Accepted Manuscript

An efficient approach to novel 17-5'-(1',2',4')-oxadiazolyl androstenes via the cyclodehydration of cytotoxic O-steroidacylamidoximes, and an evaluation of their inhibitory action on 17α -hydroxylase/C_{17,20}-lyase

Dóra Kovács, János Wölfling, Nikoletta Szabó, Mihály Szécsi, Ida Kovács, István Zupkó, Éva Frank

PII: S0223-5234(13)00679-X

DOI: 10.1016/j.ejmech.2013.10.038

Reference: EJMECH 6501

To appear in: European Journal of Medicinal Chemistry

Received Date: 9 August 2013

Revised Date: 2 October 2013

Accepted Date: 12 October 2013

Please cite this article as: D. Kovács, J. Wölfling, N. Szabó, M. Szécsi, I. Kovács, I. Zupkó, É. Frank, An efficient approach to novel 17-5'-(1',2',4')-oxadiazolyl androstenes via the cyclodehydration of cytotoxic *O*-steroidacylamidoximes, and an evaluation of their inhibitory action on 17α -hydroxylase/C_{17,20}-lyase, *European Journal of Medicinal Chemistry* (2013), doi: 10.1016/j.ejmech.2013.10.038.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical abstract

Highlights

Novel 17-exo-1,2,4-oxadiazolyl androstenes were synthetized in high yields

O-Acylation of different amidoximes with steroidal carboxylic acids were carried out

Cyclocondensations of O-acylamidoximes occurred under mild conditions

Enzyme-inhibitory and antiproliferative effects of the products were examined

An efficient approach to novel 17-5'-(1',2',4')-oxadiazolyl androstenes via the cyclodehydration of cytotoxic O-steroidacylamidoximes, and an evaluation of their inhibitory action on 17α -hydroxylase/C_{17,20}-lyase

Dóra Kovács,^a János Wölfling,^a Nikoletta Szabó,^b Mihály Szécsi,^b Ida Kovács,^c István Zupkó,^c Éva Frank^{*,a}

^aDepartment of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged,

Hungary

^b1st Department of Medicine, University of Szeged, Korányi fasor 8-10, H-6720 Szeged,

Hungary

^cDepartment of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-

6720 Szeged, Hungary

*Corresponding author. Tel.: +36 62 544275; fax: +36 62 544200.

E-mail address: frank@chem.u-szeged.hu (É. Frank).

Abstract

Novel 17-*exo*-oxadiazoles in the androst-5-ene series were efficiently synthesized in a twostep sequence via the corresponding *O*-acylamidoxime intermediates (obtained from steroidal 17-carboxylic acids and amidoximes in the presence of coupling reagent), which then underwent tetrabutylammonium fluoride-induced cyclocondensation under mild reaction conditions. The synthestized compounds were subjected to *in vitro* pharmacological studies to investigate their inhibitory effect on rat testicular $C_{17,20}$ -lyase and their antiproliferative action on four malignant human adherent cell lines (HeLa, MCF7, A2780 and A431). One of the oxadiazolyl derivatives proved to exert significant enzyme-inhibitory action (IC₅₀ = 0.60 \Box M), while some of the isolated *O*-acylated amidoxime intermediates displayed high

cytotoxic activities on all examined cell lines, with IC_{50} values in the range $0.2\tilde{2}3.94 \ \Box M$.

Keywords: steroids, O-acylamidoximes, antiproliferative activity, 1,2,4-oxadiazoles, P450_{17D}

inhibitor

1. Introduction

In consequence of the numerous synthetic possibilities available for the construction of different heterorings on the sterane core, and also of the differences in the ability of these derivatives to bind to their target receptors, leading to the manifestation of certain beneficial biological effects, research into steroidal compounds has recently focused on the syntheses and pharmacological investigations of heterocycle-containing compounds [1-3]. The most frequent chemical modifications are introduced at position 17 on ring D, where transformation of the extant functional group is facilitated. Cardiac glycosides, a large family of naturally occurring steroidal 17-exo-heterocycles present in both plants and animals, contain a five- or six-membered lactone ring at C-17 and a sugar moiety at C-3 of the sterane nucleus. The cis conformations of the skeletal rings A/B and C/D, together with the connected sugar moiety, are of significant pharmacological relevance as concerns their efficacy in the treatment of congestive heart failure and as anti-arrhythmic agents [4, 5]. Less well known, however, is the emerging role of this category of compounds for the prevention and/or treatment of cancer, as a result of which the 17-exo-heterocyclic steroids are now at the focus of scientific interest [6]. Attempts to modify the original aglycone cores in order to broaden the narrow therapeutic window typical for glycosides led to the conclusion that sex hormone-derived 17-exoheterocycles involving a trans C/D ring junction exert an inhibitory effect on 17ahydroxylase- $C_{17,20}$ -lyase (P450_{17 α}) rather than cardiotonic activity by blocking Na⁺/K⁺-ATPase [7]. P450_{17 α} is a key regulatory enzyme in the androgen biosynthetic pathway and inhibitors of this protein can block male sex hormone synthesis at an early stage leading to their potential use in the medication of androgen-dependent diseases [8]. The first steroidal inhibitor, abiraterone, which is based on the structure of pregnenolone, one of the natural

