMC substrates, and 671 the mixture was incubated at room temperature for 1 h. Reactions were performed in 672 Tris-based assay buffer. The fluorescence measurements were obtained using a 673 multilabel plate reader with excitation at 355 nm and emission at 460 nm. Data were 674 analyzed on a plate-by-plate basis for the linear range of fluorescence over time. 675 Wells containing recombinant HDAC, substrate and trypsin in the absence of small 676 molecular inhibitors were set as control wells. Thus the data acquired from the groups 677 containing the tested compounds were referred to the control wells. All of the 678 designed groups, including controls, were run in duplicate. The data were finally fitted 679 in GraphPad Prism V5.0 software to obtain IC_{50} values using equation (Y=Bottom + 680 (Top-Bottom)/(1+10^((LogIC50-X)*Hill Slope), Y is %inhibition and X is compound 681 concentration.).

2
3
4
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
19
20
20 24
21
22
23
24
25
26
27
28
20
20
24
31
32
33
34
35
36
37
38
30
10
40 44
41
42
43
44
45
46
47
48
49
50
50
51
5Z
53
54
55
56
57
58
59
60
<u>u</u> u

682	PI3K Inhibition Assays. The PI3K activity assay was performed by
683	Chempartner company (Shanghai, China). Briefly, diluted the compounds, PI3K
684	enzyme (PI3Ka (p110a/p85a) from Invitrogen, PIK3Cβ (p110β) from Millipore,
685	PIK3Cγ (pp110gamma) from Invitrogen, PIK3C δ (p110δ/p85a) from Millipore),
686	PIP2 (life technologies) substrate and ATP (Sigma) in kinase buffer to the indicated
687	concentrations, covered the assay plate and incubated at room temperature (PI3K α ,
688	PI3K β and PI3K γ for 1 h, PI3K δ for 2 h). Then added the Kinase-Glo reagent
689	(Promega) and incubated for 15 min in PI3K α , PI3K δ inhibition Assay. However,
690	added the ADP-Gloreagen (Promega), incubated for 40 min, and followed by adding
691	the Kinase Detection Reagent, shaked for 1 min, equilibrated for 1 h in PI3K β and
692	PI3Ky inhibition Assay. Collect data on Flex station. Data was presented in MS Excel
693	and the curves fitted by GraphPad Prism V5.0.

694 Anti-proliferative Assays. A2780s, HCT116 cells were cultured in DMEM (Gibco, Milano, Italy) contained 10% fetal bovine serum (FBS) (Invitrogen, Milano, 695 Italy). MV4-11cells were cultured in IMDM (Gibco, Milano, Italy) contained 10% 696 fetal bovine serum (FBS) (Invitrogen, Milano, Italy). U266 cells were cultured in 697 RPMI 1640 (Gibco, Milano, Italy) contained 15% fetal bovine serum (FBS) 698 699 (Invitrogen, Milano, Italy). RPMI-8226, MM1S, OCI-LY1, HBL-1, Ramos, SUDHL-4, and Raji cells were cultured in RPMI 1640 (Gibco, Milano, Italy) 700 701 containing 10% fetal bovine serum (FBS) (Invitrogen, Milano, Italy). All media 702 contained 100 units/mL penicillin (Gibco, Milano, Italy), and 100 µg/mL 703 streptomycin (Gibco, Milano, Italy). Cells were incubated at 37 °C in a humidified

Journal of Medicinal Chemistry

atmosphere of 5% CO₂. Cells in logarithmic phase were seeded into 96-well culture plates at densities of (5000-10000) cells per well. After 24 h, cells were treated with various concentrations of compounds for 72 h in final volumes of 200 μ L. Upon end point, 20 µL MTT (5 mg/mL) was added to each well, and the cells were incubated for an additional 1-3 h. After carefully removal of the medium, the precipitates were dissolved in DMSO, and then absorbance values at a wavelength of 570 nM were taken on a spectrophotometer (Molecular Devices, Sunnyvale, USA). IC_{50} values were calculated using percentage of growth versus untreated control.

HeLa Nuclear Extract HDAC inhibition assay. HeLa cells were cultured in DMEM (Gibco, Milano, Italy) containing 10% fetal bovine serum (FBS) (Invitrogen, Milano, Italy), 100 units/mL penicillin (Gibco, Milano, Italy) and 100 µg/mL streptomycin (Gibco, Milano, Italy). Cells were incubated at 37 °C in a humidified atmosphere of 5% CO₂. The nuclear extract was isolated via lysis (lysis buffer containing 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1% Triton x-100). The reaction mixture contains 25 mM Tris, pH 8.0, 1 mM MgCl₂, 0.1 mg/ml BSA, 1.37 mM NaCl, 2.7 mM KCl, HeLa extract and the enzyme substrate (20 µM Ac-Leu-Gly-Lys (Ac)-AMC). And the reactions were conducted at 37 °C for 30 min. After enzymatic reactions, 50 μ L of 0.4 mg/ml Trypsin was added to each well and the plate was incubated at room temperature for an additional 15 min. The fluorescence measurements were obtained using a multilabel plate reader with excitation at 355 nm and emission at 460 nm. Wells absent of small molecular inhibitors were set as control wells. Thus the data acquired from the groups containing the tested compounds were

referred to the control wells. All of the designed groups, including controls, were run in duplicate. The data were finally fitted in GraphPad Prism V5.0 software to obtain IC_{50} values using equation (Y=Bottom + (Top-Bottom)/(1+10^((LogIC50-X)*Hill Slope), Y is %inhibition and X is compound concentration.).

