Contents lists available at ScienceDirect

Steroids

journal homepage: www.elsevier.com/locate/steroids

Synthesis, characterization and biological evaluation of some 16E-arylidene androstane derivatives as potential anticancer agents

Hao Guo^a, Haotian Wu^a, Jin Yang^a, Yuling Xiao^a, Hans-Josef Altenbach^b, Guofu Qiu^a, Hao Hu^a, Zhongyuan Wu^a, Xianran He^a, Dingshan Zhou^a, Xianming Hu^{a,*}

^a State Key Laboratory of Virology, College of Pharmacy, Wuhan University, Wuhan 430072, China
^b Bergische Universität Wuppertal, FB 9 – Organische Chemie, Gauss-Str. 20, 42097 Wuppertal, Germany

ARTICLE INFO

Article history: Received 14 February 2011 Received in revised form 19 March 2011 Accepted 26 March 2011 Available online 5 April 2011

Keywords: 16E-arylidene androstane Heterocycles Synthesis Anticancer activity

1. Introduction

Cancer is presently the second most important disease leading to death in both developing and developed countries according to the WHO. Among common currently available drugs for the treatment of cancer are bioalkylating agents (chlormethine) [1,2], antimetabolic agents (fluorouracil) [3,4], anticancer antibiotics (doxorubicin) [5], and compounds from plants and their derivatives (paclitaxel) [6]; however, a dose of anticancer drug sufficient to kill tumor cells is often toxic to normal tissue, thus leading to numerous side effects which, in turn, limit treatment efficacy. Long term effectiveness is often limited by dose-related cumulative cardiotoxicity and development of acquired drug resistance [7–9]. Therefore, the new therapeutic agents for the treatment of cancer thus needed should be more active and produce less side effects.

Steroids elicit diverse biological action via various functional groups located around the periphery of their rigid tetracyclic core. They have the ability to regulate a variety of biological processes and thus are potential drug candidates for the treatment of a large number of diseases including breast cancer [10], prostate cancer [11], leukaemia [12,13], autoimmune diseases [14], osteoporosis [15], etc. Most steroid based pharmaceuticals are semi-synthetic compounds, or analogues, developed from the lead compound and prepared by connecting special functional groups to the core structure of the steroid.

ABSTRACT

A series of new 16E-arylidene androstane derivatives were synthesized and characterized. The new compounds were screened for their anticancer activities against the human cancer cell lines SW480, A549, HepG2 and HeLa in vitro using the MTT assay. The results of the in vitro study showed that a number of compounds have shown IC₅₀ values lower than 20 μ M against the four cancer cell lines.

© 2011 Elsevier Inc. All rights reserved.

It has been reported that some tertiary amino steroids, 28,16βdipiperidino- 5α -androstane- 3α , 17 β -diol dipivalate (DAP) (Fig. 1) [16] exhibit significant antitumor activity against transplantable tumors in three animal species including mouse, hamster, and rat. The acute toxicity of DAP was similar to that of cyclophosphamide and considerably lower than vinblastine. In an effort to find the new analogues of this type of novel steroid molecule that exhibit higher activity along with simpler chemical reactions and moreover are easily prepared, some 16E-arylidene androstene derivatives have emerged as potent anticancer agents, such as compound DPJ-RG-1110 [17,18], compound I [19] and compound II [20] (Fig. 1). These previous studies indicate that incorporation of a heterocyclic ring in the steroid backbone demonstrated an important impact on the activity. In addition, a substitution of the phenyl ring at the C-16 position also effects the activity. This type of 16Earylidene androstene-aminosteroid derivative represents a novel class of potential anticancer agents.

In order to elucidate the structure–activity relationship for this type of compound we studied the synthesis and cytotoxic activity of 16E-arylidene androstane-3-aminosteroid derivatives with different substituents and we obtained additional information on the potential pharmacophoric core.

2. Experimental

2.1. General

All the chemicals and solvent were purchased from commercial sources. Solvents and reagents were dried and purified according

^{*} Corresponding author. Tel.: +86 27 68759887; fax: +86 27 68759850. *E-mail address:* cassie_gh@hotmail.com (X. Hu).

⁰⁰³⁹⁻¹²⁸X/\$ - see front matter © 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.steroids.2011.03.015

Fig. 1. Structures of DAP and DPJ-RG-1110.

to the literature methods. Melting points were determined on a XT-4 apparatus (uncorrected). ¹H NMR and ¹³C NMR spectra were obtained on a Varian Mercury VX400 apparatus in CDCl₃ with TMS as internal standard. Mass spectra were recorded on a Shimadzu LCMS-2020 spectrometer. X-ray diffraction data were collected on Bruker SMART APEX CCD diffractometer. Elemental analysis was carried out on a VarioEL III (German) instrument. Silica gel was used for analytical and flash chromatography.

2.2. General procedure for the synthesis of compounds 2a-h (Scheme 1)

To a stirred solution of epiandrosterone (1.45 g, 5.00 mmol)and sodium hydroxide (1.00 g, 25.00 mmol, 5.0 equiv) in methanol was added the corresponding aldehyde (7.50 mmol, 1.5 equiv). The resulting solution was stirred for 12 h at 40 °C until the reaction was completed (monitored by TLC). Cold water was added to the reaction mixture and the precipitate obtained was filtered, washed with water, dried and crystallized from methanol to yield 2a–h.

2.2.1. 16-(4-methyl-benzylidene)- 5α -androstan- 3β -ol-17-one (2a)

White solid. yield 91%. m.p. $165-167 \circ C$; ¹H NMR (400 MHz, CDCl₃): δ 0.89 (s, 3H, CH₃-19), 0.96 (s, 3H, CH₃-18), 3.59-3.65 (m, 1H, C₃-OH), 7.42 (s, 1H, =CH), 7.22 (d, 2H, *J*=7.92 Hz), 7.44 (d, 2H, *J*=8.04 Hz), 2.40 (s, 3H, Ph-CH₃). ¹³C NMR (150 MHz, CDCl₃): δ 12.35, 14.55, 20.59, 21.48, 28.43, 29.35, 31.13, 31.44, 31.68, 34.72, 35.74, 36.87, 38.05, 44.85, 47.59, 49.57, 54.53, 60.43, 71.13, 129.44, 130.36, 132.85, 135.19, 139.55, 210.09. Anal. Calcd. for C₂₇H₃₆O₂: C 82.61, H 9.24; Found: C 82.34, H 9.31.

2.2.2. $16-(4-methoxy-benzylidene)-5\alpha$ -androstan-3 β -ol-17-one (2b)

White solid. yield 94%. m.p. $156-158 \circ C$; ¹H NMR (400 MHz, CDCl₃): $\delta 0.89$ (s, 3H, CH₃-19), 0.96 (s, 3H, CH₃-18), 3.59–3.61 (m, 1H C₃-OH), 3.84 (s, 3H, OCH₃), 7.38 (s, 1H, =CH), 6.92 (d, 2H, *J* = 8.76 Hz), 7.49 (d, 2H, *J* = 8.76 Hz). ¹³C NMR (150 MHz, CDCl₃): 12.35, 14.58, 20.59, 28.44, 29.28, 31.15, 31.44, 31.69, 34.72, 35.74, 36.87, 38.05, 44.86, 47.53, 49.63, 54.55, 55.36, 71.13, 114.19, 128.36, 132.07, 132.76, 133.77, 160.41, 210.13. Anal. Calcd. for C₂₇H₃₆O₃: C 79.37, H 8.88; Found: C 79.43, H 9.03.

2.2.3. 16-(4-nitro-benzylidene)- 5α -androstan- 3β -ol-17-one (2c)

Yellow solid. Yield 93%. m.p. 258–260 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.90 (s, 3H, CH₃–19), 0.99 (s, 3H, CH₃–18), 3.60–3.63 (m, 1H, C₃–OH), 7.45 (s, 1H, =CH), 7.67 (d, 2H, *J*=8.80 Hz), 8.27 (d, 2H, *J*=8.84 Hz). ¹³C NMR (150 MHz, CDCl₃): 12.33, 14.43, 20.51, 28.33, 29.38, 31.10, 31.39, 31.60, 34.72, 35.74, 36.86, 37.98, 44.81, 47.77, 49.24, 54.47, 71.06, 123.86, 130.07, 130.64, 140.18, 142.03, 147.45, 209.05. Anal. Calcd. for C₂₆H₃₃NO₄: C 73.73, H 7.85, N 3.31; Found: C 73.62, H 7.91, N 3.19.

2.2.4. 16-(3,4,5-trimethoxy-benzylidene)- 5α -androstan- 3β -ol-17-one (2d)

White solid. Yield 91%. m.p. $130-132 \circ C$; ¹H NMR (400 MHz, CDCl₃): 0.87 (s, 3H, CH₃-19), 0.97 (s, 3H, CH₃-18), 3.57-3.63 (m, 1H, C₃-OH), 3.89 (s, 9H), 7.35 (s, 1H, =CH), 6.77 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 12.32, 14.18, 20.54, 22.68, 28.37, 29.35, 31.12, 31.41, 31.64, 34.67, 35.73, 36.84, 38.02, 44.82, 47.60, 49.51, 54.48, 56.15, 60.96, 71.10, 107.62, 131.15, 133.10, 135.27, 139.23, 153.16, 209.75. Anal. Calcd. for C₂₉H₄₀O₅: C 74.33, H 8.60; Found: C 74.51, H 8.42.

2.2.5. 16-(4-chloro-benzylidene)- 5α -androstan- 3β -ol-17-one (2e)

White solid. Yield 91%. m.p.171–173 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.89 (s, 3H, CH₃–19), 0.96 (s, 3H, CH₃–18), 3.59–3.63 (m, 1H, C₃–0H), 7.39 (s, 1H, =CH), 7.38 (d, 2H, *J* = 8.56 Hz), 7.47 (d, 2H, *J* = 8.48 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.35, 14.49, 20.56, 21.06, 28.39, 29.27, 31.13, 31.45, 31.65, 34, 73, 35.75, 36.87, 38.05, 44.84, 47.64, 49.46, 54.52, 60.41, 71.15, 128.94, 131.42, 134.13, 135.08, 136.67, 209.64. Anal. Calcd. for C₂₆H₃₃ClO₂: C 75.61, H 8.05; Found: C 75.62, H 8.00.

2.2.6. 16-(4-bromo-benzylidene)- 5α -androstan- 3β -ol-17-one (2f)

White solid. Yield 91%. m.p. $182-184 \circ C$; ¹H NMR (400 MHz, CDCl₃): δ 0.89 (s, 3H, CH₃-19), 0.96 (s, 3H, CH₃-18), 3.59–3.65 (m, 1H, C₃-OH), 7.36 (s, 1H, =CH), 7.39 (d, 2H, *J*=8.52 Hz), 7.54 (d, 2H, *J*=8.44 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.35, 14.21, 14.49, 20.56, 21.09, 28.38, 29.29, 31.12, 31.45, 31.63, 34.72, 35.74, 36.86, 38.04, 44.83, 47.66, 49.44, 54.50, 60.43, 71.16, 123.44, 131.65, 134.54, 136.84, 209.66. Anal. Calcd. for C₂₆H₃₃BrO₂: C 68.27, H 7.27; Found: C 68.51, H 7.08.

2.2.7. 16-(4-fluoro-benzylidene)- 5α -androstan- 3β -ol-17-one (2g)

White solid. Yield 95%. m.p. $181-183 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 0.89 (s, 3H, CH₃-19), 0.96 (s, 3H, CH₃-18), 3.59–3.66 (m, 1H, C₃-OH), 7.40 (s, 1H, =CH), 7.12 (t, 2H), 7.54 (t, 3H). ³C NMR (150 MHz, CDCl₃): δ 12.35, 14.52, 20.56, 28.40, 29.20, 31.14, 31.45, 31.64, 34.72, 35.74, 36.86, 38.04, 44.84, 47.62, 49.50, 54.52, 71.15, 115.93, 131.73, 132.21, 135.69, 161.76, 164.25, 209.80. Anal. Calcd. for C₂₆H₃₃FO₂: C 78.75, H 8.39; Found: C 78.61, H 8.22.

2.2.8. 16-(furan-2-ylmethylene)- 5α -androstan- 3β -ol-17-one (2h)

White solid. Yield 95%. m.p. 154–156 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.88 (s, 3H, CH₃–19), 0.93 (s, 3H, CH₃–18), 3.60–3.65 (m, 1H, C₃–OH), 7.21 (s, 1H, =CH), 6.52 (q, 1H), 6.66 (d, 1H, *J* = 3.44 Hz), 7.57 (d, 1H, *J* = 1.68 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.35, 14.62, 20.59, 28.44, 28.91, 31.14, 31.44, 31.62, 34.69, 35.74, 36.87, 38.05, 44.87, 47.77, 49.11, 54.55, 71.15, 112.32, 115.51, 119.51, 133.68, 144.66, 152.27, 209.94. Anal. Calcd. for C₂₄H₃₂O₃: C 78.22, H 8.75; Found: C 78.19, H 8.81.

2.3. General procedure for the synthesis of compounds 3a-h

To a solution of condensation products (5 mmol)(2a-h) in acetone (20 ml), Jones reagent was added drop wise. The mixture was stirred at 0 °C until the reaction was completed (monitored by TLC). The reaction was quenched with ethanol (3–5 ml) and concentrated in reduced pressure. The crude product was dissolved in CH₂Cl₂, the organic layer was washed with brine and dried over anhydrous Na₂SO₄, filtered. The filtrate was concentrated in reduced pressure to afford a crude product. The products were purified by flash col-

Scheme 1. Preparation of target compounds (12a-h, 13a-h, 14a-h, 15a-h).

umn chromatography to yield compound 3a-h. The Jones reagent was prepared according to previous study [21-23].

2.3.1. 16-(4-methyl-benzylidene)- 5α -androstan-3,17-dione (3a)

White solid. Yield 95%. m.p.165-167 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.99 (s, 3H, CH₃-19), 1.09 (s, 3H, CH₃-18), 2.40 (s, 3H, Ph-CH₃), 7.43 (s, 1H, =CH), 7.25 (d, 2H, *J*=7.96 Hz), 7.46 (d, 2H, *J*=8.20 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 11.50, 14.54, 20.77, 21.49, 28.64, 29.31, 30.76, 31.60, 34.60, 35.89, 38.07, 38.33, 44.58, 46.56, 47.49, 49.38, 53.94, 129.46, 130.37, 132.78, 133.16, 134.94, 209.65, 211.57. Anal. Calcd. for C₂₇H₃₄O₂: C 83.03, H 8.77; Found: C 83.31, H 8.62.

2.3.2. 16-(4-methoxy-benzylidene)- 5α -androstan-3,17-dione (3b)

White solid. Yield 97%. m.p. 273–275 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.96 (s, 3H, CH₃-19), 1.07 (s, 3H, CH₃-18), 3.84 (s, 3H, OCH₃), 7.39 (s, 1H, =CH), 6.94 (d, 2H, *J*=8.76 Hz), 7.51 (d, 2H, *J*=8.76 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 11.47, 14.56, 20.76, 28.63, 29.22, 30.74, 31.59, 34.57, 35.86, 38.05, 38.30, 44.56, 46.53, 47.39, 49.40, 53.93, 55.34, 114.21, 128.23, 132.07, 132.86, 133.49, 160.46, 209.61, 211.50. Anal. Calcd. for C₂₇H₃₄O₃: C 79.76, 8.43; Found: C 79.62, H 8.70.

2.3.3. 16-(4-nitro-benzylidene)- 5α -androstan-3,17-dione (3c)

Yellow solid. Yield 96%. m.p. 236–238 °C; ¹H NMR (400 MHz, CDCl₃): δ 1.00 (s, 3H, CH₃-19), 1.08 (s, 3H, CH₃-18), 7.44 (s, 1H, =CH), 7.67 (d, 2H, *J*=8.80 Hz), 8.27 (d, 2H, *J*=8.80 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 11.46, 14.40, 20.68, 28.52, 29.31, 30.69, 31.50, 34.56, 35.86, 38.00, 38.28, 44.49, 46.49, 47.65, 49.02, 53.85, 123.83, 130.14, 130.66, 139.97, 141.94, 147.42, 208.62, 211.36. Anal. Calcd. for C₂₆H₃₁NO₄: C 74.08, H 7.41, N 3.32; Found: C 74.15, H 7.52, N 3.40.

2.3.4. 16-(3,4,5-trimethoxy-benzylidene)- 5α -androstan-3,17-dione (3d)

White solid. Yield 98%. m.p. 211–213 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.86 (s, 3H, CH₃-19), 1.07 (s, 3H, CH₃-18), 3.89 (s, 9H),7.36 (s, 1H, =CH), 6.77 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 11.45, 14.50, 20.72, 22.68, 29.12, 29.35, 29.69, 30.73, 31.55, 31.91, 34.54, 35.87, 38.03, 38.30, 44.53, 46.53, 47.49, 49.32, 53.89, 56.14, 60.93, 107.65, 131.06, 133.29, 134.99, 139.30, 153.17, 209.34, 211.48. Anal. Calcd. for C₂₉H₃₈O₅: C 74.65, H 8.21; Found: C 74.58, H 8.37.

2.3.5. 16-(4-chloro-benzylidene)- 5α -androstan-3,17-dione (3e)

White solid. Yield 98%. m.p. 256–258 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.90 (s, 3H, CH₃-19), 1.00 (s, 3H, CH₃-18), 7.31 (s, 1H, =CH), 7.29 (d, 2H, *J*=8.44 Hz), 7.40 (d, 2H, *J*=8.56 Hz). ¹³C NMR

 $\begin{array}{l} (150 \text{ MHz, CDCl}_3) \colon \delta \ 11.50, 14.48, 20.75, 28.60, 29.23, 30.76, 31.56, \\ 34.61, 35.90, 38.06, 38.38, 44.56, 46.56, 47.55, 49.27, 53.94, 128.96, \\ 131.43, 131.74, 134.05, 135.16, 136.41, 209.27, 211.51. \\ \text{Anal. Calcd.} \\ \text{for } \mathsf{C}_{26}\mathsf{H}_{31}\mathsf{ClO}_2 \colon \mathsf{C} \ 75.98, \mathsf{H} \ 7.60; \\ \text{Found} \colon \mathsf{C} \ 75.81, \mathsf{H} \ 7.72. \end{array}$

2.3.6. 16-(4-bromo-benzylidene)- 5α -androstan-3,17-dione (3f)

White solid. Yield 98%. m.p. $182-184 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 0.99 (s, 3H, CH₃-19), 1.09 (s, 3H, CH₃-18), 7.37 (s, 1H, =CH), 7.39 (d, 2H, *J*=8.48 Hz), 7.40 (d, 2H, *J*=8.44 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 11.51, 14.48, 20.74, 28.59, 29.26, 30.75, 31.55, 34.60, 35.89, 38.07, 38.33, 44.56, 46.55, 47.57, 49.25, 53.92, 123.52, 131.66, 131.81, 131.93, 134.46, 136.57, 209.30, 211.58. Anal. Calcd. for C₂₆H₃₁BrO₂: C 68.57, H 6.86; Found: C 68.44, H 6.94.