substrates of P450_{17 α}, was approved in 2011 in the form of its 3 β -acetate prodrug for the treatment of prostate cancer (Figure 1). The features responsible for the observed activity of abiraterone are the direct coordination of the lone pair of the nitrogen in the pyridyl ring at C-17 with the heme Fe and the interaction of the 3 β -OH with asparagine 202 in the F helix in the active site of the enzyme [9]. The presence of the C16-17 double bond, however, also appears to be of crucial importance in its irreversible inhibitory effect on human P450_{17 α} [8]. Besides abiraterone, a large number of 17-*exo*-heterocycles are known to induce efficient P450_{17 α} inhibition: furanyl, thienyl [10, 11], oxazolyl, thiazolyl [12, 13], imidazolyl, isoxazolyl, triazolyl, tetrazolyl, pyrazolyl [14, 15], pyrimidyl [16], and benzimidazolyl derivatives [17] were synthesized earlier and demonstrated to be more or less effective.

Figure 1.

Some 17-*exo*-heterocyclic steroids have also been reported to be involved in complex cellsignal transduction mechanisms in a hormone-receptor independent manner by the inhibition of angiogenesis, tubulin polymerization and the regulation of apoptotic pathways, and resulting in the selective control of human tumor but not normal cellular proliferation [18]. As such, they represent a promising form of targeted cancer chemotherapy.

As a continuation of our research on steroidal *exo*-heterocycles [19-24], our present goal was to introduce an 1,2,4-oxadiazole moiety at C-17, since the effects of this structural element on the biological activities of steroids have not yet been examined. 1,2,4-Oxadiazoles have often been used as hydrolysis-resistant bioisosteres of esters and amides in a number of biologically active synthetic compounds with widespread pharmacological effects [25], including anti-cancer activity [26–28]. The most common route for the construction of 1,2,4-

oxadiazoles is through the reaction of amidoximes with carboxylic acids in the presence of coupling reagents, e.g. dicyclohexylcarbodiimide (DCC) or 1,1'-carbonyldiimidazole (CDI), or with reactive acid chlorides, active carboxylic esters or anhydrides [29]. The *O*-acylation of amidoximes with carboxylic acid derivatives occurs under mild conditions [30], but the subsequent cyclodehydration of the intermediates to oxadiazoles generally requires long reaction times (5-12 h) in the presence of a strong base (NaH or NaOEt) or elevated temperatures (80-100 °C) for a weaker base (pyridine). The cyclization of *O*-acylamidoximes, however, can be promoted by tetrabutylammonium fluoride (TBAF) under mild conditions, since the fluoride ion acts as a strong base in a polar aprotic solvent, inducing both the ring-closure and dehydration steps of the cyclocondensation reaction [31].

Different routes were designed for the synthesis of 17-5'-(1',2',4')-oxadiazolylandrost-5enes structurally similar to abiraterone, so as to find reaction conditions ensuring high productivity. Furthermore, all compounds, including the *O*-acylated amidoxime intermediates, were screened *in vitro* by means of MTT assays for their antiproliferative activities against a panel of four human adherent cancer cell lines (HeLa, MCF7, A2780 and A431). The inhibitory effects of the heterocyclic products on rat testicular C_{17,20}-lyase were also determined by a radioligand incubation technique.

2. Results and Discussion

2.1. Synthetic studies

Steroidal 17-carboxylic acids (3, 5) and their 3 β -acetates (4, 6) were synthesized from pregnenolone acetate (1) and pregnadienolone acetate (2) via the bromoform reaction and subsequent acetylation, using well-known literature methods (Scheme 1) [12, 32]. In order to investigate the reactivity of carboxylic esters against amidoximes, the previously reported methyl ester derivative 7 [33] was also produced via an alternative route from 3 in the

presence of $BF_3 OEt_2$ in MeOH. However, the similar esterification of **5** could not be carried out, since C-16 is highly reactive in this case due to conjugation, and the addition of a methyl group to this position may also be feasible.

Scheme 1.

Amidoximes (IIa–e) were prepared by reacting aromatic nitriles (Ia–d) or acetonitrile (Ie) with hydroxylamine hydrochloride in basic media, using general synthetic prescriptions [27] (Scheme 2). The conventional 2-7-h heating period in aqueous EtOH resulted in the desired amidoximes (IIa–e) together with small amounts (10-15%) of amide (IIIa–e) impurity [34], but these by-products were easily removed during the work-up procedure or by column chromatography. Nevertheless, it is important to note that amide traces do not interfere in the reactions of amidoximes with carboxylic acid derivatives; the contaminated amidoxime merely has to be applied in excess. The substitution reactions were also carried out by using microwave (MW) irradiation, which shortened the reaction time to 15-20 min, but left the chemoselectivity unchanged.