a-Tubulin and Histone H3 Acetylation Cytoblot Assay. The cytoblot assays were performed similarly as our previous work referring to the published method.^{39,40} Cells were seeded into opaque 96-well plates at a density of 5000 cells per well. After 24 h, the indicated concentrations of compounds were added and incubated for 6 h. Then cells were fixed with 3.7% paraformaldehyde in ice cold TBS at 4 °C for 1 h, permeabilized by -20 °C MeOH for 5 min at 4 °C and washed with 3% nonfat dry milk in TBS. The antiacetylated tubulin antibody (Santa Cruz), antiacetylated histone H₃ antibody (Santa Cruz) and horseradish peroxidase (HRP) conjugated secondary antibodies (Jackson) were added, and the plates were incubated for 4 h at 4 °C. After washing by TBS, the wells were added with enhanced chemiluminescence reagent and incubated for 5 min. Finally, the luminescence was measured by a Spectramax M5 microtiter plate luminometer. The software GraphPad Prism 5.0 was used to calculate the EC_{50} values.

Western Blotting. The cells were treated with the compounds at the indicated
concentrations. Then the cells were collected and and total proteins were extracted
with RIPA Lysis Buffer (beyotime Co. P0013B, components: 50 mM Tris, pH 7.4, 150
mM NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 1 mM sodium
orthovanadate, sodium fluoride, EDTA and leupeptin). The protein concentration was

Journal of Medicinal Chemistry

measured by the BCA Protein assay (ThermoScientific, USA). Equivalent samples (20 µg of protein) were subjected to SDS-PAGE, and then the proteinswere transferred onto PVDF membranes (Millipore, USA). After blocking by 5% non-fat milk for 1 h at room temperature, the membranes were incubated with the indicated primary antibodies at 4 °C overnight and subsequently probed by the appropriate secondary antibodies conjugated to horseradish peroxidase for 1 h. Immunoreactive bands were visualized using enhanced chemiluminescence (Millipore, USA). The molecular sizes of the proteins detected were determined by comparison with pertained protein markers (ThermoScientific, USA).

Animal Tumor Models and Treatment. To establish the MV4-11 xenograft model, MV4-11 cells (107 cells in 100 µL serum-free IMDM) were injected subcutaneously into the right flanks of 5-6 week old female NOD/SCID mice. For the HCT116 xenograft, HCT116 cells (10^7 cells in 100 µL serum-free DMEM) were injected subcutaneously into the right flanks of 5-6 week old female Balb/c nude mice. As for MM1S and B cell lymphoma Ramos xenograft models, MM1S cells or Ramos cells (10⁷ cells in 100 µL serum-free RPMI 1640) were injected subcutaneously into the right flanks of 5-6 week old female NOD/SCID mice. When the size of the formed xenografts reached 100-150 mm³, the mice were randomly divided (6 mice per group in MV4-11 model, 6 mice per group in HCT116 model, 8 mice per group in Ramos model and 7 mice per group in MM1S model). In MV4-11, HCT116, Ramos and MM1S models, the mice in the experimental groups received intravenous injection (2, 5, 10 mg/kg, dissolved in physiological saline containing 20% captisol with the pH

2
3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
20
20
27
28
29
30
31
32
22
33
34
35
36
37
38
30
40
4U
41
42
43
44
45
46
<u>4</u> 7
יד- ۸٥
40
49
50
51
52
53
54
55
50
30
57
58
59
60

770	adjusted to 6) of 100 every 2 days, respectively. The mice in the vehicle group
771	received iv injection equal amount of physiological saline 20% captisol with the pH
772	adjusted to 6. Those in the SAHA group (positive control) received ip injection (50
773	mg/kg, dissolved in physiological saline containing 5% DMSO and 30% PEG400 to
774	the concentration of 5 mg/ml) every 2 days. And the mice in the LBH-589 group
775	(positive control) received ip injection (10 mg/kg, dissolved in physiological saline
776	containing 2% DMSO, 2% Tween 80 and 15% PEG400 to the concentration of 1
777	mg/ml) every 2 days. Tumor burden was measured every 2 days by a caliper. Tumor
778	volume (TV) was calculated using the following formula: TV =length \times width ² \times 0.52.
779	At the end of the experiment, mice were sacrificed and tumors were collected and
780	weighed. The animal studies were conducted in conformity with institutional guide
781	for the care and use of laboratory animals, and all mouse protocols were approved by
782	the Animal Care and Use Committee of Sichuan University (Chengdu, Sichuan,
783	China).