2.3.7. 16-(4-fluoro-benzylidene)- 5α -androstan-3,17-dione (3g)

White solid. Yield 90%. m.p. $208-210 \circ C$; ¹H NMR (400 MHz, CDCl₃): δ 0.99 (s, 3H, CH₃-19), 1.09 (s, 3H, CH₃-18), 7.41 (s, 1H, =CH), 7.29 (d, 2H, *J*=8.44 Hz), 7.12 (t, 2H), 7.54 (t, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 11.48, 14.49, 20.73, 28.59, 29.14, 30.74, 31.55, 34.58, 35.87, 38.05, 38.31, 44.55, 46.54, 47.51, 49.29, 53.91, 115.94, 132.22, 161.76, 164.26, 209.39, 211.56. Anal. Calcd. for C₂₆H₃₁FO₂: C 79.15, H 7.92; Found: C 79.28, H 7.88.

2.3.8. 16-(furan-2-ylmethylene)- 5α -androstan-3,17-dione (3h)

Yellow solid. Yield 97%. m.p. $197-199 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): $\delta 0.95$ (s, 3H, CH₃-19), 1.08 (s, 3H, CH₃-18), 7.21 (s, 1H, =CH), 6.52 (q, 1H), 6.66 (d, 1H, *J* = 3.40 Hz), 7.57 (d, 1H, *J* = 1.68 Hz). ¹³C NMR (150 MHz, CDCl₃): $\delta 11.46$, 14.58, 20.75, 28.63, 28.85, 30.73, 31.52, 34.53, 35.86, 38.05, 38.31, 44.56, 46.55, 47.64, 48.89, 53.93, 209.42, 211.54. Anal. Calcd. for C₂₄H₃₀O₃: C 78.65, H 8.25; Found: C 78.77, H 8.30.

2.4. General procedure for the synthesis of compounds 4a–h, 5a–h, 6a–h, 7a–h

To a suspension of dione 3a–h (1 mmol) in 20 ml of absolute methanol was added 0.5 ml of piperidine and 60 mg (1.2 mmol, 1.2 equive.) of NaBH₃CN, then the solution was acidified to $pH \approx 6$ with acetic acid. The resulting mixture was stirred at 40 °C for 8 h. The methanol was removed under reduced pressure, 20 ml CH₂Cl₂ was added to the residue, the organic layer was washed with saturated NaHCO₃, brine and dried over anhydrous Na₂SO₄, filtered. The filtrate was concentrated in vacuum to afford a crude product. The product was purified by flash column chromatography to yield compound 4a–h. Compounds 5a–h, 6a–h and 7a–h were obtained with pyrrolidine, morpholine, N-methylpiperazine by using the same method that described above [24].

2.4.1. 16-(4-methyl-benzylidene)-3 β -piperidino-5 α -androstan-17-one (4a)

White solid. Yield 45%. m.p $165-167 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 0.81 (s, 3H, CH₃-19), 0.97 (s, 3H, CH₃-18), 2.40 (s, 3H, Ph-CH₃), 2.53 (s, 4H, NCH₂), 7.42 (s, 1H, =CH), 7.15 (d, 2H, *J* = 7.96 Hz), 7.27 (d, 2H, *J* = 8.20 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.40, 14.57, 20.43, 24.10, 24.77, 26.38, 28.77, 29.19, 30.68, 31.22, 31.66, 34.68, 36.44, 37.89, 46.11, 47.59, 49.52, 50.42, 54.60, 55.31, 64.79, 114.19, 128.46, 132.08, 132.47, 134.96, 209.76. Anal. Calcd. for C₃₂H₄₅NO: C 83.61, H 9.87, N 3.05; Found C 83.55, H 9.91, N 3.12.

2.4.2. 16-(4-methyl-benzylidene)- 3β -pyrrolidino- 5α -androstan-17-one (5a)

White solid. Yield 48%. m.p 206–208 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.87 (s, 3H, CH₃-19), 0.96 (s, 3H, CH₃-18), 2.40 (s, 3H, Ph-CH₃), 2.57 (br, 4H, NCH₂), 7.42 (s, 1H, =CH), 7.22 (d, 2H, *J* = 7.96 Hz), 7.44 (d, 2H, *J* = 8.08 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.07, 14.52, 20.43, 21.46, 23.26, 24.16, 28.22, 29.27, 30.67, 30.91, 31.57, 34.55, 35.75, 36.75, 45.18, 47.53, 49.49, 50.66, 54.22, 63.96, 129.44, 130.35, 132.76, 133.14, 135.01, 139.63, 176.31, 209.94. Anal. Calcd. for C₃₁H₄₃NO: C 83.54, H 9.72, N 3.14; Found C 83.49, H 9.88, N 3.22.

2.4.3. 16-(4-methyl-benzylidene)- 3β -morpholino- 5α -androstan-17-one (6a)

White solid. Yield 42%. m.p. $234-236 \degree C$; ¹H NMR (400 MHz, CDCl₃): δ 0.76 (s, 3H, CH₃-19), 0.87 (s, 3H, CH₃-18), 2.31 (s, 3H, Ph-CH₃), 2.49 (s, 4H, NCH₂), 3.63–3.65 (m, 4H, OCH₂), 7.33 (s, 1H, =CH), 7.13 (d, 2H, *J*=7.96 Hz), 7.35 (d, 2H, *J*=8.08 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.18, 14.52, 20.44, 21.46, 21.98, 22.38, 28.40, 28.88, 29.27, 30.92, 31.57, 34.59, 35.87, 37.01, 45.34, 47.54, 48.60, 49.46, 54.25, 64.70, 64.99, 129.44, 130.36, 132.78, 133.16, 135.02, 139.61, 176.08, 209.98. Anal. Calcd. for C₃₁H₄₃NO₂: C 80.65, H 9.39, N 3.03; Found C 80.51, H 9.47, N 3.22.

2.4.4. 16-(4-methyl-benzylidene)-3 β -(4-Methylpiperazinyl)-5 α - and rostan-17-one (7a)

White solid. Yield 43%. m.p. 256–258 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.76 (s, 3H, CH₃-19), 0.86 (s, 3H, CH₃-18), 2.31 (s, 3H, Ph-CH₃), 2.21 (s, 3H, N-CH₃), 2.39–2.53 (m, 8H, NCH₂), 7.32 (s, 1H, =CH), 7.13 (d, 2H, *J*=7.96 Hz), 7.35 (d, 2H, *J*=8.08 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.42, 14.54, 20.47, 21.47, 24.58, 28.73, 29.34, 31.19, 31.27, 31.69, 34.73, 36.12, 37.74, 45.86, 46.05, 47.60, 49.32, 49.59, 54.65, 55.53, 63.77, 129.42, 130.34, 132.88, 132.91, 135.25, 139.49, 210.08. Anal. Calcd. for C₃₂H₄₆N₂O: C 80.96, H 9.77, N 5.90; Found C 81.22, H 9.88, N 5.80.

2.4.5. 16-(4-methoxy-benzylidene)- 3β -piperidino- 5α -androstan-17-one (4b)

White solid. Yield 45%. m.p. $215-217 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 0.84 (s, 3H, CH₃-19), 0.98 (s, 3H, CH₃-18), 2.53 (s, 4H, NCH₂), 3.86 (s, 3H, OCH₃), 7.40 (s, 1H, =CH), 6.94 (d, 2H, *J* = 8.72 Hz), 7.51 (d, 2H, *J* = 8.72 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.44, 14.59, 20.49, 24.12, 24.87, 26.43, 28.77, 29.29, 30.73, 31.22, 31.71, 34.73, 36.21, 37.94, 46.09, 47.57, 49.66, 50.37, 54.69, 55.36, 64.48, 114.16, 128.38, 132.05, 132.66, 133.85, 160.37, 209.83. Anal. Calcd. for C₃₂H₄₅NO₂: C 80.79, H 9.53, N 2.94; Found C 80.91, H 9.66, N 2.81.

2.4.6. $16-(4-methoxy-benzylidene)-3\beta-pyrrolidino-5\alpha-androstan-17-one (5b)$

White solid. Yield 47%. m.p. 224–226 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.86 (s, 3H, CH₃-19), 0.93 (s, 3H, CH₃-18), 2.57 (br, 4H, NCH₂), 3.85 (s, 3H, OCH₃), 7.38 (s, 1H, =CH), 6.92 (d, 2H, *J* = 8.80 Hz), 7.49 (d, 2H, *J* = 8.80 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.36, 14.58, 20.43, 23.17, 27.98, 28.68, 29.29, 31.23, 31.71, 34.73, 34.76, 36.02, 37.35, 45.29, 47.56, 49.68, 51.83, 54.69, 55.35, 64.29, 114.16, 128.39,

132.06, 132.65, 133.86, 160.38, 210.21. Anal. Calcd. for $C_{31}H_{43}NO_2$: C 80.65, H 9.39, N 3.03; Found C 80.51, H 9.18, N 3.11.

2.4.7. 16-(4-methoxy-benzylidene)-3 β -morpholino-5 α -

androstan-17-one (6b)

White solid. Yield 41%. m.p. 214–216 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.84 (s, 3H, CH₃-19), 0.94 (s, 3H, CH₃-18), 2.57 (s, 4H, NCH₂), 3.72–3.75 (m, 4H, OCH₂), 3.84 (s, 3H, OCH₃), 7.38 (s, 1H, =CH), 6.92 (d, 2H, *J*=8.76 Hz), 7.49 (d, 2H, *J*=8.80 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.39, 14.58, 20.48, 24.49, 28.74, 29.27, 31.09, 31.18, 31.69, 34.71, 36.12, 37.62, 45.73, 47.54, 49.64, 50.05, 54.64, 55.35, 64.05, 67.34, 114.17, 128.36, 132.06, 132.71, 133.79, 160.40, 210.13. Anal. Calcd. for C₃₁H₄₃NO₃: C 77.95, H 9.07, N 2.93; Found C 77.88, H 9.16, N 2.88.

2.4.8. 16-(4-methoxy-benzylidene)- 3β -(4-methylpiperazinyl)- 5α -androstan-17-one (7b)

White solid. Yield 44%. m.p. 239–241 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.83 (s, 3H, CH₃-19), 0.93 (s, 3H, CH₃-18), 2.28 (s, 3H, N-CH₃), 2.40–2.61 (m, 8H, NCH₂), 3.84 (s, 3H, OCH₃), 7.38 (s, 1H, =CH), 6.92 (d, 2H, *J*=8.68 Hz), 7.49 (d, 2H, *J*=8.68 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.41, 14.58, 20.47, 24.55, 28.73, 29.27, 31.19, 31.23, 31.69, 34.71, 36.11, 37.73, 45.85, 46.03, 47.54, 49.28, 49.63, 54.65, 55.35, 55.49, 63.75, 114.16, 128.36, 132.05, 132.67, 132.81, 160.38, 210.14. Anal. Calcd. for C₃₂H₄₆N₂O₂: C78.32, H 9.45, N 5.71; Found C 78.21, H 9.58, N 5.66.

2.4.9. 16-(4-nitro-benzylidene)-3 β -piperidino-5 α androstan-17-one (4c)

Yellow solid. Yield 44%. m.p. 243–245 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.85 (s, 3H, CH₃-19), 0.98 (s, 3H, CH₃-18), 2.54 (s, 4H, NCH₂), 7.45 (s, 1H, =CH), 7.67 (d, 2H, *J*=8.92 Hz), 8.26 (d, 2H, *J*=8.80 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.42, 14.42, 20.41, 24.08, 24.82, 26.36, 28.64, 29.25, 29.39, 30.62, 31.17, 31.61, 34.72, 36.19, 37.90, 46.03, 47.79, 49.26, 50.35, 53.77, 54.59, 64.43, 123.85, 129.98, 130.62, 140.24, 142.06, 147.42, 209.09. Anal. Calcd. for C₃₁H₄₂N₂O₃: C 75.88, H 8.63, N 5.71; Found C 75.97, H 8.58, N 5.62.

2.4.10. 16-(4-nitro-benzylidene)- 3β -pyrrolidino- 5α androstan-17-one (5c)

Yellow solid. Yield 41%. m.p. 225–227 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.87 (s, 3H, CH₃-19), 0.98 (s, 3H, CH₃-18), 2.59 (br, 4H, NCH₂), 7.45 (s, 1H, =CH), 7.67 (d, 2H, *J*=8.80 Hz), 8.26 (d, 2H, *J*=8.84 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.35, 14.43, 20.35, 23.17, 27.99, 28.57, 29.40, 31.19, 31.62, 34.74, 36.02, 37.34, 45.25, 47.80, 49.30, 51.85, 54.61, 64.26, 123.85, 129.95, 130.62, 140.26, 142.06, 147.42, 209.08. Anal. Calcd. for C₃₀H₄₀N₂O₃: C 75.59, H 8.46, N 5.88; Found C 75.71, H 8.31, N 5.97.

2.4.11. 16-(4-nitro-benzylidene)- 3β -morpholino- 5α -

androstan-17-one (6c)

Yellow solid. Yield 44%. m.p. 241–243 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.88 (s, 3H, CH₃–19), 1.00 (s, 3H, CH₃–18), 2.59 (s, 4H, NCH₂), 3.73–3.76 (s, 4H, OCH₂), 7.45 (s, 1H, =CH), 7.67 (d, 2H, *J*=8.76 Hz), 8.26 (d, 2H, *J*=8.80 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.38, 14.43, 20.41, 24.47, 28.62, 29.38, 31.04, 31.14, 31.60, 34.72, 36.12, 37.61, 45.69, 47.79, 49.26, 50.04, 54.56, 64.00, 67.32, 123.86, 130.04, 130.63, 140.19, 142.04, 147.44, 209.07. Anal. Calcd. for C₃₀H₄₀N₂O₄: C 73.14, H 8.18, N 5.69; Found C 73.22, H 8.26, N 5.55.

2.4.12. 16-(4-nitro-benzylidene)-3 β -(4-Methylpiperazinyl)-5 α -androstan-17-one (7c)

Yellow solid. Yield 44%. m.p. 259–261 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.85 (s, 3H, CH₃-19), 0.98 (s, 3H, CH₃-18), 2.30 (s, 3H, N-CH₃), 2.42–2.62 (m, 8H, NCH₂), 7.45 (s, 1H, =CH), 7.67 (d, 2H, *J*=8.76 Hz), 8.26 (d, 2H, *J*=8.76 Hz). ¹³C NMR (150 MHz, CDCl₃): δ

 $\begin{array}{l} 12.40, \ 14.43, \ 20.40, \ 24.53, \ 28.62, \ 29.38, \ 31.15, \ 31.19, \ 31.60, \ 34.72, \\ 36.11, \ 37.72, \ 45.81, \ 46.01, \ 47.79, \ 49.28, \ 54.57, \ 55.47, \ 63.72, \ 123.85, \\ 130.00, \ 130.62, \ 140.22, \ 142.05, \ 147.43, \ 209.07. \ Anal. \ Calcd. \ for \\ C_{31}H_{43}N_3O_3 \colon C \ 73.63, \ H \ 8.57, \ N \ 8.31; \ Found \ C \ 73.81, \ H \ 8.42, \ N \ 8.26. \end{array}$

2.4.13. 16-(3,4,5-trimethoxy-benzylidene)- 3β -piperidino- 5α -androstan-17-one (4d)

White solid. Yield 47%. m.p. $197-199 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 0.82 (s, 3H, CH₃-19), 0.95 (s, 3H, CH₃-18), 2.51 (s, 4H, NCH₂), 3.89 (s, 9H, OCH₃), 7.34 (s, 1H, =CH), 6.77 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 12.41, 14.53, 20.45, 24.10, 24.86, 26.41, 28.72, 29.18, 30.71, 31.20, 31.67, 34.70, 36.20, 37.91, 46.06, 47.64, 49.55, 50.36, 54.63, 56.15, 60.97, 64.45, 107.62, 131.19, 133.02, 135.37, 139.21, 153.17, 209.83. Anal. Calcd. for C₃₄H₄₉NO₄: C 76.22, H 9.22, N 2.61; Found C 76.41, H 9.31, N 2.48.

2.4.14. 16-(3,4,5-trimethoxy-benzylidene)- 3β -pyrrolidino- 5α -androstan-17-one (5d)

White solid. Yield 48%. m.p. $162-164 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 0.85 (s, 3H, CH₃-19), 0.95 (s, 3H, CH₃-18), 2.56 (br, 4H, NCH₂), 3.89 (s, 9H, OCH₃), 7.34 (s, 1H, =CH), 6.77 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 10.73, 18.98, 19.61, 22.82, 27.13, 29.28, 29.47, 30.07, 33.21, 34.37, 34.86, 36.00, 41.35, 44.02, 47.23, 48.41, 52.71, 54.46, 59.29, 62.45, 65.71, 82.93, 103.93, 122.00, 131.76, 135.22, 138.82, 151.34, 169.62. Anal. Calcd. for C₃₃H₄₇NO₄: C 75.97, H 9.08, N 2.68; Found C 75.88, H 9.12, N 2.79.