Scheme 2.

Preliminary substitution experiments were carried out by reacting ester **7** with benzamidoxime (**IIa**) in the presence of K₂CO₃ [35]. No reaction was observed when the components were refluxed for 12 h [36], and MW irradiation either in solution or under solvent-free conditions [37] resulted in only low conversions. Apart from the moderate productivity, oxadiazolyl- Δ^{16} -androst-5-enes are otherwise not accessible by this method in consequence of the unavailability of suitable carboxylic esters.

The reactions of the more reactive acid chlorides (8, 9) of 4 and 6 with benzamidoxime (IIa) were next investigated (Scheme 2). The steroidal carboxylic acids (4, 6) were first converted to the acid chlorides (8, 9) using oxalyl chloride and a catalytic amount of dimethylformamide (DMF) in CH₂Cl₂ [38]. After stirring at room temperature for 12 h, the excess of oxalyl chloride was distilled off, and 3 equivalents of benzamidoxime (IIa) in pyridine were added. It was necessary to heat the reaction mixtures for 7 h in order to achieve sufficient conversions because of the presence of the weakly basic pyridine, but the corresponding oxadiazoles (12a, 13a) were obtained in yields of only 35 and 38% after purification by flash chromatography. The *O*-acylated amidoximes (10a, 11a) formed as intermediates were converted to the corresponding heteroaromatic derivatives (12a, 13a) under the conditions applied and therefore could not be isolated, although their formation was detected by TLC. When the transformations were repeated under MW irradiation, the reaction time was reduced to 30 min, but the yields of the products increased by only a few per cent. The application of a longer reaction time or a reagent excess did not have any effect on the conversions.

In the hope of using milder reaction conditions, but achieving better yields of the desired products, our attention turned to the reactions of carboxylic acids (**4**, **6**) and amidoximes (**IIa–e**) with the use of a coupling reagent. As concerns the relative effectiveness of DCC and CDI in DMF, better, but not complete conversion was observes on the TLC plates when carboxylic acid **4** was reacted with CDI. An investigation of the effects of other solvents (THF and CH_2Cl_2) revealed complete coupling with CDI in CH_2Cl_2 at room temperature. A similar solvent dependence was reported earlier for the reactions of CDI-activated carboxylic acids with acylhydrazides [39]. Subsequently, **4** was reacted with CDI in CH_2Cl_2 , and benzamidoxime (**IIa**) was added to the mixture after completion of the coupling reaction (Scheme 2). The substitution was performed at room temperature to afford the corresponding

O-acylated derivative (**10a**) in a yield of 85% after purification. The application of temperatures higher than 30 °C resulted in decomposition of the CDI-activated carboxylic acid. The subsequent TBAF-induced cyclodehydration of **10a** furnished oxadiazole **12a** in an excellent yield within 1 h under mild conditions. Once the parameters appropriate for the efficient synthesis of 17-*exo*-oxadiazolyl androstenes had been found, similar reactions of **4** and **6** with different amidoximes (**Ha–e**) were carried out via the above-mentioned two-step protocol: both the *O*-acylated intermediates (**10a–e**, **11a–e**) and the heterocyclic derivatives (**12a–e**, **13a–e**) were obtained in excellent yields. For pharmacological studies, the 3β-OH analogs (**14a–e**, **15a–e**) of the cyclocondensation products (**12a–e**, **13a–e**) were synthesized by simple deacetylation.

The structures of all synthesized compounds were confirmed by ¹H and ¹³C NMR measurements. The presence of the phenyl or *p*-substituted phenyl ring derived from the amidoximes (**Ha–d**) was demonstrated by the signals in the aromatic range of the ppm scale in (**10-15)a-d**, while an additional methyl signal was detected at around 2.0 ppm in the ¹H NMR spectra of **10e–15e**. The spectra of the *O*-acylamidoximes (**10a–e**, **11a–e**) and the related heterocyclic products (**12a–e**, **13a–e**) proved to be quite similar. The broad singlet of the amide protons at around 5.0 ppm was present in the spectra of the former compounds, but not in those of the cyclized products **12a–e** and **13a–e**. The chemical shifts of the protons close to the cyclocondensation reaction center differed somewhat in the related open-chain (**10a–e**, **11a–e**) and cyclic compounds (**12a–e**, **13a–e**), which is explained by the decreased shielding and therefore the downfield shift of these protons in the latter case, caused by the aromatic character of the oxadiazole ring.