Pharmacokinetic study. A 2 mg/mL dosing solution of 100 or 100 CH₃SO₃H 784 was prepared by dissolving in physiological saline containing 20% captisol with the 785 pH adjusted to 6 for iv administration and 0.5% CMC-Na aqueous solution for oral 786 787 dosing, respectively. Ten SD rats, weighing 200-250 g each, were obtained from Beijing HFK Bioscience Co. Ltd. Five beagle dogs, weight 8-10 kg, each were kindly 788 789 provided by Chengdu Center for GLP. Each tested compound was separately 790 administered intravenously (5 mg/kg dose for rats or 6 mg/kg for beagle dogs) or 791 orally (10 mg/kg for rats or 6 mg/kg for beagle dogs) to a group of five rats or dogs

Journal of Medicinal Chemistry

792	per time. At time points 0 (prior to dosing), 5 min, 15 min, 30 min, 45 min, 1 h, 2 h, 4
793	h, 6 h, 8 h, 10 h, 12 h, and 24 h after dosing, a blood sample was collected from each
794	animal via cardiac puncture and stored in ice (0 – 4 $^{\circ}$ C). Plasma was separated from
795	the blood by centrifugation (4000 g for 15 min at 4 $^{\circ}$ C) and stored in a freezer at – 80
796	°C. All samples were analyzed for the tested compound by LC-MS/MS (Waters
797	Acquity UPLC system; Waters Quattro Premier XE). Data were acquired via
798	monitoring of multiple reactions. Plasma concentration data were analyzed by a
799	standard noncompartmental method.

Molecular docking. Molecular docking studies were carried out to investigate the binding mode of compound **100** and **10s** in the HDAC1 and PI3K α , respectively. When compound **10s** was docked into the ATP pocket of PI3K α isoform, the crystal structure in complex with a novel inhibitor (PDB code: 4L23⁴¹⁾ was retrieved from the Protein Data Bank. And the molecular docking was completed by Autodock4.2⁴². Due to the specify of ubiquitous metalloenzyme which contain a zinc ion directly interacting with residues and inhibitors in HDAC1 binding site, FITTED 3.143, a docking software, which developing specific functions and parameters to account for zinc-drug coordination, was employed to accomplish the rational docking. In addition, since the crystal structure of HDAC1 obtained from HDAC1 in complex with the dimeric ELM2-SANT domain of MTA1 (PDB code: 4BKX⁴⁴), the Flexible Docking implemented in Discovery Studio 3.1 was applied to the second round of docking. Finally, the best poses were kept and analyzed.

813 Associated content

2
2
3
4
5
ē
ю
7
8
0
9
10
11
12
12
13
14
15
15
16
17
18
10
19
20
21
<u>~</u> 1
22
23
24
27
25
26
27
20
28
29
30
24
31
32
33
24
34
35
36
27
37
38
39
10
40
41
42
43
44
44
45
46
47
41
48
49
50
50
51
52
52
55
54
55
56
50
5/
58
59
00
60

814 Supporting information

815	General Procedures for the Synthesis of 18a-I; Table S1 listing binding affinities of
816	100 and 10s with various Protein Kinases; Table S2 listing inhibition activities of 100
817	against various tumor cell lines; Table S3 listing pharmacokinetic parameters of 10o;
818	Figure S1 showing structures of PI3Ks inhibitors; Figure S2 showing western blotting
819	on HCT116 cell lines; Figure S3-4 showing molecular docking study. The Supporting
820	Information is available free of charge via the Internet at http://pubs.acs.org.
821	PDB ID CODES
822	PDB code 4L23 was used for modeling docking in PI3K α of compound 100 and 10s .
823	PDB code 4BKX was used for modeling docking in HDAC1 of compound 10o and
824	10s. Authors will release the Atomic Coordinates and experimental data upon article
825	publication.
826	Author information
827	Corresponding Author Information:
828	*To whom correspondence should be addressed: Lijuan Chen. Tel: +86-28-85164063;
829	Fax: +86-28-85164060. E-mail address: chenlijuan125@163.com (L-j. Chen) or
830	ljchen@scu.edu.cn.
831	Acknowledgement.
832	The authors greatly appreciate the financial support from National Key Programs of
833	China during the 12th Five-Year Plan Period (2012ZX09103101-009) and National
834	Natural Science Foundation of China (81373283).
835	Abbreviations Used: HDAC, histone deacetylase; PI3Ks, phosphatidylinositol

1	
2	
3	
4 5	
6	
7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
18	
19 20	
21	
22	
23	
24	
25	
20	
28	
29	
30	
31	
32	
34	
35	
36	
37	
38	
39 70	
41	
42	
43	
44	
45	
40 47	
48	
49	
50	
51	
5∠ 5२	
54	
55	
56	
57	
58	
59 60	
~~	

836	3-kinases; ZBG, zinc-binding group; MER, mitogen-activated protein kinase; SAHA,
837	suberoylanilide hydroxamic acid; rt, room temperature; DIPEA,
838	N,N-diisopropylethylamine; TEMED, N,N,N',N'-tetramethylethylenediamine; DMF,
839	N,N-dimethylformamide; THF, tetrahydrofuran; SAR, structure-activity relationship;
840	MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide;
841	REFERENCES
842	1. Minucci, S.; Pelicci, P. G. Histone deacetylase inhibitors and the promise of
843	epigenetic (and more) treatments for cancer. Nat. Rev. Cancer 2006, 6, 38-51.
844	2. Grunstein, M. Histone acetylation in chromatin structure and transcription.
845	Nature 1997, 389, 349-352.
846	3. Struhl, K. Histone acetylation and transcriptional regulatory mechanisms. Genes
847	<i>Dev.</i> 1998 , <i>12</i> , 599-606.
848	4. Wade, P. A. Transcriptional control at regulatory checkpoints by histone
849	deacetylases: molecular connections between cancer and chromatin. Hum. Mol.
850	Genet. 2001, 10, 693-698.
851	5. Wang, H.; Yu, N.; Chen, D.; Lee, K. C.; Lye, P. L.; Chang, J. W.; Deng, W.; Ng,
852	M. C.; Lu, T.; Khoo, M. L.; Poulsen, A.; Sangthongpitag, K.; Wu, X.; Hu, C.; Goh, K.
853	C.; Wang, X.; Fang, L.; Goh, K. L.; Khng, H. H.; Goh, S. K.; Yeo, P.; Liu, X.;
854	Bonday, Z.; Wood, J. M.; Dymock, B. W.; Kantharaj, E.; Sun, E. T. Discovery of
855	(2E)-3-{2-butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl}-N-hydroxyacrylam
856	ide (SB939), an orally active histone deacetylase inhibitor with a superior preclinical
857	profile. J. Med. Chem. 2011, 54, 4694-4720.