2.4.15. 16-(3,4,5-trimethoxy-benzylidene)- 3β -morpholino- 5α -androstan-17-one (6d)

White solid. Yield 48%. m.p. $168-170 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 0.86 (s, 3H, CH₃-19), 0.95 (s, 3H, CH₃-18), 2.56 (s, 4H, NCH₂), 3.73–3.75 (m, 4H, OCH₂), 3.89 (s, 9H, OCH₃), 7.35 (s, 1H, =CH), 6.77 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 12.37, 14.52, 20.43, 24.50, 28.68, 29.92, 31.10, 31.16, 31.64, 34.66, 35.64, 36.11, 37.60, 45.70,47.53, 49.52, 50.05, 53.78, 54.57, 56.14, 60.97, 67.34, 107.58, 131.16, 133.04, 133.27, 135.04, 135.31, 139.19, 153.16, 209.75. Anal. Calcd. for C₃₃H₄₇NO₅: C 73.71, H 8.81, N 2.60; Found C 73.52, H 8.93, N 2.46.

2.4.16. 16-(3,4,5-trimethoxy-benzylidene)- 3β -(4methylpiperazinyl)- 5α -androstan-17-one (7d)

White solid. Yield 49%. m.p. $185-187 \circ C$; ¹H NMR (400 MHz, CDCl₃): δ 0.85 (s, 3H, CH₃-19), 0.96 (s, 3H, CH₃-18), 2.31 (s, 3H, N-CH₃), 2.48–2.65 (m, 8H, NCH₂), 3.89 (s, 9H, OCH₃), 7.35 (s, 1H, =CH), 6.78 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 12.36,14.51, 20.41, 24.44, 28.65, 29.14, 31.15, 31.62, 34.64, 36.07, 37.66, 45.78, 47.59, 49.14, 49.50, 54.55, 55.31, 56.12, 60.93, 63.70, 107.57, 131.15, 133.00, 135.30, 139.17, 153.13, 209.71. Anal. Calcd. for C₃₄H₅₀N₂O₄: C 74.14, H 9.15, N 5.09; Found C 74.26, H 9.22, N 5.01.

2.4.17. 16-(4-chloro-benzylidene)- 3β -piperidino- 5α androstan-17-one (4e)

White solid. Yield 49%. m.p. $163-165 \circ$ C; ¹H NMR (400 MHz, CDCl₃): δ 0.91 (s, 3H, CH₃-19), 0.96 (s, 3H, CH₃-18), 2.51 (s, 4H, NCH₂), 7.39 (s, 1H, =CH), 7.40 (d, 2H, *J*=8.44 Hz), 7.48 (d, 2H, *J*=8.52 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.33, 14.49, 20.45, 22.13, 22.75, 23.03, 28.20, 28.79, 29.17, 30.85, 31.50, 34.55, 35.84, 36.99, 45.43, 47.56, 49.31, 49.93, 54.12, 65.45, 128.95, 131.43, 131.72, 134.03, 135.14, 136.43, 209.43. Anal. Calcd. for C₃₁H₄₂ClNO: C 77.55, H 8.82, N 2.92; Found C 77.71, H 8.76, N 2.89.

2.4.18. 16-(4-chloro-benzylidene)- 3β -pyrrolidino- 5α -androstan-17-one (5e)

White solid. Yield 49%. m.p. 232–234 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.87 (s, 3H, CH₃-19), 0.96 (s, 3H, CH₃-18), 2.57 (br, 4H,

NCH₂), 7.39 (s, 1H, =CH), 7.40 (d, 2H, J=8.56 Hz), 7.49 (d, 2H, J=8.48 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.35, 14.48, 20.38, 23.18, 23.66, 28.01, 28.63, 29.26, 31.20, 31.66, 34.72, 34.77, 36.01, 37.34, 45.26, 47.64, 49.48, 51.85, 54.63, 64.27, 128.91, 131.42, 134.14, 135.02, 136.74, 209.63. Anal. Calcd. for C₃₀H₄₀ClNO: C 77.31, H 8.65, N 3.01; Found C 77.44, H 8.78, N 2.99.

2.4.19. 16-(4-chloro-benzylidene)- 3β -morpholino- 5α androstan-17-one (6e)

White solid. Yield 49%. m.p. 220–222 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.86 (s, 3H, CH₃-19), 0.96 (s, 3H, CH₃-18), 2.57 (s, 4H, NCH₂), 3.74 (s, 4H, OCH₂), 7.39 (s, 1H, =CH), 7.40 (d, 2H, *J*=8.56 Hz), 7.49 (d, 2H, *J*=8.52 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.39, 14.49, 20.44, 24.49, 28.68, 29.25, 31.08, 31.16, 31.63, 34.70, 36.11, 37.61, 45.71, 47.65, 49.45, 50.05, 54.59, 64.03, 67.34, 128.93, 131.42, 131.51, 134.12, 135.05, 136.68, 209.67. Anal. Calcd. for C₃₀H₄₀ClNO₂: C 74.74, H 8.36, N 2.91; Found C 74.68, H 8.43, 21, N 2.88.

2.4.20. 16-(4-chloro-benzylidene)- 3β -(4-methylpiperazinyl)- 5α -androstan-17-one (7e)

White solid. Yield 47%. m.p. $265-267 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 0.76 (s, 3H, CH₃-19), 0.87 (s, 3H, CH₃-18), 2.21 (s, 3H, N-CH₃), 2.39–2.55 (m, 8H, NCH₂), 7.29 (s, 1H, =CH), 7.31 (d, 2H, *J* = 8.60 Hz), 7.39 (d, 2H, *J* = 8.48 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.41, 14.49, 20.44, 24.53, 28.68, 29.26, 31.17, 31.22, 31.65, 34.72, 36.12, 37.73, 45.84, 46.03, 47.66, 49.31, 49.47, 54.62, 55.47, 63.79, 128.93, 131.42, 131.48, 134.14, 135.04, 136.72, 209.68. Anal. Calcd. for C₃₁H₄₃ClN₂O: C 75.20, H 8.75, N 5.66; Found C 75.11, H 8.99, N 5.49.

2.4.21. 16-(4-bromo-benzylidene)- 3β -piperidino- 5α androstan-17-one (4f)

White solid. Yield 45%. m.p. $207-209 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 0.86 (s, 3H, CH₃-19), 0.97 (s, 3H, CH₃-18), 2.55 (s, 4H, NCH₂), 7.37 (s, 1H, =CH), 7.40 (d, 2H, *J*=8.52 Hz), 7.54 (d, 2H, *J*=8.61 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.34, 14.49, 20.55, 22.66, 28.38, 29.29, 29.71, 31.12, 31.44, 34.71, 35.74, 36.86, 38.04, 44.83, 45.99, 47.66, 49.44, 51.63, 54.50, 71.14, 123.44, 131.65, 131.19, 134.54, 136.84, 209.66. Anal. Calcd. for C₃₁H₄₂BrNO: C70.98, H 8.07, N 2.67; Found C 70.77, H 7.98, N 2.71.

2.4.22. 16-(4-bromo-benzylidene)- 3β -pyrrolidino- 5α androstan-17-one (5f)

White solid. Yield 41%. m.p. $242-244 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 0.87 (s, 3H, CH₃-19), 0.96 (s, 3H, CH₃-18), 2.59 (br, 4H, NCH₂), 7.36 (s, 1H, =CH), 7.40 (d, 2H, *J*=8.52 Hz), 7.54 (d, 2H, *J*=8.61 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.36, 14.49, 20.39, 23.18, 27.91, 28.62, 29.29, 31.20, 31.66, 34.66, 34.72, 36.02, 37.33, 45.26, 47.68, 49.48, 51.83, 54.62, 64.30, 123.38, 131.50, 131.63, 131.87, 134.56, 136.91, 209.71. Anal. Calcd. for C₃₀H₄₀BrNO: C70.58, H7.90, N 2.74; Found C 70.44, H 7.81, N 2.88.

2.4.23. 16-(4-bromo-benzylidene)- 3β -morpholino- 5α -androstan-17-one (6f)

White solid. Yield 47%. m.p. $247-249 \circ C$; ¹H NMR (400 MHz, CDCl₃): δ 0.67 (s, 3H, CH₃-19), 0.96 (s, 3H, CH₃-18), 2.58 (s, 4H, NCH₂), 3.73–3.75 (m, 4H, OCH₂), 7.36 (s, 1H, =CH), 7.39 (d, 2H, *J*=8.52 Hz), 7.54 (d, 2H, *J*=8.48 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.38, 14.49, 20.34, 24.50, 28.66, 29.29, 31.02, 31.11, 31.61, 34.73, 36.11, 37.58, 45.73, 47.66, 49.35, 50.15, 54.49, 64.00, 67.27, 128.88, 131.42, 131.49, 134.11, 135.03, 136.71, 209.77. Anal. Calcd. for C₃₀H₄₀BrNO₂: C 68.43, H 7.66, N 2.66; Found C 68.51, H 7.59, N 2.71.

2.4.24. 16-(4-bromo-benzylidene)-3 β -(4-methylpiperazinyl)-5 α -androstan-17-one (7f)

White solid. Yield 40%. m.p. 290–292 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.85 (s, 3H, CH₃-19), 0.96 (s, 3H, CH₃-18), 2.30 (s, 3H, N-CH₃), 2.49–2.62 (m, 8H, NCH₂), 7.36 (s, 1H, =CH), 7.39 (d, 2H, *J*=8.32 Hz), 7.54 (d, 2H, *J*=8.24 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.38, 14.55, 20.51, 24.49, 28.73, 29.22, 31.27, 31.19, 31.58, 34.66, 36.33, 37.73, 45.91, 46.13, 47.72, 49.41, 49.48, 54.64, 55.43, 63.81, 128.98, 131.44, 131.54, 134.26, 135.10, 136.77, 209.71. Anal. Calcd. for C₃₁H₄₃BrN₂O: C 69.00, H 8.03, N 5.19; Found C 69.13, H 8.01, N 5.27.

2.4.25. 16-(4-fluoro-benzylidene)- 3β -piperidino- 5α androstan-17-one (4g)

White solid. Yield 43%. m.p. 228–230 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.84 (s, 3H, CH₃-19), 0.95 (s, 3H, CH₃-18), 2.52 (s, 4H, NCH₂), 7.39 (s, 1H, =CH), 7.11 (t, 2H), 7.54 (t, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 12.41, 14.48, 20.44, 24.14, 24.85, 26.42, 28.71, 29.16, 30.69, 31.18, 31.65, 34.70, 36.18, 37.91, 46.05, 47.59, 49.50, 50.37, 54.63, 64.47, 115.66, 115.88, 131.57, 132.08, 132.17, 135.73, 135.75, 161.70, 164.19, 209.67. Anal. Calcd. for C₃₁H₄₂FNO: C 80.30, H 9.13, N 3.02; Found C 80.11, H 9.08, N 2.88.

2.4.26. 16-(4-fluoro-benzylidene)- 3β -pyrrolidino- 5α -androstan-17-one (5g)

White solid. Yield 46%. m.p. 265–267 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.78 (s, 3H, CH₃-19), 0.87 (s, 3H, CH₃-18), 2.49 (br, 4H, NCH₂), 7.31 (s, 1H, =CH), 7.02 (t, 2H), 7.45 (t, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 12.35, 14.51, 20.39, 23.17, 27.91, 28.63, 29.20, 31.21, 31.66, 34.68, 34.73, 36.02, 37.33, 45.27, 47.64, 49.55, 51.83, 54.64, 64.30, 115.69, 115.91, 131.63, 131.91, 132.11, 132.19, 135.80, 161.74, 164.23, 209.87. Anal. Calcd. for C₃₀H₄₀FNO: C 80.13, H 8.97, N 3.12; Found C 80.22, H 8.77, N 3.25.

2.4.27. 16-(4-fluoro-benzylidene)- 3β -morpholino- 5α -androstan-17-one (6g)

White solid. Yield 45%. m.p. 236–238 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.86 (s, 3H, CH₃-19), 0.96 (s, 3H, CH₃-18), 2.58 (s, 4H, NCH₂), 3.72–3.74 (m, 4H, OCH₂), 7.40 (s, 1H, =CH), 7.12 (t, 2H), 7.54 (t, 2H).¹³C NMR (150 MHz, CDCl₃): δ 12.39, 14.51, 20.45, 24.51, 28.70, 29.18, 31.09, 31.17, 31.64, 34.71, 36.12, 37.62, 45.72, 47.63, 49.51, 50.06, 54.60, 64.04, 67.35, 115.70, 115.92, 131.68, 131.86, 131.89, 132.11, 132.19, 161.74, 164.24, 209.80. Anal. Calcd. for C₃₀H₄₀FNO₂: C 77.38, H 8.66, N 3.01; Found C 77.47, H 8.51, N 2.92.

2.4.28. 16-(4-fluoro-benzylidene)- 3β -(4-methylpiperazinyl)- 5α -androstan-17-one (7g)

White solid. Yield 48%. m.p. $245-247 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 0.85 (s, 3H, CH₃-19), 0.96 (s, 3H, CH₃-18), 2.30 (s, 3H, N-CH₃), 2.49–2.63 (m, 8H, NCH₂), 7.39 (s, 1H, =CH), 7.11 (t, 2H), 7.54 (t, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 12.40, 14.49, 20.43, 24.55, 28.68, 29.17, 31.17, 31.22, 31.64, 34.71, 36.10, 37.72, 45.83, 46.00, 47.61, 49.26, 49.50, 54.61, 55.46, 63.74, 115.68, 115.89, 131.61, 131.86, 131.89, 132.09, 132.17, 135.75, 161.72, 164.21, 209.74. Anal. Calcd. for C₃₁H₄₃FN₂O: C 77.78, H 9.05, N 5.85; Found C 77.91, H 8.99, N 5.72.

2.4.29. 16-(furan-2-ylmethylene)-3 β -piperidino-5 α -androstan-17-one (4h)

White solid. Yield 49%. m.p. 198–200 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.84 (s, 3H, CH₃-19), 0.92 (s, 3H, CH₃-18), 2.53 (s, 4H, NCH₂), 7.20 (s, 1H, =CH), 6.51 (q, 1H), 6.64 (d, 2H, *J* = 3.44 Hz), 7.56 (s, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 12.44, 14.62, 20.50, 24.17, 24.90, 26.49, 28.78, 28.92, 30.77, 31.23, 31.65, 34.72, 36.22, 37.96, 46.13, 47.80, 49.15, 50.39, 54.71, 64.51, 112.30, 115.42, 119.43, 133.81,

144.62, 152.32, 209.97. Anal. Calcd. for $C_{29}H_{41}NO_2$: C 79.95, H 9.49, N 3.22; Found C 79.80, H 9.61, N 3.08.

2.4.30. 16-(furan-2-ylmethylene)-3 β -pyrrolidino-5 α -

androstan-17-one (5h)

White solid. Yield 48%. m.p. 228–230 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.86 (s, 3H, CH₃-19), 0.93 (s, 3H, CH₃-18), 2.58 (br, 4H, NCH₂), 7.21 (s, 1H, =CH), 6.52 (q, 1H), 6.65 (d, 2H, *J*=3.52 Hz), 7.57 (s, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 12.35, 14.61, 20.42, 23.17, 27.95, 28.68, 28.91, 31.22, 31.64, 34.70, 34.73, 36.01, 37.35, 45.30, 47.79, 49.15, 51.82, 54.68, 64.30, 112.29, 115.40, 119.41, 133.78, 144.60, 152.30, 209.93. Anal. Calcd. for C₂₈H₃₉NO₂: C 79.76, H 9.32, N 3.32; Found C 79.52, H 9.44, N 3.19.

2.4.31. 16-(furan-2-ylmethylene)- 3β -morpholino- 5α androstan-17-one (6h)

White solid. Yield 42%. m.p.232–234 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.85 (s, 3H, CH₃-19), 0.92 (s, 3H, CH₃-18), 2.58 (s, 4H, NCH₂), 3.73–3.75 (m, 4H, OCH₂), 7.20 (s, 1H, =CH), 6.52 (q, 1H), 6.65 (d, 2H, *J* = 3.40 Hz), 7.57 (s, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 12.39, 14.61, 20.48, 24.47, 28.74, 28.90, 31.08, 31.17, 31.62, 34.68, 36.11, 37.62, 45.74, 47.77, 49.11, 50.04, 54.64, 64.08, 67.30, 112.31, 115.46, 119.45, 133.70, 144.64, 152.27, 209.87. Anal. Calcd. for C₂₈H₃₉NO₃: C 76.85, H 8.98, N 3.20; Found C 76.62, H 8.76, N 3.39.

2.4.32. 16-(furan-2-ylmethylene)- 3β -(4-methylpiperazinyl)- 5α - and rostan-17-one (7h)

White solid. Yield 49%. m.p. 218–220 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.84 (s, 3H, CH₃-19), 0.92 (s, 3H, CH₃-18), 2.30 (s, 3H, N-CH₃), 2.46–2.62 (m, 8H, NCH₂), 7.21 (s, 1H, =CH), 6.52 (q, 1H), 6.65 (d, 2H, *J* = 3.42 Hz), 7.57 (s, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 12.41, 14.61, 20.47, 24.56, 28.74, 28.90, 31.19, 31.27, 31.62, 34.69, 36.11, 37.74, 45.87, 46.05, 47.79, 49.11, 49.31, 54.66, 55.51, 63.77, 112.30, 115.44, 119.44, 133.74, 144.62, 152.28, 209.95. Anal. Calcd. for C₂₉H₄₂N₂O₂: C 77.29, H 9.39, N 6.22; Found C 77.41, H 9.51, N 6.08.

2.5. General procedure for the synthesis of compounds 8a-h,9a-h, 10a-h, 11a-h

To the suspension of compounds 4a–h, 5a–h, 6a–h, 7a–h (1 mmol) in 20 ml of absolute methanol at 0 °C, sodium borohydride (1.2 equiv.) was added in small amounts over a period of 3 h. The methanol was removed under reduced pressure, 20 ml CH_2Cl_2 was added to the residue, the organic layer was washed with saturated NaHCO₃, brine and dried over anhydrous Na₂SO₄, filtered. The filtrate was concentrated in vacuum to afford a crude product. The product was purified by flash column chromatography to yield compound 8a–h, 9a–h, 10a–h, 11a–h.