2.2. Pharmacological studies

In recent years, there has been considerable interest in steroidal 17-exo-heterocycles in view of their potential use in the treatment of cancer either by blocking one of the key regulatory enzymes of androgen biosynthesis or by exerting direct antiproliferative effects on tumor cells. However, the 1,2,4-oxadiazole scaffold [40] and its saturated variants [41] have received less attention from both synthetic and pharmacological aspects. As several different compounds containing an 1,2,4-oxadiazole moiety have been reported to exert antiproliferative activity [26–28, 42], and the synthesized derivatives are structurally related to abiraterone, which is generally used as an effective $P450_{17\alpha}$ inhibitor in the medication of malignant prostate cancer, investigation of the synthesized compounds for cytotoxic efficacy and P450_{17 α} enzyme inhibition appeared obvious. The inhibitory effects of 14a-e and 15a-e on rat testicular $C_{17,20}$ -lyase were tested by means of a radiosubstrate incubation technique. Among the oxadiazoles, only 14e and 15e (containing a methyl group at position 3 of the heteroaromatic ring) exhibited noteworthy activity (Table 1). This is in good agreement with previous observations that bulky substituents on the heterocyclic moiety are less favorable in respect of P450_{17 α} inhibition [43, 44]. Compound **15e**, with IC₅₀ = 0.60 μ M, inhibited the enzyme action to an extent roughly comparable with that of ketoconazole, whereas its potency lagged behind that of abiraterone. Oxadiazole 15a, the saturated counterpart of 14a, however, proved to be a poorer enzyme inhibitor, which demonstrates the importance of the C16-17 double bond, as expected.

Table 1

The antiproliferative activities of all the synthesized compounds, including the *O*-acylamidoximes, against the HeLa, MCF7, A2780 and A431 cell lines, were determined by

the microplate-based MTT colorimetric assay [46], in comparison with cisplatin as reference agent. The cell-proliferation inhibitory potencies of the investigated derivatives, expressed as IC₅₀ and/or growth inhibition values (Table 2), revealed that the *O*-acylamidoxime derivatives (**10a–e**, **11a–e**) exerted consistently higher activities than those of the corresponding oxadiazoles (**12a–e**, **13a–e**). Moreover, the presence of the C16-17 double bond in **11a–e** generally led to an increase in potency relative to the saturated analogs (**10a–e**). Among the Δ^{16} derivatives, 17-acyl-*p*-methoxybenzamidoxime (**11c**) and 17-acylacetamidoxime (**11e**) exhibited outstanding cytotoxicity against all four cell lines, with IC₅₀ values (at least in most cases) lower than those of cisplatin. The introduction of the various substituents R into the *O*acylamidoxime residue had a greater effect on the antiproliferative action in **11a–e** than in **10a–e**. As concerns the oxadiazoles, the 3β-acetoxy derivatives (**12a–e**, **13a–e**) induced negligible cell-growth inhibition, irrespectively of the structure of their sterane skeleton, while their 3β-OH counterparts, especially those containing a saturated ring D (**14a–e**), proved to be more potent.

Table 2

3. Conclusions

In summary, novel types of 1,2,4-oxadiazoles in the androst-5-ene series were prepared from steroidal 17-carboxylic acids via a two-step pathway. After the determination of acceptable parameters for efficient conversions, various amidoximes were *O*-acetylated with CDI-activated carboxylic acids, and then subjected to TBAF-induced cyclodehydration. Both the substitution and ring-closure reaction steps proceeded under mild reaction conditions, to afford the *O*-acylamidoximes and then the 17-*exo*-heterocycles in good to excellent yields. The synthesized derivatives may deserve attention from a pharmacological aspect, since one of the heteroaromatic derivatives, **15e**, displayed significant *in vitro* inhibition of C_{17,20}-lyase. In contrast with the expected results, not the oxadiazoles, but their open-chain precursors (**10a–e**, **11a–e**) exerted *in vitro* cytotoxic activity against all four examined malignant cell lines which were higher than or comparable to that of the reference cisplatin. The nature of the substituent R had only a limited impact on the anticancer action in both the open-chain (**10a–e**, **11a–e**) and the cyclized products (**14a–e**, **15a–e**); the effects of differences in the sterane structure, i. e. the saturation of ring D were more substantial.