858	6. Gregoretti, I.; Lee, YM.; Goodson, H. V. Molecular Evolution of the Histone
859	Deacetylase Family: Functional Implications of Phylogenetic Analysis. J. Mol. Biol.
860	2004 , <i>338</i> , 17-31.
861	7. Kalin, J. H.; Bergman, J. A. Development and therapeutic implications of
862	selective histone deacetylase 6 inhibitors. J. Med. Chem. 2013, 56, 6297-6313
863	8. Bradley E. Bernstein; Jeffrey K. Tong; Stuart L. Schreiber. Genomewide studies
864	of histone deacetylase function in yeast. Proc. Natl. Acad. Sci. U.S.A. 2000, 97,
865	13708-13713.
866	9. Annemieke J.M., DE RUIJTER; Albert H., VAN GENNIP; CARON Huib N.;
867	Stephan KEMP; Andre B.P. VAN KUILENBURG. Histone deacetylases(HDACs):
868	Characterization of the classical HDAC family. J. Bio. Chem. 2003, 370, 737-749.
869	10. Leea, JH.; Yaob, Y.; Mahendranb, A.; Ngoa, L.; Venta-Pereza, G.; Choya, M.
870	L.; Breslowb, R.; Marks, P. A. Creation of a histone deacetylase 6 inhibitor and its
871	biological effects. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 12005-12010.
872	11. Foglietti C; Filocamo G; Cundari E; De Rinaldis E; Lahm A; Cortese R;
873	Steinkuhler C. Dissecting the biological functions of drosophila histone deacetylases
874	by RNA interference and transcriptional profiling. J. Bio. Chem. 2006, 28,
875	17968-17976.
876	12. Gryder, B. E.; Sodji, Q. H.; Oyelere, A. K. Targeted cancer therapy: giving
877	histone deacetylase inhibitors all they need to succeed. Future Med. Chem. 2012, 4,
878	505-524.
879	13. Duvic, M.; Talpur, R.; Ni, X.; Zhang, C.; Hazarika, P.; Kelly, C.; Chiao, J. H.;