2.5.1. 16-(4-methyl-benzylidene)- 3β -piperidino- 5α -androstan- 17β -ol (8a)

White solid. Yield 42%. m.p. 116–118 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.60 (s, 3H, CH₃-19), 0.73 (s, 3H, CH₃-18), 2.40 (s, 3H, Ph-CH₃), 2.59 (s, 4H, NCH₂), 3.90 (s, 1H, C₁₇- α H), 6.40 (s, 1H, =CH), 7.07 (d, 2H, *J* = 7.92 Hz), 7.20 (d, 2H, *J* = 7.96 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 11.26, 12.27, 20.79, 21.14, 21.81, 22.75, 22.96, 23.11, 28.14, 28.44, 30.83, 31.47, 34.86, 35.79, 36.38, 37.05, 42.91, 45.38, 48.51, 48.98, 54.31, 64.44, 84.60, 122.53, 128.01, 129.00, 135.24, 135.82, 145.06, 176.90. Anal. Calcd. for C₃₂H₄₇NO: C 83.24, H 10.26, N 3.03; Found C 83.42, H 10.19, N 2.99.

2.5.2. 16-(4-methyl-benzylidene)-3 β -pyrrolidino-5 α -

androstan-17 β -ol (9a)

White solid. Yield 42%. m.p. 202–204 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.69 (s, 3H, CH₃-19), 0.84 (s, 3H, CH₃-18), 2.35 (s, 3H,

Ph-CH₃), 2.59 (br, 4H, NCH₂), 3.90 (d, 1H, C_{17} - α H, J = 8.72 Hz), 6.49 (s, 1H, =CH), 7.16 (d, 2H, J = 7.96 Hz), 7.30 (d, 2H, J = 8.31 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 11.17, 12.38, 20.73, 21.17, 23.19, 27.83, 28.78, 30.96, 31.84, 34.59, 35.04, 35.94, 36.45, 37.43, 43.02, 45.34, 48.59, 51.80, 54.71, 64.40, 85.00, 122.61, 128.13, 129.04, 135.12, 35.99, 145.34. Anal. Calcd. for $C_{31}H_{45}$ NO: C 83.17, H 10.13, N 3.13; Found C 83.27, H 10.25, N 3.01.

2.5.3. 16-(4-methyl-benzylidene)- 3β -morpholino- 5α -androstan- 17β -ol (10a)

White solid. Yield 47%. m.p. 196–198 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.70 (s, 3H, CH₃-19), 0.83 (s, 3H, CH₃-18), 2.36 (s, 3H, Ph-CH₃), 2.58 (s, 4H, NCH₂), 3.72–3.76 (s, 4H, OCH₂), 4.04 (d, 1H, C₁₇- α H, *J* = 8.12 Hz), 6.49 (s, 1H, =CH), 7.16 (d, 2H, *J* = 7.96 Hz), 7.30 (d, 2H, *J* = 8.33 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 11.19, 12.26, 20.77, 21.16, 22.20, 22.85, 28.62, 29.37, 30.90, 31.62, 34.95, 35.86, 36.33, 37.26, 42.99, 45.49, 48.47, 48.82, 54.41, 64.45, 65.54, 84.93, 122.70, 128.13, 129.06, 135.07, 136.05, 145.04. Anal. Calcd. for C₃₁H₄₅NO₂: C 80.30, H 9.78, N 3.02; Found C 80.12, H 9.69, N 3.11.

2.5.4. 16-(4-methyl-benzylidene)- 3β -(4-methylpiperazinyl)- 5α -androstan- 17β -ol (11a)

White solid. Yield 41%. m.p. $205-207 \circ C$; ¹H NMR (400 MHz, CDCl₃): δ 0.70 (s, 3H, CH₃-19), 0.81 (s, 3H, CH₃-18), 2.39 (s, 3H, Ph-CH₃), 2.43-2.63 (m, 8H, NCH₂), 3.92 (d, 1H, C₁₇- α H, *J* = 8.72 Hz), 6.49 (s, 1H,=CH), 7.17 (d, 2H, *J* = 7.96 Hz), 7.28 (d, 2H, *J* = 8.30 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 11.24, 12.28, 20.76, 21.15, 22.67, 23.35, 28.63, 29.93, 30.88, 31.63, 34.93, 35.84, 37.38, 42.97, 44.51, 45.58, 47.38, 48.50, 53.08, 54.44, 63.75, 84.77, 122.57, 128.11, 129.02, 135.16, 135.90, 145.12. Anal. Calcd. for C₃₂H₄₈N₂O: C 80.62, H 10.15, N 5.88; Found C 80.39, H 10.01, N 5.99.

2.5.5. 16-(4-methoxy-benzylidene)-3 β -piperidino-5 α -androstan-17 β -ol (8b)

White solid. Yield 41%. m.p. 204–206 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.69 (s, 3H, CH₃-19), 0.81 (s, 3H, CH₃-18), 2.53 (s, 4H, NCH₂), 3.83 (s, 3H, OCH₃), 4.06 (d, 1H, C₁₇- α H, *J*=8.52 Hz), 6.46 (s, 1H, =CH), 6.90 (d, 2H, *J*=8.80 Hz), 7.35 (d, 2H, *J*=8.76 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 11.17, 12.46, 20.80, 24.12, 24.88, 26.42, 28.88, 30.68, 30.90, 31.85, 35.06, 36.13, 36.43, 38.02, 43.03, 46.13, 48.58, 50.36, 54.70, 55.26, 64.54, 85.02, 113.77, 122.16, 129.39, 130.80, 143.93, 158.01. Anal. Calcd. for C₃₂H₄₇NO₂: C 80.45, H 9.92, N 2.93; Found C 80.27, H 9.88, N 3.02.

2.5.6. $16-(4-methoxy-benzylidene)-3\beta$ -pyrrolidino- 5α -androstan- 17β -ol (9b)

White solid. Yield 41%. m.p. 178–180 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.67 (s, 3H, CH₃-19), 0.82 (s, 3H, CH₃-18), 2.30 (s, 3H, N-CH₃), 2.57 (br, 4H, NCH₂), 3.83 (s, 3H, OCH₃), 4.03 (d, 1H, C₁₇- α H, *J* = 8.52 Hz), 6.44 (s, 1H, =CH), 6.88 (d, 2H, *J* = 8.72 Hz), 7.33 (d, 2H, *J* = 8.72 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 11.17, 12.37, 20.73, 23.18, 27.67, 28.75, 30.88, 31.82, 34.42, 35.03, 35.92, 36.43, 37.38, 43.01, 45.32, 48.60, 51.73, 54.67, 55.25, 64.36, 84.98, 113.76, 122.44, 129.39, 130.82, 143.93, 157.99. Anal. Calcd. for C₃₁H₄₅NO₂: C 80.30, H 9.78, N 3.02; Found C 80.22, H 9.91, N 2.89.

2.5.7. $16-(4-methoxy-benzylidene)-3\beta-morpholino-5\alpha-androstan-17\beta-ol(10b)$

White solid. Yield 47%. m.p. $173-175 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 0.69 (s, 3H, CH₃-19), 0.86 (s, 3H, CH₃-18), 2.59 (s, 4H, NCH₂), 3.73-3.75 (m, 4H, OCH₂), 3.83 (s, 3H, OCH₃), 4.06 (d, 1H, C₁₇- α H, *J* = 8.88 Hz), 6.47 (s, 1H, =CH), 6.90 (d, 2H, *J* = 8.72 Hz), 7.35 (d, 2H, *J* = 8.72 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 11.18, 12.41, 20.78, 24.50, 28.85, 30.89, 31.12, 31.81, 35.03, 36.04, 37.70, 43.02, 45.76, 46.14, 48.55, 50.05, 54.65, 55.26, 64.12, 67.35, 85.00, 113.76, 122.18,

129.39, 130.78, 143.84, 158.01. Anal. Calcd. for C₃₁H₄₅NO₃: C 77.62, H 9.46, N 2.92; Found C 77.43, H 9.59, N 2.71.

2.5.8. 16-(4-methoxy-benzylidene)- 3β -(4-methylpiperazinyl)- 5α -androstan- 17β -ol (11b)

White solid. Yield 44%. m.p. $147-149 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 0.67 (s, 3H, CH₃-19), 0.80 (s, 3H, CH₃-18), 2.29 (s, 3H, N-CH₃), 2.45–2.62 (m, 8H, NCH₂), 3.83 (s, 3H, OCH₃), 4.02 (s, 1H, C₁₇- α H), 6.44 (d, 1H, =CH, *J* = 2.12 Hz), 6.88 (d, 2H, *J* = 8.76 Hz), 7.33 (d, 2H, *J* = 8.72 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 11.20, 11.38, 12.42, 20.78, 24.52, 28.84, 30.87, 31.25, 31.81, 35.03, 36.02, 36.45, 37.80, 43.01, 45.87, 46.02, 46.11, 48.58, 49.22, 54.67, 55.24, 55.45, 63.81, 84.90, 113.75, 122.13, 129.38, 130.83, 143.91, 157.97. Anal. Calcd. for C₃₂H₄₈N₂O₂: C 78.00, H 9.82, N 5.69; Found C 77.82, H 9.93, N 5.43.

2.5.9. $16-(4-nitro-benzylidene)-3\beta$ -piperidino- 5α -androstan- 17β -ol (8c)

Yellow solid. Yield 47%. m.p. 227–229 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.71 (s, 3H, CH₃-19), 0.82 (s, 3H, CH₃-18), 2.54 (s, 4H, NCH₂), 4.09 (s, 1H, C₁₇– α H), 6.62 (d, 1H, =CH, *J*=2.32 Hz), 7.52 (d, 2H, *J*=8.88 Hz), 8.21 (d, 2H, *J*=8.84 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 11.23, 12.43, 20.71, 24.05, 24.79, 26.29, 28.76, 30.52, 31.23, 31.81, 34.98, 36.12, 37.97, 43.16, 46.09, 48.48, 50.31, 54.65, 64.50, 85.05, 121.42, 123.75, 128.54, 144.51, 145.65, 152.09. Anal. Calcd. for C₃₁H₄₄N₂O₃: C 75.57, H 9.00, N 5.69; Found C 75.64, H 8.93, N 5.80.

2.5.10. 16-(4-nitro-benzylidene)- 3β -pyrrolidino- 5α -androstan-17 β -ol (9c)

Yellow solid. Yield 45%. m.p. 221–223 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.72 (s, 3H, CH₃-19), 0.85 (s, 3H, CH₃-18), 2.59 (br, 4H, NCH₂), 4.10 (s, 1H, C₁₇- α H), 6.62 (d, 1H, =CH, *J*=2.28 Hz), 7.52 (d, 2H, *J*=8.88 Hz), 8.21 (d, 2H, *J*=8.88 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 11.22, 12.38, 20.66, 23.18, 27.93, 28.69, 31.23, 31.83, 34.67, 34.99, 35.95, 36.36, 37.42, 43.17, 45.32, 48.51, 51.84, 54.67, 64.35, 85.08, 121.40, 123.75, 128.53, 144.51, 145.65, 152.15. Anal. Calcd. for C₃₀H₄₂N₂O₃: C 75.28, H 8.84, N 5.85; Found C 75.31, H 8.77, N 5.93.

2.5.11. 16-(4-nitro-benzylidene)- 3β -morpholino- 5α androstan-17 β -ol (10c)

Yellow solid. Yield 41%. m.p. 212–214°C; ¹H NMR (400 MHz, CDCl₃): δ 0.71 (s, 3H, CH₃-19), 0.87 (s, 3H, CH₃-18), 2.42 (s, 4H, NCH₂), 3.72–3.74 (m, 4H, OCH₂), 4.09 (s, 1H, C₁₇- α H), 6.62 (d, 1H, =CH, *J* = 2.28 Hz), 7.52 (d, 2H, *J* = 8.88 Hz), 8.21 (d, 2H, *J* = 8.88 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 11.23, 12.24, 20.39, 23.74, 28.41, 30.62, 31.23, 31.73, 32.84, 34.97, 36.28, 36.39, 39.42, 43.19, 48.48, 50.84, 54.55, 59.35, 67.41, 85.16, 121.39, 123.75, 128.54, 144.50, 145.65, 152.10. Anal. Calcd. for C₃₀H₄₂N₂O₄: C 72.84, H 8.56, N 5.66; Found C 72.66, H 8.41, N 5.39.

2.5.12. 16-(4-nitro-benzylidene)- 3β -(4-methylpiperazinyl)- 5α -androstan- 17β -ol (11c)

Yellow solid. Yield 40%. m.p. 244–246 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.71 (s, 3H, CH₃-19), 0.87 (s, 3H, CH₃-18), 2.30 (s, 3H, N-CH₃), 2.48–2.65 (m, 8H, NCH₂), 4.09 (s, 1H, C₁₇- α H), 6.62 (d, 1H, =CH, *J* = 2.00 Hz), 7.52 (d, 2H, *J* = 8.80 Hz), 8.21 (d, 2H, *J* = 8.80 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 11.24, 12.42, 20.70, 24.51, 28.74, 31.22, 31.79, 34.97, 36.03, 37.78, 43.17, 45.87, 46.01, 48.47, 49.24, 54.63, 55.44, 63.79, 85.06, 121.43, 123.75, 128.54, 144.48, 145.66, 152.06. Anal. Calcd. for C₃₁H₄₅N₃O₃: C 73.34, H 8.93, N 8.28; Found C 73.17, H 8.76, N 8.51.

2.5.13. 16-(3,4,5-trimethoxy-benzylidene)- 3β -piperidino- 5α -androstan- 17β -ol (8d)

White solid. Yield 49%. m.p. 217–219 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.68 (s, 3H, CH₃-19), 0.80 (s, 3H, CH₃-18), 2.51 (s, 4H,

NCH₂), 3.86 (s, 9H, OCH₃), 4.09 (d, 1H, C_{17} -αH, J=9.00 Hz), 6.44 (d, 1H, =CH, J=2.00 Hz), 6.62 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 11.20, 12.44, 20.77, 24.08, 24.86, 26.38, 28.84, 30.64, 30.78, 31.82, 35.00, 36.12, 36.40, 38.00, 43.01, 46.10, 48.53, 50.34, 54.68, 56.05, 60.91, 64.51, 84.93, 105.48, 122.83, 133.72, 136.70, 145.63, 152.99. Anal. Calcd. for C₃₄H₅₁NO₄: C 75.94, H 9.56, N 2.60; Found C 75.88, H 9.41, N 2.39.

2.5.14. 16-(3,4,5-trimethoxy-benzylidene)- 3β -pyrrolidino- 5α -androstan- 17β -ol (9d)

White solid. Yield 48%. m.p. 186–188 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.69 (s, 3H, CH₃-19), 0.83 (s, 3H, CH₃-18), 2.56 (br, 4H, NCH₂), 3.87 (s, 9H, OCH₃), 4.04 (d, 1H, C₁₇- α H, *J*=8.28 Hz), 6.43 (d, 1H, =CH, *J*=2.00 Hz), 6.62 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 9.77, 10.96, 19.29, 21.77, 26.58, 27.35, 29.38, 30.44, 33.35, 33.60, 34.54, 34.99, 36.02, 41.61, 43.91, 47.15, 50.43, 53.29, 54.68, 59.52, 62.93, 83.64, 104.09, 121.47, 132.27, 135.36, 144.23, 151.61. Anal. Calcd. for C₃₃H₄₉NO₄: C 75.68, H 9.43, N 2.67; Found C 75.51, H 9.19, N 2.59.

2.5.15. 16-(3,4,5-trimethoxy-benzylidene)- 3β -morpholino- 5α -androstan- 17β -ol (10d)

White solid. Yield 48%. m.p. 241–243 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.69 (s, 3H, CH₃-19), 0.82 (s, 3H, CH₃-18), 2.56 (s, 4H, NCH₂), 3.72–3.75 (m, 4H, OCH₂), 3.84 (s, 9H, OCH₃), 4.03 (d, 1H, C₁₇- α H, *J* = 8.28 Hz), 6.43 (d, 1H, =CH, *J* = 1.60 Hz), 6.62 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 11.19, 12.38, 20.73, 24.44, 28.79, 30.75, 31.08, 31.76, 34.96, 36.01, 36.36, 37.66, 42.98, 45.72, 48.49, 50.01, 54.61, 56.04, 60.89, 64.07, 67.30, 84.91, 105.48, 122.85, 133.68, 136.70, 145.50, 152.97. Anal. Calcd. for C₃₃H₄₉NO₅: C 73.43, H 9.15, N 2.60; Found C 73.21, H 9.01, N 2.81.

2.5.16. 16-(3,4,5-trimethoxy-benzylidene)- 3β -(4-methylpiperazinyl)- 5α -androstan- 17β -ol (11d)

White solid. Yield 48%. m.p. $210-212 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 0.68 (s, 3H, CH₃-19), 0.80 (s, 3H, CH₃-18), 2.28 (s, 3H, N-CH₃), 2.47–2.62 (m, 8H, NCH₂), 3.86 (s, 9H, OCH₃), 4.04 (d, 1H, C₁₇- α H, *J*=8.28 Hz), 6.44 (d, 1H, =CH, *J*=1.60 Hz), 6.62 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 10.31, 11.55, 19.88, 23.67, 27.94, 29.92, 30.50, 30.94, 34.14, 35.18, 35.51, 36.94, 42.15, 45.02, 45.19, 47.65, 48.46, 53.80, 54.67, 55.21, 60.06, 62.95, 84.16, 104.63, 122.02, 132.79, 135.91, 144.72, 152.15. Anal. Calcd. for C₃₄H₅₂N₂O₄: C 73.87, H 9.48, N 5.07; Found C 73.77, H 9.62, N 4.91.

2.5.17. 16-(4-chloro-benzylidene)- 3β -piperidino- 5α -androstan- 17β -ol (8e)

White solid. Yield 48%. m.p. $225-227 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 0.69 (s, 3H, CH₃-19), 0.81 (s, 3H, CH₃-18), 2.53 (s, 4H, NCH₂), 4.06 (d, 1H, C₁₇- α H, *J* = 8.88 Hz), 6.48 (d, 1H, =CH, *J* = 2.28 Hz), 7.30 (s, 4H). ¹³C NMR (150 MHz, CDCl₃): δ 11.88, 12.45, 20.76, 24.17, 24.90, 26.46, 28.84, 30.68, 30.91, 31.84, 35.03, 36.13, 38.03, 43.06, 46.13, 48.52, 50.38, 54.69, 64.55, 84.98, 121.75, 128.46, 129.39, 131.84, 136.39, 147.12. Anal. Calcd. for C₃₁H₄₄ClNO: C 77.22, H 9.20, N 2.91; Found C 77.03, H 9.01, N 3.03.