4. Experimental

Melting points (mp) were determined on an SMS Optimelt digital apparatus. Elemental analysis data were obtained with a Perkin Elmer CHN analyzer model 2400. The reactions under MW irradiation were carried out with a CEM Corporation Focused Microwave System, Model Discover SP. NMR spectra were recorded at room temperature with a Bruker DRX 500 instrument. Chemical shifts are reported in ppm (δ scale), and coupling constants (J) in Hz. For the determination of multiplicities, the J-MOD pulse sequence was used. Automated flow injection analyses were performed by using an HPLC/MSD system. The system comprised an Agilent 1100 micro vacuum degasser, a quaternary pump, a micro-well plate autoinjector and a 1946A MSD equipped with an electrospray ion (ESI) source operated in positive ion mode. The ESI parameters were: nebulizing gas N₂, at 35 psi; drying gas N₂, at 350 °C and 12 L/min; capillary voltage (V_{Cap}) 3000 V; and fragmentor voltage 70 V. The MSD was operated in scan mode with the mass range m/z 60–620. Samples (0.2 µL) were injected with automated needle wash directly into the solvent flow (0.3 mL/min) of MeCN/H₂O 70:30 (v/v) supplemented with 0.1% formic acid. The system was controlled by Agilent LC/MSD Chemstation software. All solvents were distilled immediately prior to use. Reagents and materials were obtained from commercial suppliers and were used without purification. The reactions were monitored by TLC on Kieselgel-G (Merck Si 254 F) layers (0.25 mm thick); solvent systems (ss): (A) CH₂Cl₂, (B) EtOAc/CH₂Cl₂ (2:98 v/v), (C) EtOAc/CH₂Cl₂ (5:95 v/v), (D) EtOAc/CH₂Cl₂ (10:90 v/v), (E) EtOAc/CH₂Cl₂ (40:60 v/v).

The spots were detected by spraying with 5% phosphomolybdic acid in 50% aqueous phosphoric acid. The $R_{\rm f}$ values were determined for the spots observed by illumination at 254 and 365 nm. Flash chromatography: Merck silica gel 60, 40–63 µm.

4.1. Chemistry

4.1.1. Synthesis of oxadiazoles 12a and 13a from steroidal carboxylic acids via acid chlorides

3β-Acetoxyandrost-5-ene-17β-carboxylic acid (**4**, 288 mg, 0.80 mmol) or 3β-acetoxyandrost-5,16-diene-17-carboxylic acid (**6**, 287 mg, 0.80 mmol) was dissolved in dry CH₂Cl₂ (10 mL), and oxalyl chloride (0.5 mL, 5.82 mmol) was added dropwise at 0 °C with constant stirring. After addition of a capillary drop of DMF, the mixture was stirred overnight at room temperature. The excess of oxalyl chloride was distilled off following the addition of toluene (2 × 10 mL) to the solution. The acid chloride (**8** or **9**) prepared *in situ* was dissolved in pyridine (20 mL), and benzamidoxime (**Ha**, 327 mg, 3 equiv.) was then added. The solution was refluxed for 7 h (method A) or irradiated with MW at 150 °C for 30 min (method B), then poured into a mixture of ice and cc. H₂SO₄ (15 mL) and extracted with CH₂Cl₂ (3 × 10 mL). The combined organic phase was dried over anhydrous Na₂SO₄, and evaporated. The crude product was purified by flash chromatography with hexane/CH₂Cl₂ = 20:80 as eluent to furnish **12a** (129 mg, 35% – method A; 155 mg, 42% – method B) or **13a** (139 mg, 38% – method A; 161 mg, 44% – method B) as a white solid. The physical and spectral characterization of **12a** and **13a** is to be found in Sections *4.1.3.1* and *4.1.3.6*.

4.1.2. General procedure for the O-acylation of amidoximes (IIa-e)

3β-Acetoxyandrost-5-ene-17 β-carboxylic acid (**4**, 288 mg, 0.80 mmol) or 3β-acetoxyandrost-5,16-diene-17-carboxylic acid (**6**, 287 mg, 0.80 mmol) was dissolved in dry CH_2Cl_2 (10 mL) and CDI (195 mg, 1.2 mmol) was added. The solution was stirred for 2 h at room temperature until completion of the coupling reaction, and 3 equiv. of benzamidoxime (**IIa**), substituted benzamidoxime (**IIb–d**) or acetamidoxime (**IIe**) was then added. After stirring for 2 h at room temperature, the mixture was evaporated and subjected to flash chromatography.