Journal of Medicinal Chemistry

880	Reilly, J. F.; Ricker, J. L.; Richon, V. M.; Frankel, S. R. Phase 2 trial of oral
881	vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell
882	lymphoma (CTCL). Blood 2007, 109, 31-39.
883	14. Butler, L. M.; Zhou, X.; Xu, W. S.; Scher, H. I.; Rifkind, R. A.; Marks, P. A.;
884	Richon, V. M. The histone deacetylase inhibitor SAHA arrests cancer cell growth,
885	up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc.
886	Natl. Acad. Sci. U.S.A. 2002, 99, 11700-11705.
887	15. Atadja, P. Development of the pan-HDAC inhibitor panobinostat (LBH589):
888	successes and challenges. Cancer Lett. 2009, 280, 233-41.
889	16. Ahmed Sawas; Dejan Radeski; Owen A. O'Connor. Belinostat in patients with
890	refractory or relapsed peripheral T-cell lymphoma: a perspective review. Ther. Adv.
891	<i>Hematol.</i> 2015 , <i>6</i> , 202–208.
891 892	Hematol. 2015, 6, 202–208. 17. Zorzi, A. P.; Bernstein, M.; Samson, Y.; Wall, D. A.; Desai, S.; Nicksy, D.;
891 892 893	 Hematol. 2015, 6, 202 –208. 17. Zorzi, A. P.; Bernstein, M.; Samson, Y.; Wall, D. A.; Desai, S.; Nicksy, D.; Wainman, N.; Eisenhauer, E.; Baruchel, S. A phase I study of histone deacetylase
891 892 893 894	 Hematol. 2015, 6, 202 –208. 17. Zorzi, A. P.; Bernstein, M.; Samson, Y.; Wall, D. A.; Desai, S.; Nicksy, D.; Wainman, N.; Eisenhauer, E.; Baruchel, S. A phase I study of histone deacetylase inhibitor, pracinostat (SB939), in pediatric patients with refractory solid tumors:
891 892 893 894 895	 Hematol. 2015, 6, 202 –208. 17. Zorzi, A. P.; Bernstein, M.; Samson, Y.; Wall, D. A.; Desai, S.; Nicksy, D.; Wainman, N.; Eisenhauer, E.; Baruchel, S. A phase I study of histone deacetylase inhibitor, pracinostat (SB939), in pediatric patients with refractory solid tumors: IND203 a trial of the NCIC IND program/C17 pediatric phase I consortium. <i>Pediatr</i>.
891 892 893 894 895 896	 Hematol. 2015, 6, 202 –208. 17. Zorzi, A. P.; Bernstein, M.; Samson, Y.; Wall, D. A.; Desai, S.; Nicksy, D.; Wainman, N.; Eisenhauer, E.; Baruchel, S. A phase I study of histone deacetylase inhibitor, pracinostat (SB939), in pediatric patients with refractory solid tumors: IND203 a trial of the NCIC IND program/C17 pediatric phase I consortium. <i>Pediatr:</i> <i>Blood Cancer</i> 2013, <i>60</i>, 1868-1874.
891 892 893 894 895 896 897	 <i>Hematol.</i> 2015, 6, 202 –208. 17. Zorzi, A. P.; Bernstein, M.; Samson, Y.; Wall, D. A.; Desai, S.; Nicksy, D.; Wainman, N.; Eisenhauer, E.; Baruchel, S. A phase I study of histone deacetylase inhibitor, pracinostat (SB939), in pediatric patients with refractory solid tumors: IND203 a trial of the NCIC IND program/C17 pediatric phase I consortium. <i>Pediatr: Blood Cancer</i> 2013, <i>60</i>, 1868-1874. 18. Gore, L.; Rothenberg, M. L. ;O'Bryant, C. L.; Schultz, M. K.; Sandler, A. B.;
891 892 893 894 895 896 897 898	 <i>Hematol.</i> 2015, <i>6</i>, 202 –208. 17. Zorzi, A. P.; Bernstein, M.; Samson, Y.; Wall, D. A.; Desai, S.; Nicksy, D.; Wainman, N.; Eisenhauer, E.; Baruchel, S. A phase I study of histone deacetylase inhibitor, pracinostat (SB939), in pediatric patients with refractory solid tumors: IND203 a trial of the NCIC IND program/C17 pediatric phase I consortium. <i>Pediatr: Blood Cancer</i> 2013, <i>60</i>, 1868-1874. 18. Gore, L.; Rothenberg, M. L. ;O'Bryant, C. L.; Schultz, M. K.; Sandler, A. B.; Coffin, D.; McCoy, C.; Schott, A.; Scholz, C.; Eckhardt, S. G. A phase I and
891 892 893 894 895 896 897 898 899	 <i>Hematol.</i> 2015, <i>6</i>, 202 –208. 17. Zorzi, A. P.; Bernstein, M.; Samson, Y.; Wall, D. A.; Desai, S.; Nicksy, D.; Wainman, N.; Eisenhauer, E.; Baruchel, S. A phase I study of histone deacetylase inhibitor, pracinostat (SB939), in pediatric patients with refractory solid tumors: IND203 a trial of the NCIC IND program/C17 pediatric phase I consortium. <i>Pediatr: Blood Cancer</i> 2013, <i>60</i>, 1868-1874. 18. Gore, L.; Rothenberg, M. L. ;O'Bryant, C. L.; Schultz, M. K.; Sandler, A. B.; Coffin, D.; McCoy, C.; Schott, A.; Scholz, C.; Eckhardt, S. G. A phase I and pharmacokinetic study of the oral histone deacetylase inhibitor, MS-275, in patients
891 892 893 894 895 896 897 898 898 899 900	 <i>Hematol.</i> 2015, 6, 202 –208. 17. Zorzi, A. P.; Bernstein, M.; Samson, Y.; Wall, D. A.; Desai, S.; Nicksy, D.; Wainman, N.; Eisenhauer, E.; Baruchel, S. A phase I study of histone deacetylase inhibitor, pracinostat (SB939), in pediatric patients with refractory solid tumors: IND203 a trial of the NCIC IND program/C17 pediatric phase I consortium. <i>Pediatr: Blood Cancer</i> 2013, <i>60</i>, 1868-1874. 18. Gore, L.; Rothenberg, M. L. ;O'Bryant, C. L.; Schultz, M. K.; Sandler, A. B.; Coffin, D.; McCoy, C.; Schott, A.; Scholz, C.; Eckhardt, S. G. A phase I and pharmacokinetic study of the oral histone deacetylase inhibitor, MS-275, in patients with refractory solid tumors and lymphomas. <i>Clin. Cancer Res.</i> 2008, <i>14</i>, 4517-4525.
891 892 893 894 895 896 897 898 899 800 900	 <i>Hematol.</i> 2015, <i>6</i>, 202–208. 17. Zorzi, A. P.; Bernstein, M.; Samson, Y.; Wall, D. A.; Desai, S.; Nicksy, D.; Wainman, N.; Eisenhauer, E.; Baruchel, S. A phase I study of histone deacetylase inhibitor, pracinostat (SB939), in pediatric patients with refractory solid tumors: IND203 a trial of the NCIC IND program/C17 pediatric phase I consortium. <i>Pediatr: Blood Cancer</i> 2013, <i>60</i>, 1868-1874. 18. Gore, L.; Rothenberg, M. L. ;O'Bryant, C. L.; Schultz, M. K.; Sandler, A. B.; Coffin, D.; McCoy, C.; Schott, A.; Scholz, C.; Eckhardt, S. G. A phase I and pharmacokinetic study of the oral histone deacetylase inhibitor, MS-275, in patients with refractory solid tumors and lymphomas. <i>Clin. Cancer Res.</i> 2008, <i>14</i>, 4517-4525. 19. Haggarty, S. J.; Koeller, K. M.; Wong, J. C.; Grozinger, C. M.; Schreiber, S. L.