2.5.18. 16-(4-chloro-benzylidene)- 3β -pyrrolidino- 5α androstan- 17β -ol (9e)

White solid. Yield 41%. m.p. 224–226 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.70 (s, 3H, CH₃-19), 0.84 (s, 3H, CH₃-18), 2.58 (br, 4H, NCH₂), 4.06 (d, 1H, C₁₇- α H, *J* = 8.64 Hz), 6.48 (d, 1H, =CH, *J* = 2.24 Hz), 7.30 (s, 4H). ¹³C NMR (150 MHz, CDCl₃): δ 11.18, 12.38, 20.70, 23.19, 27.99, 28.75, 30.92, 31.84, 34.75, 35.02, 35.95, 36.40, 37.44, 43.06, 45.33, 48.55, 51.86, 54.70, 64.39, 85.00, 121.74, 128.46, 129.39,

131.83, 136.39, 147.15. Anal. Calcd. for C₃₀H₄₂ClNO: C 76.97, H 9.04, N 2.99; Found C 77.11, H 8.89, N 2.74.

2.5.19. 16-(4-chloro-benzylidene)-3 β -morpholino-5 α -

and rost an -17β -ol (10e)

White solid. Yield 41%. m.p. 224–226 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.70 (s, 3H, CH₃-19), 0.84 (s, 3H, CH₃-18), 2.58 (s, 4H, NCH₂), 3.82–3.84 (m, 4H, OCH₂), 4.06 (d, 1H, C₁₇– α H, *J*=8.64 Hz), 6.48 (d, 1H, =CH, *J*=2.24 Hz), 7.30 (s, 4H). ¹³C NMR (150 MHz, CDCl₃): δ 11.20, 12.43, 20.66, 28.13, 28.77, 30.88, 31.79, 34.75, 35.13, 35.97, 36.29, 37.51, 43.12, 45.29, 48.71, 51.78, 54.66, 64.21, 85.12, 121.71, 128.55, 129.24, 131.79, 136.28, 147.22. Anal. Calcd. for C₃₀H₄₂ClNO₂: C 74.43, H 8.74, N 2.89; Found C 74.51, H 8.82, N 2.97.

2.5.20. 16-(4-chloro-benzylidene)- 3β -(4-methylpiperazinyl)- 5α -androstan- 17β -ol (11e)

White solid. Yield 41%. m.p. 229–231 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.69 (s, 3H, CH₃-19), 0.82 (s, 3H, CH₃-18), 2.31 (s, 3H, N-CH₃), 2.51–2.63 (m, 8H, NCH₂), 4.05 (s, 1H, C₁₇- α H), 6.48 (d, 1H, =CH, *J*=2.26 Hz), 7.30 (s, 4H). ¹³C NMR (150 MHz, CDCl₃): δ 11.19, 12.42, 20.74, 24.47, 28.78, 30.90, 31.18, 31.79, 35.00, 36.02, 37.77, 43.05, 45.87, 46.00, 48.50, 49.22, 54.64, 55.35, 63.88, 84.94, 121.76, 128.46, 129.39, 131.84, 136.38, 147.08. Anal. Calcd. for C₃₁H₄₅ClN₂O: C 74.89, H 9.12, N 5.63; Found C 74.69, H 9.03, N 5.51.

2.5.21. 16-(4-bromo-benzylidene)- 3β -piperidino- 5α -androstan- 17β -ol (8f)

White solid. Yield 44%. m.p. $210-212 \circ C$; ¹H NMR (400 MHz, CDCl₃): δ 0.69 (s, 3H, CH₃-19), 0.81 (s, 3H, CH₃-18), 2.54 (s, 4H, NCH₂), 4.05 (d, 1H, C₁₇- α H, *J*=8.80 Hz), 6.46 (s, 1H, =CH), 7.26 (d, 2H, *J*=8.44 Hz), 7.46 (d, 2H, *J*=8.44 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 11.20, 12.45, 20.75, 24.07, 24.81, 26.31, 28.81, 30.57, 30.92, 31.81, 35.00, 36.11, 37.98, 43.04, 46.09, 48.50, 50.34, 54.65, 64.57, 84.93, 119.96, 121.77, 129.72, 131.39, 136.83, 147.34. Anal. Calcd. for C₃₁H₄₄BrNO: C 70.71, H 8.42, N 2.66; Found C 70.59, H 8.31, N 2.88.

2.5.22. 16-(4-bromo-benzylidene)- 3β -pyrrolidino- 5α androstan-17 β -ol (9f)

White solid. Yield 46%. m.p. 203–205 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.69 (s, 3H, CH₃–19), 0.84 (s, 3H, CH₃–18), 2.58 (br, 4H, NCH₂), 4.04 (s, 1H, C₁₇– α H), 6.46 (s, 1H, =CH), 7.26 (d, 2H, *J*=8.60 Hz), 7.46 (d, 2H, *J*=8.62 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 11.18, 12.37, 20.69, 23.19, 27.83, 28.73, 30.92, 31.82, 35.00, 35.93, 37.40, 43.04, 45.31, 46.17, 48.53, 51.80, 54.67, 64.36, 85.00, 119.98, 121.78, 129.72, 131.39, 136.81, 147.35. Anal. Calcd. for C₃₀H₄₂BrNO: C 70.30, H 8.26, N 2.73; Found C 70.08, H 8.41, N 2.59.

2.5.23. 16-(4-bromo-benzylidene)- 3β -morpholino- 5α androstan- 17β -ol (10f)

White solid. Yield 46%. m.p. $241-243 \circ C$; ¹H NMR (400 MHz, CDCl₃): δ 0.68 (s, 3H, CH₃-19), 0.82 (s, 3H, CH₃-18), 2.57 (s, 4H, NCH₂), 3.82–3.85 (m, 4H, OCH₂), 4.04 (s, 1H, C₁₇- α H), 6.46 (s, 1H, =CH), 7.26 (d, 2H, *J*=8.60 Hz), 7.46 (d, 2H, *J*=8.62 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 11.19, 12.51, 20.77, 20.11, 24.81, 26.09, 28.91, 30.58, 30.99, 31.77, 35.02, 36.15, 37.99, 43.01, 46.10, 48.48, 50.31, 54.62, 64.55, 84.90, 119.98, 121.73, 129.68, 131.41, 136.79, 147.37. Anal. Calcd. for C₃₀H₄₂BrNO₂: C 68.17, H 8.01, N 2.65; Found C 68.03, H 7.96, N 2.78.

2.5.24. 16-(4-bromo-benzylidene)-3 β -(4-methylpiperazinyl)-5 α -androstan-17 β -ol (11f)

White solid. Yield 46%. m.p. $235-237 \circ C$; ¹H NMR (400 MHz, CDCl₃): δ 0.60 (s, 3H, CH₃-19), 0.73 (s, 3H, CH₃-18), 2.22 (s, 3H, N-CH₃), 2.43-2.54 (m, 8H, NCH₂), 3.94 (s, 1H, C₁₇- α H), 6.37 (s, 1H,

=CH), 7.17 (d, 2H, J=8.48 Hz), 7.37 (d, 2H, J=8.44 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 11.22, 12.42, 20.74, 24.47, 28.78, 30.90, 31.18, 31.79, 34.99, 36.02, 37.77, 43.04, 45.85, 46.00, 48.50, 49.20, 54.63, 55.35, 63.85, 84.90, 119.97, 121.79, 129.73, 131.40, 136.84, 147.34. Anal. Calcd. for C₃₁H₄₅BrN₂O: C 68.75, H 8.37, N 5.17; Found C 68.79, H 8.51, N 5.23.

2.5.25. 16-(4-fluoro-benzylidene)- 3β -piperidino- 5α androstan- 17β -ol (8g)

White solid. Yield 46%. m.p. 188–190 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.69 (s, 3H, CH₃-19), 0.81 (s, 3H, CH₃-18), 2.57 (s, 4H, NCH₂), 4.04 (s, 1H, C₁₇- α H), 6.48 (d, 1H, =CH, *J*=2.08 Hz), 7.02 (t, 2H), 7.35 (q, 2h). ¹³C NMR (150 MHz, CDCl₃): δ 11.24, 12.41, 20.77, 23.82, 24.65, 26.00, 28.80, 30.31, 31.78, 34.99, 36.07, 37.91, 43.01, 45.97, 46.03, 48.55, 50.14, 54.65, 64.46, 84.63, 115.01, 115.22, 121.62, 129.59, 134.24, 145.87, 159.92, 162.37. Anal. Calcd. for C₃₁H₄₄FNO: C 79.95, H 9.52, N 3.01; Found C 79.80, H 9.38, N 3.22.

2.5.26. 16-(4-fluoro-benzylidene)- 3β -pyrrolidino- 5α androstan- 17β -ol (9g)

White solid. Yield 46%. m.p. 240–242 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.60 (s, 3H, CH₃–19), 0.76 (s, 3H, CH₃–18), 2.37–2.39 (m, 4H, NCH₂), 3.96 (s, 1H, C₁₇– α H, *J* = 8.64 Hz), 6.39 (d, 1H, =CH), 6.94 (t, 2H), 7.27 (q, 2h). ¹³C NMR (150 MHz, CDCl₃): δ 11.26, 12.45, 20.87, 23.90, 26.11, 28.91, 30.13, 31.82, 34.96, 36.10, 37.92, 43.05, 45.88, 46.12, 48.50,50.12, 54.66, 64.45, 84.60, 115.04, 115.21, 121.56, 129.60, 134.31, 145.93, 159.95, 162.40. Anal. Calcd. for C₃₀H₄₂FNO: C 79.78, H 9.37, N 3.10; Found C 79.61, H 9.45, N 3.01.

2.5.27. 16-(4-fluoro-benzylidene)- 3β -morpholino- 5α androstan- 17β -ol (10g)

White solid. Yield 46%. m.p. 183–185 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.61 (s, 3H, CH₃–19), 0.73 (s, 3H, CH₃–18), 2.46–2.49 (m, 4H, NCH₂), 3.64–3.66 (m, 4H, OCH₂), 3.96 (s, 1H, C₁₇– α H), 6.40 (d, 1H, =CH), 6.94 (t, 2H), 7.26 (q, 2h). ¹³C NMR (150 MHz, CDCl₃): δ 11.31, 12.52, 20.79, 23.88, 26.13, 29.09, 30.15, 31.88, 34.95, 36.01, 37.99, 43.03, 45.99, 36.15, 48.01, 50.11, 54.84, 64.44, 84.55, 115.01, 115.22, 121.55, 129.49, 134.13, 145.90, 159.99, 162.38. Anal. Calcd. for C₃₀H₄₂FNO₂: C 77.05, H 9.05, N 3.00; Found C 76.88, H 8.91, N 3.21.

2.5.28. 16-(4-fluoro-benzylidene)- 3β -(4-methylpiperazinyl)- 5α -androstan- 17β -ol (11g)

White solid. Yield 46%. m.p. 213–215 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.61 (s, 3H, CH₃-19), 0.73 (s, 3H, CH₃-18), 2.21 (s, 3H, N-CH₃), 2.40–2.55 (m, 8H, NCH₂), 3.96 (s, 1H, C₁₇- α H), 6.40 (d, 1H, =CH), 6.94 (t, 2H), 7.26 (q, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 11.20, 12.42, 14.19, 20.75, 24.54, 28.80, 30.77, 31.24, 31.81, 35.01, 36.03, 37.81, 43.03, 45.88, 46.03, 48.54, 49.23, 54.67, 55.47, 60.40, 63.82, 84.81, 115.27, 121.70, 129.68, 134.13, 145.83, 159.99, 162.43. Anal. Calcd. for C₃₁H₄₅FN₂O: C 77.46, H 9.44, N 5.83; Found C 77.63, H 9.19, N 5.77.

2.5.29. 16-(furan-2-ylmethylene)- 3β -piperidino- 5α -androstan- 17β -ol (8h)

White solid. Yield 41%. m.p. $267-269 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 0.67 (s, 3H, CH₃-19), 0.81 (s, 3H, CH₃-18), 2.54 (s, 4H, NCH₂), 4.06 (s, 1H, C₁₇- α H), 6.23 (d, 1H, =CH, *J*=3.24 Hz), 6.42 (s, 2H), 7.39 (s, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 11.15, 12.43, 20.79, 24.51, 28.89, 30.97, 31.12, 31.77, 35.10, 36.08, 36.33, 37.69, 43.39, 45.77, 48.35, 50.00, 54.69, 64.13, 67.33, 84.55, 107.49, 111.29, 111.66, 141.14, 145.22, 153.80. Anal. Calcd. for C₂₉H₄₃NO₂: C 79.59, H 9.90, N 3.20; Found C 79.67, H 9.79, N 3.08.

2.5.30. 16-(furan-2-ylmethylene)-3 β -pyrrolidino-5 α -

androstan-17 β -ol (9h)

White solid. Yield 44%. m.p. 220–222 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.67 (s, 3H, CH₃-19), 0.84 (s, 3H, CH₃-18), 2.58 (br, 4H, NCH₂), 4.07 (d, 1H, C₁₇- α H, *J* = 8.60 Hz), 6.22 (d, 1H, =CH, *J* = 3.24 Hz), 6.42 (s, 2H), 7.39 (s, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 11.15, 12.38, 20.72, 23.17, 27.90, 28.78, 30.97, 31.83, 34.68, 35.02, 35.93, 36.41, 37.44, 43.38, 45.34, 48.37, 51.80, 54.71, 64.36, 84.52, 107.43, 111.21, 111.62, 141.14, 145.42, 153.82. Anal. Calcd. for C₂₈H₄₁NO₂: C 79.39, H 9.76, N 3.31; Found C 79.55, H 9.59, N 3.43.

2.5.31. 16-(furan-2-ylmethylene)-3 β -morpholino-5 α -

androstan-17 β -ol (10h)

White solid. Yield 49%. m.p. 220–222 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.68 (s, 3H, CH₃-19), 0.82 (s, 3H, CH₃-18), 2.58 (s, 4H, NCH₂), 3.73–3.76 (m, 4H, OCH₂), 4.06 (s, 1H, C₁₇– α H), 6.23 (d, 1H, =CH, *J* = 3.20 Hz), 6.42 (s, 2H), 7.39 (s, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 11.15, 12.41, 20.77, 24.48, 28.84, 30.96, 31.11, 31.78, 35.01, 36.03, 37.70, 43.38, 45.78, 48.31, 50.04, 54.66, 64.11, 67.33, 84.53, 107.47, 111.22, 111.67, 141.18, 145.27, 153.80. Anal. Calcd. for C₂₈H₄₁NO₃: C 76.50, H 9.40, N 3.19; Found C 76.22, H 9.51, N 3.29.

2.5.32. 16-(furan-2-ylmethylene)- 3β -(4-methylpiperazinyl)- 5α -androstan- 17β -ol (11h)

White solid. Yield 40%. m.p. 239–241 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.67 (s, 3H, CH₃-19), 0.82 (s, 3H, CH₃-18), 2.30 (s, 3H, N-CH₃), 2.48–2.62 (m, 8H, NCH₂), 4.06 (s, 1H, C₁₇- α H), 6.22 (d, 1H, =CH, *J* = 3.20 Hz), 6.42 (s, 2H), 7.39 (s, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 11.14, 12.43, 14.20, 20.77, 21.06, 24.55, 28.84, 30.97, 31.32, 31.81, 35.03, 36.04, 37.83, 43.39, 45.93, 46.06, 48.33, 49.30, 54.70, 55.53, 60.40, 63.84, 84.57, 107.49, 111.23, 111.67, 141.20, 145.36, 153.83. Anal. Calcd. for C₂₉H₄₄N₂O₂: C 76.95, H 9.80, N 6.19; Found C 76.80, H 9.91, N 6.11.

2.6. General procedure for the synthesis of compounds 12a–h, 13a–h, 14a–h, 15a–h

To a solution of compounds 8a–h, 9a–h, 10a–h, 11a–h (5 mmol) in CH_2Cl_2 was added acetic anhydride (10 mmol, 2 equiv) and 4dimethylaminopyridine (5 mmol, 1 equiv). The mixture was stirred at 40 °C until the reaction was completed (monitored by TLC). The reaction was concentrated in reduced pressure. The crude product was dissolved in CH_2Cl_2 , the organic layer was washed with brine and dried over anhydrous Na_2SO_4 , filtered. The filtrate was concentrated in reduced pressure to afford a crude product. The products were purified by flash column chromatography to yield compound 12a–h, 13a–h, 14a–h, 15a–h.

2.6.1. 16-(4-methyl-benzylidene)-3 β -piperidino-5 α androstan-17 β -yl acetate (12a)

White solid. Yield 95%. m.p. $171-173 \circ C$; ¹H NMR (400 MHz, CDCl₃): δ 0.77 (s, 3H, CH₃-19), 0.80 (s, 3H, CH₃-18), 2.21 (s, 3H, OCOCH₃), 2.35 (s, 3H, Ph-CH₃), 2.52 (s, 4H, NCH₂), 5.37 (s, 1H, C₁₇- α H), 6.18 (d, 1H, =CH, *J* = 2.12 Hz), 7.15 (d, 2H, *J* = 8.00 Hz), 7.20 (d, 2H, *J* = 8.08 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.30, 12.42, 20.66, 21.20, 24.20, 24.94, 26.52, 28.86, 30.75, 31.00, 31.74, 34.89, 36.07, 37.97, 42.97, 46.03, 48.88, 50.40, 54.40, 64.53, 84.63, 123.36, 128.21, 129.00, 134.85, 136.08, 139.94, 171.10. Anal. Calcd. for C₃₄H₄₉NO₂: C 81.06, H 9.80, N 2.78; Found C 81.22, H 9.71, N 2.90. MS (m/z): 504.7[M+1]⁺.