4.1.2.1. O-3β-Acetoxyandrost-5-ene-17β-acylbenzamidoxime (10a)

Compound **4** and benzamidoxime (**IIa**, 327 mg) were used in the procedure described in section 4.1.2. After purification with EtOAc/CH₂Cl₂ = 5:95 as eluent, **10a** was obtained as a white solid (325 mg, 85%), mp 177–179 °C, $R_f = 0.38$ (ss C); ¹H NMR (CDCl₃, 500 MHz): $\delta_H = 0.79$ (s, 3H, 18-H₃), 1.01 (m, 1H), 1.02 (s, 3H, 19-H₃), 1.14 (m, 2H), 1.28–1.43 (overlapping m, 3H), 1.45–1.62 (overlapping m, 5H), 1.73 (m, 1H), 1.87 (m, 3H), 2.03 (s, 3H, Ac-H₃), 2.04 (m, 2H), 2.25 (m, 2H), 2.49 (t, 1H, J = 9.4 Hz, 17-H), 4.60 (m, 1H, 3-H), 5.06 (s, 2H, NH₂), 5.38 (m, 1H, 6-H), 7.39 (m, 2H, 3'-H and 5'-H), 7.46 (m, 1H, 4'-H), 7.71 (d, 2H, J = 8.1 Hz, 2'-H and 6'-H); ¹³C NMR (CDCl₃, 125 MHz): δ_C 13.4 (C-18), 19.3 (C-19), 20.9 (CH₂), 21.4 (Ac-CH₃), 23.9 (CH₂), 24.6 (CH₂), 27.7 (CH₂), 31.8 (CH₂), 31.9 (CH), 36.6 (C-10), 37.0 (CH₂), 38.0 (CH₂), 38.3 (CH₂), 44.1 (C-13), 50.0 (CH), 54.3 (CH), 56.2 (CH), 73.8 (C-3), 122.3 (C-6), 126.7 (2C, C-2' and C-6'), 128.6 (2C, C-3' and C-5'), 130.9 (C-4'), 131.2 (C-1'), 139.7 (C-5), 156.1 (C-21), 170.5 (Ac-CO), 170.7 (C-20); ESI-MS 480 [M+H]⁺; Anal. Calcd. for C₂₉H₃₈N₂O₄ C 72.77; H 8.00. Found C 72.92; H 8.16.

4.1.2.2. O-3β-Acetoxyandrost-5-ene-17β-acyl-p-toluamidoxime (10b)

Compound **4** and *p*-toluamidoxime (**IIb**, 360 mg) were used in the procedure described in section 4.1.2. After purification with EtOAc/CH₂Cl₂ = 5:95 as eluent, **10b** was obtained as a

white solid (331 mg, 84%), mp 183–185 °C, $R_{\rm f} = 0.40$ (ss C); ¹H NMR (CDCl₃, 500 MHz): $\delta_{\rm H} = 0.80$ (s, 3H, 18-H₃), 1.01 (m, 1H), 1.02 (s, 3H, 19-H₃), 1.14 (m, 2H), 1.28–1.42 (overlapping m, 3H), 1.45–1.62 (overlapping m, 5H), 1.73 (m, 1H), 1.88 (m, 3H), 2.03 (s, 3H, Ac-H₃), 2.05 (m, 2H), 2.26 (m, 2H), 2.37 (s, 3H, 4'-CH₃), 2.49 (t, 1H, J = 9.4 Hz, 17-H), 4.60 (m, 1H, 3-H), 5.01 (bs, 2H, NH₂), 5.38 (m, 1H, 6-H), 7.20 (d, 2H, J = 8.0 Hz, 3'-H and 5'-H), 7.60 (d, 2H, J = 8.0 Hz, 2'-H and 6'-H); ¹³C NMR (CDCl₃, 125 MHz): $\delta_{\rm C}$ 13.4 (C-18), 19.3 (C-19), 20.9 (CH₂), 21.4 (2C, Ac-CH₃ and 4'-CH₃), 23.9 (CH₂), 24.6 (CH₂), 27.7 (CH₂), 31.8 (CH₂), 32.0 (CH), 36.6 (C-10), 37.0 (CH₂), 38.0 (CH₂), 38.3 (CH₂), 44.1 (C-13), 50.0 (CH), 54.4 (CH), 56.2 (CH), 73.8 (C-3), 122.3 (C-6), 126.5 (2C, C-2' and C-6'), 128.3 (C-1'), 129.3 (2C, C-3' and C-5'), 139.7 (C-5), 141.1 (C-4'), 156.0 (C-21), 170.5 (Ac-CO), 170.7 (C-20); ESI-MS 494 [M+H]⁺; Anal. Calcd. for C₃₀H₄₀N₂O₄ C 73.14; H 8.18. Found C 72.95; H 8.24.

4.1.2.3. $O-3\beta$ -Acetoxyandrost-5-ene-17 β -acyl-p-methoxybenzamidoxime (10c)