902	Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)
903	-mediated tubulin deacetylation. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 4389-4394.
904	20. Haggarty, S. J.; Koeller, K. M.; Wong, J. C.; Butcher, R. A.; Schreiber, S. L.
905	Multidimensional chemical genetic analysis of diversity-oriented synthesis -derived
906	deacetylase inhibitors using cell-based assays. Chem. Biol. 2003, 10, 383-396.
907	21. Heffron, T. P.; Salphati, L.; Alicke, B.; Cheong, J.; Dotson, J.; Edgar, K.;
908	Goldsmith, R.; Gould, S. E.; Lee, L. B.; Lesnick, J. D.; Lewis, C.; Ndubaku, C.;
909	Nonomiya, J.; Olivero, A. G.; Pang, J.; Plise, E. G.; Sideris, S.; Trapp, S.; Wallin, J.;
910	Wang, L.; Zhang, X. The design and identification of brain penetrant inhibitors of
911	phosphoinositide 3-Kinase α. J. Med. Chem. 2012, 55, 8007-8020.
912	22. Sutherlin, D. P.; Bao, L.; Berry, M.; Castanedo, G.; Chuckowree, I.; Dotson, J.;
913	Folks, A.; Friedman, L.; Goldsmith, R.; Gunzner, J.; Heffron, T.; Lesnick, J.; Lewis,
914	C.; Mathieu, S.; Murray, J.; Nonomiya, J.; Pang, J.; Pegg, N.; Prior, W. W.; Rouge,
915	L.; Salphati, L.; Sampath, D.; Tian, Q.; Tsui, V.; Wan, N. C.; Wang, S.; Wei, B.;
916	Wiesmann, C.; Wu, P.; Zhu, B. Y.; Olivero, A. Discovery of a potent, selective, and
917	orally available class I phosphatidylinositol 3-kinase (PI3K)/mammalian target of
918	rapamycin (mTOR) kinase inhibitor (GDC-0980) for the treatment of cancer. J. Med.
919	Chem. 2011, 54, 7579-7587.
920	23. Saurat, T.; Buron, F.; Rodrigues, N.; de Tauzia, M. L.; Colliandre, L.; Bourg, S.;
921	Bonnet, P.; Guillaumet, G.; Akssira, M.; Corlu, A.; Guillouzo, C.; Berthier, P.; Rio,
922	P.; Jourdan, M. L.; Benedetti, H.; Routier, S. Design, synthesis, and biological activity
923	of pyridopyrimidine scaffolds as novel PI3K/mTOR dual inhibitors. J. Med. Chem.

925

926

927

928

2014, 57, 613-631.

627-644.

1

24. Liu, P. X.; Cheng, H. L.; Roberts, T. M.; Zhao, J. J. Targeting the

phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discovery 2009, 8,

25. Folkes, A. J.; Ahmadi, K.; Alderton, W. K.; Alix, S.; Baker, S. J.; Box, G.;

2	
3	
4	
5	
6	
/	
0	
10	
11	
12	
13	
14	
15	
16	
1/	
19	
20	
21	
22	
23	
24	
20 26	
20	
28	
29	
30	
31	
32 33	
34	
35	
36	
37	
38	
39	
40 41	
42	
43	
44	
45	
46	
47 78	
49	
50	
51	
52	
53	
54	
55 56	
57	
58	
59	
60	

929 Chuckowree, I. S.; Clarke, P. A.; Depledge, P.; Eccles, S. A.; Friedman, L. S.; Hayes, 930 A.; Hancox, T. C.; Kugendradas, A.; Lensun, L.; Moore, P.; Olivero, A. G.; Pang, J.; 931 Patel, S.; Pergl-Wilson, G. H.; Raynaud, F. I.; Robson, A.; Saghir, N.; Salphati, L.; 932 Sohal, S.; Ultsch, M. H.; Valenti, M.; Wallweber, H. J. A.; Wan, N. C.; Wiesmann, 933 C.; Workman, P.; Zhyvoloup, A.; Zvelebil, M. J.; Shuttleworth, S. J. The 934 identification 935 2-(1H-Indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-936 yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable 937 inhibitor of class I PI3 kinase for the treatment of cancer. J. Med. Chem. 2008, 51, 938 5522-5532. 939 26. Heald, R. A.; Jackson, P.; Savy, P.; Jones, M.; Gancia, E.; Burton, B.; Newman, 940 R.; Boggs, J.; Chan, E.; Chan, J.; Choo, E.; Merchant, M.; Rudewicz, P.; Ultsch, M.; 941 Wiesmann, C.; Yue, Q.; Belvin, M.; Price, S. Discovery of novel allosteric 942 mitogen-activated protein kinase kinase (MEK) 1,2 inhibitors possessing bidentate 943 Ser212 interactions. J. Med. Chem. 2012, 55, 4594-4604.

of

944 27. Burger, M. T.; Pecchi, S.; Wagman, A.; Ni, Z. J.; Knapp, M.; Hendrickson, T.;