2.6.2. 16-(4-methyl-benzylidene)- 3β -pyrrolidino- 5α androstan-17 β -yl acetate (13a)

White solid. Yield 92%. m.p. 188–190 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.77 (s, 3H, CH₃-19), 0.83 (s, 3H, CH₃-18), 2.21 (s, 3H,

OCOCH₃), 2.35 (s, 3H, Ph-CH₃), 2.57 (br, 4H, NCH₂), 5.37 (s, 1H, C₁₇- α H), 6.18 (d, 1H, =CH, *J* = 2.00 Hz), 7.15 (d, 2H, *J* = 8.00 Hz), 7.26 (d, 2H, *J* = 8.04 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.28, 12.33, 20.58, 21.17, 21.21, 23.18, 27.93, 28.74, 30.98, 31.74, 34.70, 34.89, 35.89, 36.55, 37.37, 42.97, 45.23, 48.92, 51.83, 54.42, 64.35, 84.65, 123.35, 128.19, 128.99, 134.83, 136.13, 139.96, 171.19. Anal. Calcd. for C₃₃H₄₇NO₂: C 80.93, H 9.67, N 2.86; Found C 80.77, H 9.58, N 2.99. MS (m/z): 490.6[M+1]⁺.

2.6.3. 16-(4-methyl-benzylidene)- 3β -morpholino- 5α androstan- 17β -yl acetate (14a)

White solid. Yield 96%. m.p. 96–98 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.77 (s, 3H, CH₃-19), 0.83 (s, 3H, CH₃-18), 2.18 (s, 3H, OCOCH₃), 2.27 (s, 3H, NCH₃), 2.32 (s, 3H, Ph-CH₃), 2.57 (s, 4H, NCH₂), 3.73–3.75 (m, 4H, OCH₂) 5.37 (s, 1H, C₁₇– α H), 6.18 (d, 1H, =CH, *J* = 2.02 Hz), 7.15 (d, 2H, *J* = 7.88 Hz), 7.26 (d, 2H, *J* = 8.00 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 11.55, 12.29, 12.37, 20.64, 21.17, 21.21, 24.50, 28.81, 30.97, 31.12, 31.71, 34.88, 36.00, 37.65, 42.97, 45.68, 46.21, 48.88, 50.06, 54.37, 64.08, 67.37, 84.62, 123.38, 128.19, 129.00, 134.82, 136.15, 139.91, 171.19. Anal. Calcd. for C₃₃H₄₇NO₃: C 78.37, H 9.37, N 2.77; Found C 78.52, H 9.45, N 2.59. MS (m/z): 506.6[M+1]⁺.

2.6.4. $16-(4-methyl-benzylidene)-3\beta-(4-methylpiperazinyl)-5\alpha$ androstan- 17β -yl acetate (15a)

White solid. Yield 95%. m.p. $180-182 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 0.75 (s, 3H, CH₃-19), 0.79 (s, 3H, CH₃-18), 2.21 (s, 3H, OCOCH₃), 2.35 (s, 3H, Ph-CH₃), 2.46–2.60 (m, 8H, NCH₂), 5.34 (s, 1H, C₁₇- α H), 6.16 (d, 1H, =CH, *J* = 2.06 Hz), 7.13 (d, 2H, *J* = 7.96 Hz), 7.24 (d, 2H, *J* = 8.12 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.27, 12.37, 20.62, 21.17, 24.52, 28.79, 30.94, 31.27, 31.68, 34.85, 35.95, 37.73, 42.93, 45.76, 46.03, 48.83, 49.27, 54.34, 55.51, 63.75, 84.58, 123.34, 128.18, 128.97, 134.81, 136.05, 139.88, 171.05. Anal. Calcd. for C₃₄H₅₀N₂O₂: C 78.72, H 9.71, N 5.40; Found C 78.88, H 9.60, N 5.19. MS (m/z): 519.6[M+1]⁺.

2.6.5. 16-(4-methoxy-benzylidene)- 3β -piperidino- 5α androstan- 17β -yl acetate (12b)

White solid. Yield 95%. m.p. 190–192 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.77 (s, 3H, CH₃-19), 0.80 (s, 3H, CH₃-18), 2.21 (s, 3H, OCOCH₃), 2.53 (s, 4H, NCH₂), 3.81 (s, 3H, OCH₃), 5.36 (s, 1H, C₁₇- α H), 6.15 (d, 1H, =CH, *J* = 2.08 Hz), 6.89 (d, 2H, *J* = 8.44 Hz), 7.31 (d, 2H, *J* = 8.76 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.30, 12.41, 20.65, 21.24, 24.05, 24.79, 26.29, 28.81, 30.61, 30.93, 31.74, 34.89, 36.07, 37.91, 42.98, 46.00, 48.92, 50.34, 54.39, 55.24, 64.55, 84.68, 113.69, 122.88, 129.45, 130.48, 138.60, 158.08, 171.23. Anal. Calcd. for C₃₄H₄₉NO₃: C 78.57, H 9.50, N 2.69; Found C 78.44, H 9.37, N 2.81. MS (m/z): 520.6[M+1]⁺.

2.6.6. $16-(4-methoxy-benzylidene)-3\beta-pyrrolidino-5\alpha-androstan-17\beta-yl acetate (13b)$

White solid. Yield 92%. m.p. $205-207 \circ C$; ¹H NMR (400 MHz, CDCl₃): δ 0.77 (s, 3H, CH₃-19), 0.81 (s, 3H, CH₃-18), 2.19 (s, 3H, OCOCH₃), 2.62 (br, 4H, NCH₂), 3.81 (s, 3H, OCH₃), 5.34 (s, 1H, C₁₇- α H), 6.13 (d, 1H, =CH, *J* = 2.08 Hz), 6.87 (d, 2H, *J* = 8.56 Hz), 7.30 (d, 2H, *J* = 8.76 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.29, 12.42, 20.59, 21.23, 23.18, 26.88, 28.58, 30.90, 31.65, 33.57, 34.82, 36.51, 37.17, 42.95, 45.20, 48.92, 51.56, 54.27, 55.23, 64.41, 84.65, 113.70, 113.75, 122.93, 129.68, 130.45, 138.50, 158.11, 171.26. Anal. Calcd. for C₃₃H₄₇NO₃: C 78.37, H 9.37, N 2.77; Found C 78.61, H 9.53, N 2.59. MS (m/z): 506.6[M+1]⁺.

2.6.7. 16-(4-methoxy-benzylidene)- 3β -morpholino- 5α and rostan- 17β -yl acetate (14b)

White solid. Yield 88%. m.p. 217–219°C; ¹H NMR (400 MHz, CDCl₃): δ 0.77 (s, 3H, CH₃-19), 0.82 (s, 3H, CH₃-18), 2.21 (s, 3H,

OCOCH₃), 2.59 (s, 4H, NCH₂), 3.74–3.77 (m, 4H, OCH₂), 3.83 (s, 3H, OCH₃), 5.36 (s, 1H, C₁₇-αH), 6.16 (d, 1H, =CH, *J*=2.16 Hz), 6.89 (d, 2H, *J*=8.80 Hz), 7.31 (d, 2H, *J*=8.80 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.31, 12.38, 20.65, 21.25, 24.48, 28.80, 30.92, 31.09, 31.72, 34.88, 36.00, 37.64, 42.98, 45.67, 48.91, 50.05, 54.36, 55.25, 64.11, 67.33, 84.67, 113.71, 122.93, 129.48, 130.48, 138.56, 158.11, 171.27. Anal. Calcd. for C₃₃H₄₇NO₄: C 75.97, H 9.08, N 2.68; Found C 75.88, H 8.97, N 2.56. MS (m/z): 522.6[M+1]⁺.

2.6.8. 16-(4-methoxy-benzylidene)-3 β -(4-methylpiperazinyl)-5 α -androstan-17 β -yl acetate (15b)

White solid. Yield 91%. m.p. 186–188 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.77 (s, 3H, CH₃-19), 0.81 (s, 3H, CH₃-18), 2.21 (s, 3H, OCOCH₃), 2.30 (s, 3H, Ph-CH₃), 2.50–2.67 (m, 8H, NCH₂), 3.82 (s, 3H, OCH₃), 5.36 (s, 1H, C₁₇- α H), 6.15 (d, 1H, =CH, *J* = 2.16 Hz), 6.89 (d, 2H, *J* = 8.80 Hz), 7.31 (d, 2H, *J* = 8.76 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.30, 12.39, 20.63, 21.23, 24.53, 28.79, 30.91, 31.27, 31.72, 34.88, 35.98, 36.52, 37.75, 42.96, 45.79, 46.05, 48.90, 49.30, 54.37, 55.22, 55.52, 63.80, 84.67, 113.69, 122.89, 129.47, 130.48, 138.58, 158.09, 171.21. Anal. Calcd. for C₃₄H₅₀N₂O₃: C 76.36, H 9.42, N 5.24; Found C 76.47, H 9.60, N 5.11. MS (m/z): 535.7[M+1]⁺.

2.6.9. 16-(4-nitro-benzylidene)- 3β -piperidino- 5α androstan-17 β -yl acetate (12c)

Yellow solid. Yield 90%. m.p. 190–192 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.78 (s, 3H, CH₃-19), 0.81 (s, 3H, CH₃-18), 2.23 (s, 3H, OCOCH₃), 2.52 (s, 4H, NCH₂), 5.39 (s, 1H, C₁₇- α H), 6.28 (d, 1H, =CH, *J*=2.20 Hz), 7.49 (d, 2H, *J*=8.84 Hz), 8.21 (d, 2H, *J*=8.84 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.27, 12.38, 20.56, 21.11, 24.11, 24.86, 26.42, 28.72, 30.63, 31.28, 31.72, 34.84, 36.06, 37.92, 43.09, 45.99, 48.75, 50.35, 54.36, 64.44, 84.52, 121.88, 123.69, 128.65, 144.09, 145.81, 146.98, 170.97. Anal. Calcd. for C₃₃H₄₆N₂O₄: C 74.12, H 8.67, N 5.24; Found C 74.29, H 8.88, N 5.09. MS (m/z): 535.6[M+1]⁺.

2.6.10. 16-(4-nitro-benzylidene)- 3β -pyrrolidino- 5α androstan-17 β -yl acetate (13c)

Yellow solid. Yield 90%. m.p. 143–145 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.78 (s, 3H, CH₃-19), 0.83 (s, 3H, CH₃-18), 2.22 (s, 3H, OCOCH₃), 2.57 (br, 4H, NCH₂), 5.38 (s, 1H, C₁₇– α H), 6.28 (d, 1H, =CH, *J* = 2.20 Hz), 7.49 (d, 2H, *J* = 8.80 Hz), 8.20 (d, 2H, *J* = 8.76 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.25, 12.30, 20.49, 21.10, 23.15, 27.88, 28.62, 31.27, 31.71, 34.64, 34.82, 35.86, 37.34, 43.08, 45.18, 48.76, 51.77, 54.36, 64.23, 84.52, 121.89, 123.69, 128.66, 144.09, 145.80, 146.98, 171.00. Anal. Calcd. for C₃₂H₄₄N₂O₄: C 73.81, H 8.52, N 5.38; Found C 73.99, H 8.49, N 5.17. MS (m/z): 521.6[M+1]⁺.

2.6.11. 16-(4-nitro-benzylidene)- 3β -morpholino- 5α androstan-17 β -yl acetate (14c)

Yellow solid. Yield 95%. m.p. $122-124 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 0.78 (s, 3H, CH₃-19), 0.86 (s, 3H, CH₃-18), 2.23 (s, 3H, OCOCH₃), 2.42 (s, 4H, NCH₂), 3.72–3.74 (m, 4H, OCH₂), 5.39 (s, 1H, C₁₇- α H), 6.29 (d, 1H, =CH, *J* = 2.16 Hz), 7.50 (d, 2H, *J* = 8.80 Hz), 8.21 (d, 2H, *J* = 8.76 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.19, 12.29, 20.25, 21.13, 23.70, 28.37, 30.69, 31.28, 31.63, 32.80, 34.84, 36.36, 39.34, 43.12, 48.73, 50.86, 54.22, 59.36, 67.38, 84.59, 121.87, 123.71, 128.67, 144.12, 145.81, 147.06, 171.03. Anal. Calcd. for C₃₂H₄₄N₂O₅: C 71.61, H 8.26, N 5.22; Found C 71.48, H 8.44, N 5.06. MS (m/z): 537.6[M+1]⁺.

2.6.12. 16-(4-nitro-benzylidene)- 3β -(4-methylpiperazinyl)- 5α androstan- 17β -yl acetate (15c)

Yellow solid. Yield 98%. m.p. $177-179 \circ C$; ¹H NMR (400 MHz, CDCl₃): δ 0.76 (s, 3H, CH₃-19), 0.79 (s, 3H, CH₃-18), 2.21 (s, 3H, OCOCH₃), 2.28 (s, 3H, Ph-CH₃), 2.48–2.61 (m, 8H, NCH₂), 5.37 (s, 1H, C₁₇- α H), 6.27 (d, 1H, =CH, *J* = 2.08 Hz), 7.47 (d, 2H, *J* = 8.84 Hz), 8.18 (d, 2H, *J* = 8.84 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.22, 12.33, 20.52,

21.05, 24.45, 28.66, 31.17, 31.22, 31.65, 34.78, 35.93, 37.69, 43.04, 45.73, 45.95, 48.70, 49.19, 54.31, 55.41, 63.69, 84.44, 121.86, 123.64, 128.63, 144.03, 145.78, 146.92, 170.87. Anal. Calcd. for $C_{33}H_{47}N_3O_4$: C 72.10, H 8.62, N 7.64; Found C 72.31, H 8.47, N 7.49. MS (m/z): 550.6[M+1]⁺.

2.6.13. 16-(3,4,5-trimethoxy-benzylidene)-3 β -piperidino-5 α androstan-17 β -vl acetate (12d)

White solid. Yield 91%. m.p. 161–163 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.77 (s, 3H, CH₃-19), 0.79 (s, 3H, CH₃-18), 2.20 (s, 3H, OCOCH₃), 2.51 (br, 4H, NCH₂), 3.86 (s, 9H, OCH₃), 5.35 (s, 1H, C₁₇- α H), 6.13 (d, 1H, =CH, *J* = 2.20 Hz), 6.57 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 12.33, 12.39, 20.62, 21.24, 24.03, 24.82, 26.34, 28.78, 30.63, 30.93, 31.73, 34.84, 36.07, 36.50, 37.91, 42.98, 45.98, 48.87, 50.32, 54.36, 56.08, 60.92, 64.46, 84.60, 105.53, 123.58, 133.41, 136.80, 140.51, 152.95, 171.25. Anal. Calcd. for C₃₆H₅₃NO₅: C 74.57, H 9.21, N 2.42; Found C 74.66, H 9.08, N 2.19. MS (m/z): 580.6[M+1]⁺.

2.6.14. 16-(3,4,5-trimethoxy-benzylidene)- 3β -pyrrolidino- 5α androstan-17 β -yl acetate (13d)

White solid. Yield 96%. m.p. $117-119 \circ C$; ¹H NMR (400 MHz, CDCl₃): δ 0.77 (s, 3H, CH₃-19), 0.81 (s, 3H, CH₃-18), 2.20 (s, 3H, OCOCH₃), 2.53 (br, 4H, NCH₂), 3.86 (s, 9H, OCH₃), 5.35 (s, 1H, C₁₇- α H), 6.13 (d, 1H, =CH, *J* = 2.20 Hz), 6.57 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 12.31, 14.19, 20.55, 21.22, 23.16, 27.93, 28.70, 30.91, 31.74, 34.70, 34.84, 35.88, 36.51, 37.35, 42.97, 45.20, 48.90, 51.81, 54.38, 56.09, 60.38, 60.90, 64.30, 84.59, 105.56, 123.59, 133.40, 136.84, 140.50, 152.96, 171.21. Anal. Calcd. for C₃₅H₅₁NO₅: C 74.30, H 9.09, N 2.48; Found C 74.08, H 8.89, N 2.57. MS (m/z): 566.7[M+1]⁺.

2.6.15. 16-(3,4,5-trimethoxy-benzylidene)- 3β -morpholino- 5α androstan-17 β -yl acetate (14d)

White solid. Yield 93%. m.p. 176–178 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.77 (s, 3H, CH₃-19), 0.80 (s, 3H, CH₃-18), 2.20 (s, 3H, OCOCH₃), 2.56 (s, 4H, NCH₂), 3.72–3.74 (m, 4H, OCH₂), 3.86 (s, 9H, OCH₃), 5.35 (s, 1H, C₁₇- α H), 6.13 (d, 1H, =CH, *J* = 2.12 Hz), 6.57 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 12.18, 12.31, 20.57, 21.17, 24.42, 28.72, 30.86, 31.08, 31.65, 34.78, 35.94, 36.45, 37.58, 42.92, 45.59, 46.14, 48.80, 50.01, 54.28, 56.02, 60.83, 63.99, 67.29, 84.50, 105.51, 123.57, 133.33, 136.79, 140.35, 152.91, 171.10. Anal. Calcd. for C₃₅H₅₁NO₆: C 72.26, H 8.84, N 2.41; Found C 72.09, H 8.77, N 2.56. MS (m/z): 582.6[M+1]⁺.

2.6.16. 16-(3,4,5-trimethoxy-benzylidene)- 3β -(4-

methylpiperazinyl)-5 α -androstan-17 β -yl acetate (15d)

White solid. Yield 92%. m.p. 159–161 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.78 (s, 3H, CH₃-19), 0.79 (s, 3H, CH₃-18), 2.20 (s, 3H, OCOCH₃), 2.28 (s, 3H, Ph-CH₃), 2.46–2.62 (m, 8H, NCH₂), 3.86 (s, 9H, OCH₃), 5.35 (s, 1H, C₁₇- α H), 6.13 (d, 1H, =CH, *J* = 2.12 Hz), 6.57 (s, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 12.31, 12.34, 20.59, 21.19, 24.39, 28.73, 30.88, 31.17, 31.67, 34.82, 35.95, 37.69, 42.95, 45.74, 45.90, 48.84, 49.13, 54.32, 55.31, 56.07, 60.87, 63.74, 84.55, 105.58, 123.58, 133.37, 136.85, 140.42, 152.94, 171.17. Anal. Calcd. for C₃₆H₅₄N₂O₅: C 72.69, H 9.15, N 4.71; Found C 72.55, H 9.37, N 4.51. MS (m/z): 595.7[M+1]⁺.