Compound **4** and *p*-methoxybenzamidoxime (**IIc**, 399 mg) were used in the procedure described in section 4.1.2. After purification with EtOAc/CH₂Cl₂ = 5:95 as eluent, **10c** was obtained as a white solid (342 mg, 84%), mp 178–180 °C, $R_f = 0.37$ (ss C); ¹H NMR (CDCl₃, 500 MHz): $\delta_H = 0.79$ (s, 3H, 18-H₃), 1.01 (m, 1H), 1.02 (s, 3H, 19-H₃), 1.14 (m, 2H), 1.28–1.42 (overlapping m, 3H), 1.44–1.62 (overlapping m, 5H), 1.73 (m, 1H), 1.87 (m, 3H), 2.02 (s, 3H, Ac-H₃), 2.05 (m, 2H), 2.25 (m, 2H), 2.48 (t, 1H, J = 9.4 Hz, 17-H), 3.82 (s, 3H, 4'-OMe), 4.60 (m, 1H, 3-H), 5.01 (bs, 2H, NH₂), 5.37 (m, 1H, 6-H), 6.89 (d, 2H, J = 8.5 Hz, 3'-H and 5'-H), 7.64 (d, 2H, J = 8.5 Hz, 2'-H and 6'-H); ¹³C NMR (CDCl₃, 125 MHz): δ_C 13.4 (C-18), 19.3 (C-19), 20.9 (CH₂), 21.4 (Ac-CH₃), 23.9 (CH₂), 24.6 (CH₂), 27.7 (CH₂), 31.8 (CH₂), 31.9 (CH), 36.6 (C-10), 37.0 (CH₂), 38.0 (CH₂), 38.3 (CH₂), 44.1 (C-13), 50.0 (CH), 54.4 (CH), 55.3 (4'-OMe), 56.2 (CH), 73.8 (C-3), 113.9 (2C, C-3' and C-5'), 122.3 (C-6), 123.4 (C-1'), 128.1 (2C, C-2' and C-6'), 139.7 (C-5), 155.8 (C-21), 161.7 (C-4'), 170.5 (Ac-

CO), 170.8 (C-20); ESI-MS 532 [M+Na]⁺; Anal. Calcd. for C₃₀H₄₀N₂O₅ C 70.84; H 7.93. Found C 71.01; H 8.09.

4.1.2.4. $O-3\beta$ -Acetoxyandrost-5-ene-17 β -acyl-p-bromobenzamidoxime (10d)

Compound **4** and *p*-bromobenzamidoxime (**IId**, 516 mg) were used in the procedure described in section 4.1.2. After purification with EtOAc/CH₂Cl₂ = 2:98 as eluent, **10d** was obtained as a white solid (384 mg, 86%), mp 165–168 °C, $R_f = 0.43$ (ss C); ¹H NMR (CDCl₃, 500 MHz): $\delta_H = 0.79$ (s, 3H, 18-H₃), 1.01 (m, 1H), 1.02 (s, 3H, 19-H₃), 1.14 (m, 2H), 1.29–1.41 (overlapping m, 3H), 1.44–1.62 (overlapping m, 5H), 1.74 (m, 1H), 1.87 (m, 3H), 2.03 (s, 3H, Ac-H₃), 2.05 (m, 2H), 2.24 (m, 2H), 2.48 (t, 1H, *J* = 9.3 Hz, 17-H), 4.59 (m, 1H, 3-H), 5.07 (bs, 2H, NH₂), 5.37 (m, 1H, 6-H), 7.53 (d, 2H, *J* = 8.5 Hz) and 7.58 (d, 2H, *J* = 8.5 Hz): 3'-H, 5'-H and 2'-H and 6'-H; ¹³C NMR (CDCl₃, 125 MHz): δ_C 13.4 (C-18), 19.3 (C-19), 20.9 (CH₂), 21.4 (Ac-CH₃), 23.9 (CH₂), 24.6 (CH₂), 27.7 (CH₂), 31.8 (CH₂), 31.9 (CH), 36.6 (C-10), 37.0 (CH₂), 38.0 (CH₂), 38.3 (CH₂), 44.2 (C-13), 50.0 (CH), 54.3 (CH), 56.2 (CH), 73.8 (C-3), 122.3 (C-6), 125.3 (C-4'), 128.2 (2C, C-2' and C-6'), 130.1 (C-1'), 131.8 (2C, C-3' and C-5'), 139.7 (C-5), 155.2 (C-21), 170.5 (Ac-CO), 170.7 (C-20); ESI-MS 559 [M+H]⁺; Anal. Calcd. for C₂₉H₃₇BrN₂O₄ C 62.48; H 6.69. Found C 62.62; H 6.58.

4.1.2.5. $O-3\beta$ -Acetoxyandrost-5-ene-17 β -acylacetamidoxime (10e)

Compound **4** and acetamidoxime (**IIe**, 179 mg) were used in the procedure described in section 4.1.2. After purification with EtOAc/CH₂Cl₂ = 20:80 as eluent, **10e** was obtained as a white solid (290 mg, 87%), mp 192–194 °C, $R_f = 0.30$ (ss E); ¹H NMR (CDCl₃, 500 MHz): δ_H 0.74 (s, 3H, 18-H₃), 0.98 (m, 1H), 1.00 (s, 3H, 19-H₃), 1.11 (m, 2H), 1.25–1.34 (overlapping m, 3H), 1.41–1.58 (overlapping m, 5H), 1.70 (m, 1H), 1.83 (m, 4H), 1.95 (s, 3H, CH₃), 1.97