945 Atallah, G.; Pfister, K.; Zhang, Y.; Bartulis, S.; Frazier, K.; Ng, S.; Smith, A.;

2
2
3
1
4
5
ĉ
ю
7
0
8
9
40
10
11
10
12
13
10
14
15
10
16
17
17
18
19
10
20
21
<u> </u>
22
22
20
24
25
20
26
27
21
28
20
29
30
04
31
32
202
33
34
25
35
36
50
37
38
50
39
40
41
42
72
43
44
45
46
40
47
∕ 10
40
49
50
50
51
52
52
53
51
54
55
56
00
57
50
00
59
60
00

946	Verhagen, J.; Haznedar, J.; Huh, K.; Iwanowicz, E.; Xin, X.; Menezes, D.; Merritt,
947	H.; Lee, I.; Wiesmann, M.; Kaufman, S.; Crawford, K.; Chin, M.; Bussiere, D.;
948	Shoemaker, K.; Zaror, I.; Maira, S. M.; Voliva, C. F. Identification of NVP-BKM120
949	as a potent, selective, orally bioavailable class I PI3 kinase inhibitor for treating
950	Cancer. ACS Med. Chem. Lett. 2011, 2, 774-779.
951	28. Salphati, L.; Heffron, T. P.; Alicke, B.; Nishimura, M.; Barck, K.; Carano, R. A.;
952	Cheong, J.; Edgar, K. A.; Greve, J.; Kharbanda, S.; Koeppen, H.; Lau, S.; Lee, L. B.;
953	Pang, J.; Plise, E. G.; Pokorny, J. L.; Reslan, H. B.; Sarkaria, J. N.; Wallin, J. J.;
954	Zhang, X.; Gould, S. E.; Olivero, A. G.; Phillips, H. S. Targeting the PI3K pathway in
955	the brain-efficacy of a PI3K inhibitor optimized to cross the blood-brain barrier. Clin.
956	<i>Cancer Res.</i> 2012 , <i>18</i> , 6239-6248.
957	29. Salphati, L.; Shahidi-Latham, S.; Quiason, C.; Barck, K.; Nishimura, M.; Alicke,
958	B.; Pang, J.; Carano, R. A.; Olivero, A. G.; Phillips, H. S. Distribution of the
959	phosphatidylinositol 3-kinase inhibitors Pictilisib (GDC-0941) and GNE-317 in U87
960	and GS2 intracranial glioblastoma models-assessment by matrix-assisted laser
961	desorption ionization imaging. Drug Metab. Dispos. 2014, 42, 1110-1116.
962	30. Qian, C.; Lai, C. J.; Bao, R.; Wang, D. G.; Wang, J.; Xu, G. X.; Atoyan, R.; Qu,
963	H.; Yin, L.; Samson, M.; Zifcak, B.; Ma, A. W.; DellaRocca, S.; Borek, M.; Zhai, H.
964	X.; Cai, X.; Voi, M. Cancer network disruption by a single molecule inhibitor
965	targeting both histone deacetylase activity and phosphatidylinositol 3-kinase
966	signaling. Clin. Cancer Res. 2012, 18, 4104-4113.

967 31. Kolev, V. N.; Wright, Q. G.; Vidal, C. M.; Ring, J. E.; Shapiro, I. M.; Ricono, J.;

2
3
4
5
6
7
1
8
9
10
11
12
13
14
14
15
16
17
18
19
20
21
20
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
27
37
38
39
40
41
42
43
44
45
тJ 46
40
47
48
49
50
51
52
52
55
54
55
56
57
58
59
60
00

968	Weaver, D. T.; Padval, M. V.; Pachter, J. A.; Xu, Q. PI3K/mTOR dual inhibitor
969	VS-5584 preferentially targets cancer stem cells. Cancer Res. 2015, 75, 446-455.
970	32. Puri, K. D.; Steiner, B. H.; Kashishian, A. S.; Chen, H.; Gallatin, W. M.; Giese,
971	N. A. IC87114, a selective inhibitor of PI3K δ suppresses joint inflammation and bone
972	erosion in collagen-induced arthritis in rat. J. Immunol. 2009, 182, 50.14.
973	33. Li, J.; Hou, N.; Faried, A.; Tsutsumi, S.; Takeuchi, T.; Kuwano, H. Inhibition of
974	autophagy by 3-MA enhances the effect of 5-FU-induced apoptosis in colon cancer
975	cells. Ann. Surg. Oncol. 2008, 16, 761-771.
976	34. Andrs, M.; Korabecny, J.; Jun, D.; Hodny, Z.; Bartek, J.; Kuca, K.
977	Phosphatidylinositol 3-Kinase (PI3K) and phosphatidylinositol 3-kinase-related
978	kinase (PIKK) inhibitors: importance of the morpholine ring. J. Med. Chem. 2015, 58,
979	41-71.
980	35. Remiszewski, S. W.; Sambucetti, L. C.; Bair, K. W.; Bontempo, J.; Cesarz, D.;
981	Chandramouli, N.; Chen, R.; Cheung, M.; Cornell-Kennon, S.; Dean, K.;
982	Diamantidis, G.; France, D.; Green, M. A.; Howell, K. L.; Kashi, R.; Kwon, P.;
983	Lassota, P.; Martin, M. S.; Mou, Y.; Perez, L. B.; Sharma, S.; Smith, T.; Sorensen, E.;
984	Taplin, F.; Trogani, N.; Versace, R.; Walker, H.; Weltchek-Engler, S.; Wood, A.; Wu,
985	A.; Atadja, P. N-Hydroxy-3-phenyl-2-propenamides as novel inhibitors of human
986	histone deacetylase with in vivo antitumor activity: discovery of
987	(2E)-N-Hydroxy-3-[4-[[(2-hydroxyethyl)[2-(1H-indol-3-yl)ethyl]amino]methyl]-phen
988	yl]-2-propenamide (NVP-LAQ824). J. Med. Chem. 2003, 46, 4609-4624.