2.6.17. 16-(4-chloro-benzylidene)- 3β -piperidino- 5α androstan- 17β -yl acetate (12e)

White solid. Yield 92%. m.p. 99–101 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.77 (s, 3H, CH₃-19), 0.80 (s, 3H, CH₃-18), 2.21 (s, 3H, OCOCH₃), 2.51 (s, 4H, NCH₂), 5.35 (s, 1H, C₁₇- α H), 6.16 (d, 1H, =CH, *J*=2.28 Hz), 7.28 (s, 4H). ¹³C NMR (150 MHz, CDCl₃): δ 11.62, 12.28, 12.40, 20.61, 21.18, 24.17, 24.89, 26.47, 28.79, 30.69, 30.95, 31.74, 34.87, 36.08, 37.95, 43.00, 46.02, 46.24, 48.83, 50.39, 54.39, 64.51,

2.6.18. 16-(4-chloro-benzylidene)- 3β -pyrrolidino- 5α androstan-17 β -yl acetate (13e)

8.67, N 2.59. MS (m/z): 524.5[M+1]⁺.

White solid. Yield 95%. m.p. $185-187 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 0.68 (s, 3H, CH₃-19), 0.74 (s, 3H, CH₃-18), 2.12 (s, 3H, OCOCH₃), 2.48 (br, 4H, NCH₂), 5.27 (s, 1H, C₁₇- α H), 6.07 (d, 1H, =CH, *J* = 2.36 Hz), 7.20 (s, 4H). ¹³C NMR (150 MHz, CDCl₃): δ 12.27, 12.32, 20.54, 21.18, 23.18, 28.01, 28.70, 30.95, 31.74, 34.77, 34.86, 35.88, 36.49, 37.37, 42.99, 45.21, 48.84, 51.86, 54.39, 64.33, 84.55, 122.36, 128.43, 129.47, 132.02, 136.08, 141.96, 171.12. Anal. Calcd. for C₃₂H₄₄ClNO₂: C 75.34, H 8.69, N 2.75; Found C 75.09, H 8.51, N 2.58. MS (m/z): 510.4[M+1]⁺.

2.6.19. 16-(4-chloro-benzylidene)- 3β -morpholino- 5α androstan- 17β -yl acetate (14e)

White solid. Yield 95%. m.p. 86–88 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.77 (s, 3H, CH₃-19), 0.81 (s, 3H, CH₃-18), 2.21 (s, 3H, OCOCH₃), 2.58 (s, 4H, NCH₂), 3.73–3.75 (m, 4H, OCH₂), 5.35 (s, 1H, C₁₇– α H), 6.16 (d, 1H, =CH, *J*=2.28 Hz), 7.29 (s, 4H). ¹³C NMR (150 MHz, CDCl₃): δ 11.58, 12.27, 12.36, 20.60, 21.17, 24.50, 28.76, 30.93, 31.10, 31.70, 34.85, 35.99, 37.64, 42.99, 45.66, 46.21, 48.81, 50.06, 54.34, 64.07, 67.36, 84.52, 122.40, 128.43, 129.47, 132.04, 136.06, 141.89, 171.12. Anal. Calcd. for C₃₂H₄₄ClNO₃: C 73.05, H 8.43, N 2.66; Found C 73.33, H 8.51, N 2.47. MS (m/z): 526.6[M+1]⁺.

2.6.20. 16-(4-chloro-benzylidene)- 3β -(4-methylpiperazinyl)- 5α androstan-17 β -yl acetate (15e)

White solid. Yield 95%. m.p. $124-126 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 0.75 (s, 3H, CH₃-19), 0.79 (s, 3H, CH₃-18), 2.19 (s, 3H, OCOCH₃), 2.27 (s, 3H, Ph-CH₃), 2.46–2.61 (m, 8H, NCH₂), 5.35 (s, 1H, C₁₇- α H), 6.14 (d, 1H, =CH, *J*=2.24 Hz), 7.28 (s, 4H). ¹³C NMR (150 MHz, CDCl₃): δ 12.25, 12.36, 20.58, 21.14, 24.50, 28.74, 30.91, 31.23, 31.68, 34.82, 35.95, 37.72, 42.96, 45.76, 46.01, 48.78, 49.26, 54.33, 55.48, 63.75, 84.49, 122.35, 128.41, 129.45, 132.00, 136.06, 141.89, 171.02. Anal. Calcd. for C₃₃H₄₇ClN₂O₂: C 73.51, H 8.79, N 5.20; Found C 73.42, H 8.66, N 5.03. MS (m/z): 539.6[M+1]⁺.

2.6.21. 16-(4-bromo-benzylidene)- 3β -piperidino- 5α androstan- 17β -yl acetate (12f)

White solid. Yield 94%. m.p. $157-159 \circ C$; ¹H NMR (400 MHz, CDCl₃): δ 0.67 (s, 3H, CH₃-19), 0.71 (s, 3H, CH₃-18), 2.12 (s, 3H, OCOCH₃), 2.45 (s, 4H, NCH₂), 5.25 (s, 1H, C₁₇- α H), 6.05 (d, 1H, =CH, *J*=2.00 Hz), 7.14 (d, 2H, *J*=8.44 Hz), 7.37 (d, 2H, *J*=8.48 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.28, 12.39, 20.61, 21.19, 23.99, 24.75, 26.21, 28.76, 30.53, 30.96, 31.71, 34.85, 36.05, 37.88, 42.99, 45.96, 48.80, 50.30, 54.34, 64.50, 84.55, 120.20, 122.42, 129.80, 131.38, 136.51, 142.17, 171.12. Anal. Calcd. for C₃₃H₄₆BrNO₂: C 69.70, H 8.15, N 2.46; Found C 69.55, H 8.31, N 2.29. MS (m/z): 569.6[M+1]⁺.

2.6.22. 16-(4-bromo-benzylidene)- 3β -pyrrolidino- 5α androstan-17 β -vl acetate (13f)

White solid. Yield 94%. m.p. 184–186 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.76 (s, 3H, CH₃-19), 0.82 (s, 3H, CH₃-18), 2.21 (s, 3H, OCOCH₃), 2.57 (br, 4H, NCH₂), 5.34 (s, 1H, C₁₇- α H), 6.14 (d, 1H, =CH, *J* = 2.04 Hz), 7.22 (d, 2H, *J* = 8.44 Hz), 7.45 (d, 2H, *J* = 8.48 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.26, 12.32, 20.54, 21.17, 23.17, 27.93, 28.69, 30.96, 31.72, 34.69, 34.84, 35.87, 36.47, 37.35, 42.98, 45.20, 48.82, 51.82, 54.37, 64.31, 84.54, 120.19, 122.40, 129.80, 131.37, 136.50, 142.17, 171.08. Anal. Calcd. for C₃₂H₄₄BrNO₂: C 69.30, H 8.00, N 2.53; Found C 69.06, H 7.83, N 2.41. MS (m/z): 554.5[M+1]⁺.

2.6.23. 16-(4-bromo-benzylidene)- 3β -morpholino- 5α androstan-17 β -yl acetate (14f)

White solid. Yield 90%. m.p. 184–186 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.77 (s, 3H, CH₃-19), 0.81 (s, 3H, CH₃-18), 2.21 (s, 3H, OCOCH₃), 2.58 (s, 4H, NCH₂), 3.72–3.76 (m, 4H, OCH₂), 5.35 (s, 1H, C₁₇- α H), 6.15 (d, 1H, =CH, *J* = 2.04 Hz), 7.23 (d, 2H, *J* = 8.44 Hz), 7.46 (d, 2H, *J* = 8.48 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.26, 12.37, 20.65, 21.21, 23.97, 24.68, 26.22, 28.77, 30.55, 30.98, 31.70, 34.83, 36.03, 37.90, 42.92, 45.95, 48.84, 50.31, 54.35, 64.53, 84.60, 120.24, 122.48, 129.81, 131.37, 136.53, 142.20, 171.09. Anal. Calcd. for C₃₂H₄₄BrNO₃: C 67.36, H 7.77, N 2.45; Found C 67.21, H 7.59, N 2.28. MS (m/z): 571.6[M+1]⁺.

2.6.24. 16-(4-bromo-benzylidene)-3β-(4-

methylpiperazinyl)-5 α -androstan-17 β -yl acetate (15f)

White solid. Yield 98%. m.p. $172-174 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 0.74 (s, 3H, CH₃-19), 0.79 (s, 3H, CH₃-18), 2.19 (s, 3H, OCOCH₃), 2.27 (s, 3H, Ph-CH₃), 2.46–2.61 (m, 8H, NCH₂), 5.32 (s, 1H, C₁₇- α H), 6.13 (d, 1H, =CH, *J* = 2.16 Hz), 7.20 (d, 2H, *J* = 8.52 Hz), 7.43 (d, 2H, *J* = 8.44 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 12.26, 12.37, 20.59, 21.15, 24.52, 28.75, 30.93, 31.25, 31.69, 34.84, 35.97, 37.74, 42.97, 45.78, 46.04, 48.79, 49.30, 54.35, 55.52, 63.77, 84.52, 120.18, 122.42, 129.79, 131.36, 136.50, 142.14, 171.04. Anal. Calcd. for C₃₃H₄₇BrN₂O₂: C 67.91, H 8.12, N 4.80; Found C 67.88, H 8.29, N 4.61. MS (m/z): 583.6[M+1]⁺.

2.6.25. 16-(4-fluoro-benzylidene)- 3β -piperidino- 5α androstan- 17β -yl acetate (12g)

White solid. Yield 90%. m.p. $165-167 \circ C$; ¹H NMR (400 MHz, CDCl₃): δ 0.68 (s, 3H, CH₃-19), 0.71 (s, 3H, CH₃-18), 2.12 (s, 3H, OCOCH₃), 2.47 (s, 4H, NCH₂), 5.26 (s, 1H, C₁₇- α H), 6.08 (d, 1H, =CH, *J* = 1.96 Hz), 6.93 (t, 2H), 7.23 (q, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 11.35, 12.26, 12.37, 20.61, 21.16, 23.96, 24.75, 26.20, 28.76, 30.51, 30.83, 31.70, 34.85, 36.03, 37.87, 42.97, 45.95, 46.07, 48.82, 50.25, 54.35, 64.44, 84.52, 115.04, 115.25, 122.38, 129.71, 129.79, 133.74, 133.77, 140.63, 160.07, 162.52, 171.11. Anal. Calcd. for C₃₃H₄₆FNO₂: C 78.06, H 9.13, N 2.76; Found C 78.31, H 9.01, N 2.55. MS (m/z): 508.5[M+1]⁺.

2.6.26. 16-(4-fluoro-benzylidene)- 3β -pyrrolidino- 5α androstan- 17β -yl acetate (13g)

White solid. Yield 93%. m.p. $107-109 \,^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃): δ 0.68 (s, 3H, CH₃-19), 0.75 (s, 3H, CH₃-18), 2.12 (s, 3H, OCOCH₃), 2.72 (br, 4H, NCH₂), 5.26 (s, 1H, C₁₇- α H), 6.08 (d, 1H, =CH, *J* = 2.00 Hz), 6.93 (t, 2H), 7.23 (q, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 10.32, 12.21, 12.26, 20.56, 21.18, 23.23, 26.36, 28.54, 30.81, 31.63, 33.04, 34.80, 35.79, 36.45, 37.13, 42.96, 45.20, 48.82, 51.13, 54.22, 64.07, 84.51, 115.05, 115.26, 122.43, 129.71, 129.79, 133.72, 133.75, 140.58, 160.08, 162.54, 171.20. Anal. Calcd. for C₃₂H₄₄FNO₂: C 77.85, H 8.98, N 2.84; Found C 77.69, H 8.79, N 2.77. MS (m/z): 494.5[M+1]⁺.

2.6.27. 16-(4-fluoro-benzylidene)- 3β -morpholino- 5α androstan- 17β -yl acetate (14g)

White solid. Yield 94%. m.p. 141–143 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.68 (s, 3H, CH₃-19), 0.72 (s, 3H, CH₃-18), 2.12 (s, 3H, OCOCH₃), 2.57 (s, 4H, NCH₂), 3.68–3.71 (m, 4H, OCH₂), 5.27 (s, 1H, C₁₇- α H), 6.08 (d, 1H, =CH, *J* = 2.00 Hz), 6.93 (t, 2H), 7.23 (q, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 12.28, 20.60, 21.18, 23.80, 28.68, 30.39, 30.81, 31.64, 34.83, 35.92, 37.47, 42.97, 45.56, 48.81, 49.55, 54.25, 64.15, 66.61, 84.51, 115.06, 115.27, 122.45, 129.72, 129.79, 133.72, 133.76, 140.54, 160.10, 162.55, 171.18. Anal. Calcd. for C₃₂H₄₄FNO₃: C 75.41, H 8.70, N 2.75; Found C 75.27, H 8.58, N 2.91. MS (m/z): 510.4[M+1]⁺.

2.6.28. 16-(4-fluoro-benzylidene)- 3β -(4-methylpiperazinyl)- 5α androstan-17 β -yl acetate (15g)

White solid. Yield 94%. m.p. 178–180 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.75 (s, 3H, CH₃-19), 0.79 (s, 3H, CH₃-18), 2.19 (s, 3H, OCOCH₃), 2.27 (s, 3H, Ph-CH₃), 2.46–2.61 (m, 8H, NCH₂), 5.34 (s, 1H, C₁₇- α H), 6.15 (d, 1H, =CH, *J* = 2.00 Hz), 7.00 (t, 2H), 7.30 (q, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 12.24, 12.35, 20.58, 21.12, 24.52, 28.74, 30.79, 31.25, 31.68, 34.83, 35.94, 37.72, 42.94, 45.76, 46.03, 48.80, 49.28, 54.33, 55.51, 63.74, 84.47, 115.01, 115.23, 122.37, 129.69, 129.77, 133.72, 133.75, 140.58, 160.04, 162.49, 171.00. Anal. Calcd. for C₃₃H₄₇FN₂O₂: C 75.82, H 9.06, N 5.36; Found C 75.69, H 8.89, N 5.18. MS (m/z): 523.5[M+1]⁺.

2.6.29. 16-(furan-2-ylmethylene)- 3β -piperidino- 5α androstan-17 β -yl acetate (12h)

White solid. Yield 94%. m.p. 184–186 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.74 (s, 3H, CH₃-19), 0.80 (s, 3H, CH₃-18), 2.19 (s, 3H, OCOCH₃), 2.53 (s, 4H, NCH₂), 5.34 (s, 1H, C₁₇- α H), 6.13 (d, 1H, =CH, *J*=2.32 Hz), 6.22 (d, 1H, *J*=2.32 Hz), 6.41 (t, 1H), 7.38 (s, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 12.24, 12.41, 20.65, 21.13, 24.13, 24.88, 26.45, 28.83, 30.71, 31.08, 31.74, 34.89, 36.08, 37.96, 43.36, 46.05, 48.64, 50.37, 54.43, 64.52, 84.27, 107.83, 111.26, 112.16, 140.01, 141.29, 153.42, 171.08. Anal. Calcd. for C₃₁H₄₅NO₃: C 77.62, H 9.46, N 2.92; Found C 77.47, H 9.33, N 3.09. MS (m/z): 480.4[M+1]⁺.

2.6.30. 16-(furan-2-ylmethylene)- 3β -pyrrolidino- 5α androstan-17 β -yl acetate (13h)

White solid. Yield 94%. m.p. $155-157 \circ C$; ¹H NMR (400 MHz, CDCl₃): δ 0.74 (s, 3H, CH₃-19), 0.83 (s, 3H, CH₃-18), 2.19 (s, 3H, OCOCH₃), 2.57 (br, 4H, NCH₂), 5.35 (s, 1H, C₁₇- α H), 6.13 (d, 1H, =CH, *J*=2.26 Hz), 6.22 (d, 1H, *J*=2.30 Hz), 6.41 (t, 1H), 7.38 (s, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 12.22, 12.32, 20.57, 21.12, 23.17, 27.97, 28.73, 31.06, 31.72, 34.75, 34.86, 35.87, 36.51, 37.37, 43.34, 45.24, 48.65, 51.82, 54.42, 64.32, 84.24, 107.82, 111.24, 112.14, 139.96, 141.26, 153.39, 171.03. Anal. Calcd. for C₃₀H₄₃NO₃: C 77.38, H 9.31, N 3.01; Found C 77.51, H 9.09, N 3.12. MS (m/z): 466.4[M+1]⁺.

2.6.31. 16-(furan-2-ylmethylene)- 3β -morpholino- 5α androstan-17 β -yl acetate (14h)

White solid. Yield 94%. m.p. 194–196 °C; ¹H NMR (400 MHz, CDCl₃): δ 0.74 (s, 3H, CH₃-19), 0.81 (s, 3H, CH₃-18), 2.19 (s, 3H, OCOCH₃), 2.58 (s, 4H, NCH₂), 3.70–3.73 (m, 4H, OCH₂), 5.35 (s, 1H, C₁₇- α H), 6.13 (d, 1H, =CH, *J* = 2.36 Hz), 6.22 (d, 1H, *J* = 3.32 Hz), 6.41 (t, 1H), 7.38 (s, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 12.23, 12.37, 20.64, 21.13, 24.50, 28.80, 31.06, 31.12, 31.70, 34.86, 36.00, 37.65, 43.35, 45.69, 48.62, 50.06, 54.38, 64.08, 67.31, 84.23, 107.85, 111.26, 112.17, 139.91, 141.30, 153.39, 171.07. Anal. Calcd. for C₃₀H₄₃NO₄: C 74.81, H 9.00, N 2.91; Found C 74.66, H 8.83, N 3.12. MS (m/z): 482.4[M+1]⁺.

2.6.32. 16-(furan-2-ylmethylene)- 3β -(4-methylpiperazinyl)- 5α androstan-17 β -yl acetate (15h)

White solid. Yield 94%. m.p. $145-147 \circ C$; ¹H NMR (400 MHz, CDCl₃): δ 0.72 (s, 3H, CH₃-19), 0.79 (s, 3H, CH₃-18), 2.17 (s, 3H, OCOCH₃), 2.28 (s, 3H, Ph-CH₃), 2.46–2.61 (m, 8H, NCH₂), 5.32 (s, 1H, C₁₇- α H), 6.11 (d, 1H, =CH, *J* = 2.28 Hz), 6.20 (d, 1H, *J* = 3.28 Hz), 6.38 (t, 1H), 7.36 (s, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 12.18, 12.34, 20.58, 21.02, 24.49, 28.76, 31.00, 31.26, 31.64, 34.80, 35.91, 37.70, 43.27, 45.74, 46.02, 48.56, 49.26, 54.34, 55.51, 63.71, 84.12, 107.80, 111.21, 112.14, 139.83, 141.21, 153.33, 170.81. Anal. Calcd. for C₃₁H₄₆N₂O₃: C 75.26, H 9.37, N 5.66; Found C 75.08, H 9.51, N 5.44. MS (m/z): 495.4[M+1]⁺.

2.7. Biology

2.7.1. Cell lines and culture conditions

Human cancer cell lines SW480 [25], A549 [26], HepG2 [27] and HeLa [28,29] used in this work, were purchased from China Centre for Type Culture Collection (Wuhan, China). SW480, A549 and HepG2 cells were grown in RPMI 1640 supplemented with 10% fetal bovine serum (FBS), 10U penicillin and 100 μ g/ml streptomycin at 37 °C with 5% CO₂ in a humidified atmosphere. HeLa cells were grown in Dulbecco's modified Eagle's medium (DMEM) supplanted with FCS and aitibiotics as described above for RPMI 1640. Fresh medium was given every second day and on the day before the experiments were done. Cells were passaged at preconfluent densities, using a solution containing 0.05% trypsin and 0.5 mM EDTA.

2.7.2. Cell viability assay (MTT)

The anticancer activity in vitro was measured using the MTT assay. The assay was carried out according to previous study [30,31]. Exponentially growing cells were harvested and plated in 96-well plates at a concentration of 1×10^4 cells/well. After 24 h incubation at 37 °C under a humidified 5% CO₂ to allow cell attachment, the cells in the wells were respectively treated with target compounds at various concentrations for 48 h. The concentration of DMSO was always kept below 1.25%, which was found to be non-toxic to the cells. A solution of 3-(4,5-dimethylthizao1-2-y1)-2,5-diphenyltetrazolium bromide (MTT), was prepared at 5 mg/ml in phosphate buffered saline (PBS; 1.5 mM KH₂PO₄, 6.5 mM Na₂HPO₄, 137 mM NaCl, 2.7 mM KCl; pH 7.4). Of this solution 20 µl was added to each well. After incubation for 4 h at 37 °C in a humidified incubator with 5% CO₂, the medium/MTT mixtures were removed, and the formazan crystals formed by the mitochondrial dehydrogenase activity of vital cells were dissolved in 100 µl of DMSO per well. The absorbance of the wells was read with a microplate reader (Bio-Rad Instruments) at 570 nm. Effects of the drug cell viability were calculated using cell treated with DMSO as control.

2.7.3. Data analysis

Cell survival was calculated using the formula: Survival (%) = [(absorbance of treated cells – absorbance of culture medium)/(absorbance of untreated cells – absorbance of culture medium)] × 100 [32,33]. The experiment was done in triplicate and the inhibitory concentration (IC) values were calculated from a dose response curve. IC₅₀ is the concentration in μ M required for 50% inhibition of cell growth as compared to that of untreated control. IC₅₀ values were determined from the linear portion of the curve by calculating the concentration of agent that reduced absorbance in treated cells, compared to control cells, by 50%. Evaluation is based on mean values from three independent experiments, each comprising at least six microcultures per concentration level.

3. Results and discussion

3.1. Chemistry

We obtained an X-ray crystal structure of 8e that is presented in Fig. 2. The configuration at C-16 has been assigned E which was same with the earlier report [34,35]. This structure confirms the β stereochemistry of the heterocycles at C-3 and the hydroxyl group at C-17. After the acetylation of 17 β -hydroxy derivatives, the β configuration of acetoxy group at C-17 was maintained. Crystallographic data for 8e have been deposited with the Cambridge Crystallographic Data Centre with the deposition number CCDC 796339. These data can be obtained free of charge on application

Fig. 2. X-ray crystal structure of 8e.

to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax (+44) 1223 336033, e-mail: deposit@ccdc.cam.ac.uk].

3.2. Cytotoxic activity

The newly synthesized compounds 12a–h, 13a–h, 14a–h, 15a–h were evaluated for their anticancer activity towards human tumor cell lines derived from various human cancer types: SW480 (human colon adenocarcinoma cells), HeLa (human cervical cancer cells), A549 (human lung carcinoma cells), HepG2 (human hepatic carcinoma cells). In vitro evaluation of anticancer activity of the synthesized compounds was carried out using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Anticancer potency of the compounds was indicated by IC₅₀ values that were calculated by linear regression analysis of the concentration–response curves obtained for each compound. Data were reported in Table 1.

Table 1

Cytotoxic activity data for compounds 12a-h, 13a-h, 14a-h, 15a-h against SW480, A549, HepG2, and HeLa.

Compounds	$IC_{50} \ (\mu mol \ l^{-1})^a$			
	SW480	A549	HepG2	HeLa
12a	21.68	6.18	12.33	20.21
13a	15.54	13.88	22.47	28.51
14a	40.56	38.97	>50	>50
15a	>50	>50	>50	40.58
12b	12.86	9.03	6.54	17.26
13b	30.18	17.76	10.55	23.89
14b	>50	>50	39.48	>50
15b	>50	>50	>50	>50
12c	>50	>50	38.21	>50
13c	>50	>50	>50	>50
14c	>50	>50	>50	>50
15c	>50	>50	>50	>50
12d	>50	11.56	>50	23.10
13d	41.73	49.18	>50	19.89
14d	31.42	>50	13.37	44.51
15d	>50	>50	>50	>50
12e	>50	>50	38.77	>50
13e	>50	>50	>50	>50
14e	>50	>50	>50	>50
15e	>50	>50	>50	>50
12f	21.58	>50	>50	41.03
13f	>50	>50	38.83	29.86
14f	>50	>50	>50	>50
15f	>50	>50	>50	>50
12g	17.92	4.07	6.78	35.46
13g	6.45	6.14	23.61	19.20
14g	11.71	16.58	33.54	37.52
15g	>50	>50	>50	>50
12h	21.19	13.83	30.79	15.53
13h	>50	23.18	15.52	30.19
14h	>50	27.23	37.71	42.41
15h	>50	>50	>50	>50

Exponentially growing cells were treated with the compounds at different concentrations for 48 h. Cell-growth inhibition was analysed by the MTT assay.

 $^{\rm a}~$ IC_{50} is the concentration of compound that inhibits 50% of cell growth.

Fig. 3. General SAR of compounds for anticancer activity in vitro based on the IC_{50} results on the four cancer cells lines.

As shown in Table 1, compounds 12-15a, 12-14b, 12-14d, 12-13e, 12-13f, 12-15g, 12-15h exhibited different levels of anticancer properties; namely, the introduction of methyl and methoxy at the para position of the phenyl ring lead to potent anticancer activity. For A549, among the 12-15a, 12-15b bearing methyl and methoxy group, the IC₅₀ values obtained are 6.18 μM, 13.88 μM, 38.97 μM, >50 μM, 9.03 μM, 17.76 μM, >50 μM and >50 μ M, respectively. It was noteworthy that compound 12b which has methoxy at the 4-position of the phenyl ring exhibited potent activity (12b for A549 9.03 μ M, for HepG2 6.54 μ M). Compared to 12–15b, the inclusion of more methoxy groups (12-14d) to the phenyl ring enabled maintenance of anticancer activity. On the other hand, substitution with a strong electronwithdrawing group like nitro (12-15c) at the para position of the phenyl ring resulted in a complete loss of anticancer activity $(IC_{50} > 50 \,\mu\text{M})$. Comparison of the results obtained from p-methyl, p-methoxy, and p-nitro derivatives indicated that the electrondonating groups were relatively beneficial for anticancer activity. However, there was an exception, the IC₅₀ value of compound 12c against HepG2 was 38.21 µM. When the alkyl groups were replaced by a halogen (12-15e, 12-15f) such as chlorine or bromine at the para position of the phenyl ring, decreased cytotoxicity was observed (>50 μ M). Among the tested compounds, it was determined that 12-15 g exhibited potent activity against all four cancer cell lines. The p-fluorophenyl derivative 12g exhibited remarkable anticancer activity against A549 (4.07 µM) and HepG2 $(6.78 \,\mu\text{M})$. When the phenyl rings were replaced by a furan ring, 12-15h exhibited moderate activity against the A549 from 13.83 to 27.23 µM, suggesting that the phenyl ring at the C-16 position may be unnecessary for the activity. Furthermore, it appears that an appropriately substituted group of the phenyl ring at C-16 could serve as a promising launch point for the further design of this type of steroidal anticancer agent. A similar tendency was observed concerning the SW480, HepG2, and HeLa cell lines.

Most derivatives with a saturated heterocyclic ring moiety at C-3 position resulted in high activity, especially piperidine. For HepG2, as demonstrated in Table 1, the most highly active compound was 12g with a piperidine moiety, having a IC₅₀ value of 6.78 μ M, followed by 13g with a pyrrolidine moiety, exhibiting a IC₅₀ value of 23.61 μ M, the derivative 14g with a morpholine moiety, which exhibited a lower activity (33.54 μ M), and finally the derivative 15g with a methyl piperazine moiety exhibited no activity (>50 μ M). General SAR of compounds for anticancer activity in vitro based on the IC₅₀ results on the four cancer cells lines is presened schematically in Fig. 3.

In the present study, 32 novel 16E-arylidene-3β-aminosteroid derivatives were synthesized and evaluated for their anticancer activity against four human cancer cell lines (SW480, A549, HepG2, and HeLa) in vitro. Most of the compounds showed moderate to good anticancer activity. Among the target derivatives, compounds 12a, 12b, 12g and 13g were found to have significant activity against all four cancer cell lines. In particular, compounds 12b and 12g were the most promising derivatives.

In conclusion, we have described a facile synthesis of novel promising anti-cancer steroid derivatives. This study may provide valuable information for the further design and development of more potent anticancer agents.

Acknowledgments

This work was financially supported by the Important National Science & Technology Specific Projects (No. 2009ZX09301-014-1) and the Fundamental Research Funds for the Central Universities.

References

- Everett JL, Roberts JJ, Ross WCJ. Aryl-2-halogenoalkylamines. Part XII. Some carboxylic derivatives of NN-di-2-chloroethylaniline. J Chem Soc 1953:2386–92.
- [2] Shervington LA, Smith N, Norman E, Ward T, Phillips R, Shervington A. To determine the cytotoxicity of chlorambucil and one of its nitro-derivatives, conjugated to prasterone and pregnenolone, towards eight human cancer celllines. Eur J Med Chem 2009;44:2944–51.
- [3] McLean A, Newell D, Baker G, Connors T. The metabolism of chlorambucil. Biochem Pharmacol 1980;29:2039–47.
- [4] Loven K, Stein L, Furst K, Levy S. Evaluation of the efficacy and tolerability of 0.5% fluorouracil cream and 5% fluorouracil cream applied to each side of the face in patients with actinic keratosis. Clin Ther 2002;24: 990–1000.
- [5] Skladanowski A, Konopa J. Adriamycin and daunomycin induce programmed cell death (apoptosis) in tumour cells. Biochem Pharmacol 1993;46: 375–82.
- [6] Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. Plant antitumor agents VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 1971;93: 2325–7.
- [7] Chugun A, Temma K, Oyamada T, Suzuki N, Kamiya Y, Hara Y, et al. Doxorubicininduced late the sarcoplasmic reticulum in the rat. Can J Physiol Pharmacol 2000;78:329–38.
- [8] Ohga T, Uchiumi T, Makino Y, Koike K, Wada M, Kuwano M, et al. Direct involvement of the Y-box binding protein YB-1 in genotoxic stress-induced activation of the human multidrug resistance 1 gene, J Biol Chem 1998;273:5997–6000.
- [9] Wang Y, Tamara M. A novel cancer therapy: combined liposomal hypoxia inducible factor 1 alpha antisense oligonucleotides and an anticancer drug. Biochem Pharmacol 2004;68:2031–42.
- [10] Kaklamani V, O'Regan RM. Aromatase inhibitors as adjuvant therapy in breast cancer. Oncology 2003;17:335–42.
- [11] Mitchell HJ, Dankulich WP, Hartman GD, Prueksaritanont T, Schmidt A, Vogel RL, et al. Design synthesis, and biological evaluation of 16-substituted 4azasteroids as tissue-selective androgen receptor modulators (SARMs). J Med Chem 2009;52:4578–81.
- [12] He Q, Jiang D. A novel aminosteroid is active for proliferation inhibition and differentiation induction of human acute myeloid leukemia HL-60 cells. Leukemia Res 1999;23:369–72.
- [13] Roy J, DeRoy P, Poirier D. 2β -(*N*-Substituted Piperazino)- 5α -androstane- 3α , 17β -diols: parallel solid-phase synthesis and antiproliferative activity on human leukemia HL-60 cells. J Combin Chem 2007;9:347–58.
- [14] Latham KA, Zamora A, Drought H, Subramanian S, Matejuk A, Offner H, et al. Estradiol treatment redirects the isotype of the autoantibody response and prevents the development of autoimmune arthritis. J Immunol 2003;171:5820–7.
- [15] Hosking D, Chilvers CE, Christiansen C, Ravn P, Wasnich R, Ross P, et al. Prevention of bone loss with alendronate in postmenopausal women under 60 years of age. N Engl J Med 1998;338:485–92.
- [16] Savage DS. A novel class of antitumour agents I. Chemistry and animal experiments. Cancer Lett 1977;2:267–72.
- [17] Chattopadhaya R, Jindal DP, Minu M, Gupta R. Synthesis and cytotoxic studies of hydroximino derivatives of some 16E-arylidenosteroids. Arzneimittel Forschung 2004;54:551–6.
- [18] Bansal R, Guleria S. Synthesis of 16E-[3-methoxy-4-(2-aminoethoxy)benzylidene]androstene derivatives as potent cytotoxic agents. Steroids 2008;73:1391–9.
- [19] Dubey S, Piplani P, Jindal DP. Synthesis and in vitro antineoplastic evaluation of certain 16-(4-Substituted Benzylidene) derivatives of androst-5-ene. Chem Biodiver 2004;1:1529–36.
- [20] Dubey S, Kaur P, Jindal DP, Satyanarayan YD, Piplani P. Synthesis and evaluation QSAR studies of 16-(4 & 3,4-substituted) benzylidene androstene derivatives as anticancer agents. Med Chem 2008;4:229–36.
- [21] Luzzio FA, Guziec Jr FS. Recent applications of oxochromiumamine complexes as oxidants in organic synthesis. A review. Org Prep Proced Int 1988;20:533–84.
- [22] Harding KE, May LM, Dick KF. Selective oxidation of allylic alcohols with chromic acid. J Org Chem 1975;40:1664–5.
- [23] Walker BH. Effect of manganese on the chromic acid oxidation of secondarytertiaryvicinal glycols. J Org Chem 1967;32:1098–103.
- [24] Borch RF, Bernstein MD, Durst HD. Cyanohydridoborate anion as a selective reducing agent. J Am Chem Soc 1971;93:2897–904.

- [25] Reithofer MR, Valiahdi SM, Jakupec MA, Arion VB, Egger A, Galanski M, et al. Novel di- and tetracarboxylatoplatinum(iv) complexes. Synthesis, characterization cytotoxic activity, and DNA platination. J Med Chem 2007;50:6692–9.
- [26] Yang Y, Shang P, Cheng C, Wang D, Yang P, Zhang F, et al. Novel N-phenyl dichloroacetamide derivatives as anticancer reagents: design, synthesis and biological evaluation. Eur J Med Chem 2010;45:4300–6.
- [27] Tseng C, Chen Y, Chung K, Cheng C, Wang C, Tzeng C. Synthesis and antiproliferative evaluation of 6- arylindeno [1,2-c] quinoline derivatives. Bioorg Med Chem 2009;17:7465–76.
- [28] Kongkathip B, Hasakunpaisarn A, Boonananwong S, Kongkathip N. Synthesis of cytotoxic novel 9, 11-secosterol analogs: structure/activity studies. Steroids 2010;75:834–47.
- [29] Li F, Awale S, Tezuka Y, Kadota S. Cytotoxic constituents from Brazilian red propolis and their structure-activity relationship. Bioorg Med Chem 2008;16:5434–40.
- [30] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63.

- [31] El-Far M, Elmegeed GA, Eskander EF, Rady HM, Tantawy MA. Novel modified steroid derivatives of androstanolone as chemotherapeutic anti-cancer agents. Eur J Med Chem 2009;44:3936–46.
- [32] Woerdenbag HJ, Moskal TA, Pras N, Malingre TM, El-Feraly FS, Kampinga HH, et al. Cytotoxicity of artemisinin-related endoperoxides to ehrlich ascites tumor cells. J Nat Prod 1993;56:849–56.
- [33] Saxena HO, Faridi U, Kumar JK, Luqman S, Darokar MP, Shanker K, et al. Synthesis of chalcone derivatives on steroidal framework and their anticancer activities. Steroids 2007;72:892–900.
- [34] Thamotharan S, Parthasarathi V, Gupta R, Guleria S, Jindal DP, Linden A. 16-[3-Methoxy-4-(2-piperidin-1-yl-ethoxy)benzylidene]-17-oxoandrost-5en-3β-yl acetate monohydrate. Acta Cryst C 2002;58:o727-9.
- [35] Thamotharan S, Parthasarathi V, Gupta R, Guleria S, Jindal DP, Linden A. Two androst-5-ene derivatives: 16-[4-(3-chloropropoxy) -3-methoxybenzylidene]-17-oxoandrost-5-en-3β-ol and 16-[3-methoxy-4-(2-pyrrolidin-1-ylethoxy)benzylidene]-3β-pyrrolidinoandrost-5-en-17β-ol monohydrate. Acta Cryst C 2004;60:o75–8.