2					
3	990	Watkins C J. Thangue N B L. Brown R Pharmacodynamic response and			
4 5	550	waaning, e. e., mangae, r. D. D., Drewn, r. mannaeougnanne response and			
6 7	991	inhibition of growth of human tumor xenografts by the novel histone deacetylase			
8 9	992	inhibitor PXD101. Mol. Cancer Ther. 2003, 2, 721-728.			
10 11	993	37. Yeo, P.; Xin, L.; Goh, E.; New, L. S.; Zeng, P.; Wu, X.; Venkatesh, P.;			
12 13					
14 15	994	Kantharaj, E. Development and validation of high-performance liquid			
16 17	995	chromatography-tandem mass spectrometry assay for 6-(3-benzoyl-ureido)-hexanoic			
18 19	996	acid hydroxyamide, a novel HDAC inhibitor, in mouse plasma for pharmacokinetic			
20 21 22	997	studies. Biomed. Chromatogr. 2007, 21, 184-189.			
23					
24 25	998	38. Knochbin, S.; Verdei, A.; Lemercier, C.; Seigneurin-Berny, D. Functional			
26 27	999	significance of histone deacetylase diversity. Curr. Opin. Genet. Dev. 2001, 11,			
28 29 20	1000	162-166.			
30 31 32	1001	39. Tang, G.; Wong, J. C.; Zhang, W.; Wang, Z.; Zhang, N.; Peng, Z.; Zhang, Z.;			
33 34	1002	Rong, Y.; Li, S.; Zhang, M.; Yu, L.; Feng, T.; Zhang, X.; Wu, X.; Wu, J. Z.; Chen, L.			
35 36 27	1003	Identification of a novel aminotetralin class of HDAC6 and HDAC8 selective			
37					
39 40	1004	inhibitors. J. Med. Chem. 2014, 57, 8026-8034.			
41 42	1005	40. Yang, Z.; Wang, T.; Niu, F. W. T.; Liu, Z.; Chen, X.; Long, C.; Tang, M.; Cao,			
43 44	1006	D.; Wang, X.; Xiang, W.; Yi, Y.; Ma, L.; You, J.; Chen, L. Discovery of selective			
45 46					
40 47	1007	histone deacetylase 6 inhibitors using the quinazoline as the cap for the treatment of			
48 49 50	1008	cancer. J. Med. Chem. 2016, 59, 1455-1470.			
50 51 52	1009	41. Zhao, Y.; Zhang, X.; Chen, Y.; Lu, S.; Peng, Y.; Wang, X.; Guo, C.; Zhou, A.;			
53 54 55	1010	Zhang, J.; Luo, Y.; Shen, Q.; Ding, J.; Meng, L.; Zhang, J. Crystal structures of PI3K			
56 57 58	1011	alpha complexed with PI103 and its derivatives: new directions for inhibitors design.			
59 60					

ACS Paragon Plus Environment

- ors. J. Med. Chem. 2014, 57, 8026-8034.
- ng, Z.; Wang, T.; Niu, F. W. T.; Liu, Z.; Chen, X.; Long, C.; Tang, M.; Cao,
- ng, X.; Xiang, W.; Yi, Y.; Ma, L.; You, J.; Chen, L. Discovery of selective
- deacetylase 6 inhibitors using the quinazoline as the cap for the treatment of J. Med. Chem. 2016, 59, 1455-1470.
- ao, Y.; Zhang, X.; Chen, Y.; Lu, S.; Peng, Y.; Wang, X.; Guo, C.; Zhou, A.;
- J.; Luo, Y.; Shen, Q.; Ding, J.; Meng, L.; Zhang, J. Crystal structures of PI3K
- omplexed with PI103 and its derivatives: new directions for inhibitors design.

2	
3	
4	
5	
6	
7	
8	
a	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
40 47	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57	
20	
59	
60	

1012	ACS Med.	Chem. Lett.	2014, 5,	138-142.
------	----------	-------------	----------	----------

1013 42. Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell,

1014 D. S.; Olson, A. J. AutoDock4 and AutoDockTools4: Automated docking with

- 1015 selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785-2791.
- 1016 43. Pottel, J.; Therrien, E.; Gleason, J. L.; Moitessier, N. Docking ligands into
- 1017 flexible and solvated macromolecules. 6. Development and application to the docking
- 1018 of HDACs and other zinc metalloenzymes inhibitors. J. Chem. Inf. Model. 2014, 54,
- 1019 254-265.
- 1020 44. Millard, Christopher J.; Watson, Peter J.; Celardo, I.; Gordiyenko, Y.; Cowley,
- 1021 Shaun M.; Robinson, Carol V.; Fairall, L.; Schwabe, John W. R. Class I HDACs
- 1022 share a common mechanism of regulation by inositol phosphates. *Molecular Cell*
- 1023 **2013**, *51*, 57-67.

Table of Contents Graphic