(m, 2H), 2.01 (s, 3H, Ac-H₃), 2.19 (m, 1H), 2.39 (t, 1H, J = 9.4 Hz, 17-H), 4.57 (m, 1H, 3-H), 4.80 (bs, 2H, NH₂), 5.36 (m, 1H, 6-H); ¹³C NMR (CDCl₃, 125 MHz): $\delta_{\rm C}$ 13.3 (C-18), 17.0 (CH₃), 19.2 (C-19), 20.9 (CH₂), 21.4 (Ac-CH₃), 23.8 (CH₂), 24.5 (CH₂), 27.7 (CH₂), 31.7 (CH₂), 31.9 (CH), 36.6 (C-10), 36.9 (CH₂), 38.0 (CH₂), 38.3 (CH₂), 44.0 (C-13), 49.9 (CH), 54.2 (CH), 56.1 (CH), 73.8 (C-3), 122.2 (C-6), 139.7 (C-5), 154.8 (C-21), 170.5 (Ac-CO), 170.7 (C-20); ESI-MS 417 [M+H]⁺; Anal. Calcd. for C₂₄H₃₆N₂O₄ C 69.20; H 8.71. Found C 69.38; H 8.59.

4.1.2.6. $O-3\beta$ -Acetoxyandrost-5,16-diene-17-acylbenzamidoxime (11a)

Compound **6** and benzamidoxime (**Ha**, 327 mg) were used in the procedure described in section 4.1.2. After purification with EtOAc/CH₂Cl₂ = 5:95 as eluent, **11a** was obtained as a white solid (351 mg, 92%), mp 190–193 °C, $R_f = 0.36$ (ss C); ¹H NMR (CDCl₃, 500 MHz): δ_H 1.01 (s, 3H, 18-H₃), 1.06 (s, 3H, 19-H₃), 1.07 (m, 1H), 1.14 (m, 1H), 1.47–1.76 (overlapping m, 8H), 1.86 (m, 2H), 2.02 (s, 3H, Ac-H₃), 2.07 (m, 2H), 2.33 (m, 3H), 4.60 (m, 1H, 3-H), 5.11 (s, 2H, NH₂), 5.38 (m, 1H, 6-H), 6.84 (m, 1H, 16-H), 7.38 (m, 2H, 3'-H and 5'-H), 7.45 (m, 1H, 4'-H), 7.71 (m, 2H, 2'-H and 6'-H); ¹³C NMR (CDCl₃, 125 MHz): δ_C 16.1 (C-18), 19.2 (C-19), 20.7 (CH₂), 21.4 (Ac-CH₃), 27.7 (CH₂), 30.2 (CH), 31.4 (CH₂), 32.1 (CH₂), 34.8 (CH₂), 36.8 (C-10), 36.9 (CH₂), 38.1 (CH₂), 46.2 (C-13), 50.3 (CH), 56.4 (CH), 73.8 (C-3), 122.0 (C-6), 126.7 (2C, C-2' and C-6'), 128.6 (2C, C-3' and C-5'), 130.8 (C-4'), 131.2 (C-1'), 140.1 (C-5), 143.4 (C-16), 145.6 (C-17), 156.5 (C-21), 162.1 (C-20), 170.5 (Ac-CO); ESI-MS 478 [M+H]⁺; Anal. Calcd. for C₂₉H₃₆N₂O₄ C 73.08; H 7.61. Found C 73.19; H 7.82.

4.1.2.7. O-3β-Acetoxyandrost-5,16-diene-17-acyl-p-toluamidoxime (11b)

Compound **6** and *p*-toluamidoxime (**IIb**, 360 mg) were used in the procedure described in section 4.1.2. After purification with EtOAc/CH₂Cl₂ = 2:98 as eluent, **11b** was obtained as a white solid (334 mg, 85%), mp 189–192 °C, $R_f = 0.38$ (ss C); ¹H NMR (CDCl₃, 500 MHz): δ_H 1.02 (s, 3H, 18-H₃), 1.07 (s, 3H, 19-H₃), 1.08 (m, 1H), 1.14 (m, 1H), 1.47–1.76 (overlapping m, 8H), 1.86 (m, 2H),2.03 (s, 3H, Ac-H₃), 2.06 (m, 2H), 2.33 (m, 3H), 2.37 (s, 3H, 4'-CH₃), 4.61 (m, 1H, 3-H), 5.04 (bs, 2H, NH₂), 5.39 (m, 1H, 6-H), 6.84 (m, 1H, 16-H), 7.20 (d, 2H, *J* = 8.1 Hz, 3'-H and 5'-H), 7.61 (d, 2H, *J* = 8.1 Hz, 2'-H and 6'-H); ¹³C NMR (CDCl₃, 125 MHz): δ_C 16.1 (C-18), 19.2 (C-19), 20.7 (CH₂), 21.4 (Ac-CH₃), 27.7 (4'-CH₃), 30.2 (CH), 31.4 (CH₂), 32.2 (CH₂), 34.8 (CH₂), 36.8 (C-10), 36.9 (CH₂), 38.1 (CH₂), 46.2 (C-13), 50.4 (CH), 56.4 (CH), 62.1 (CH), 73.8 (C-3), 122.0 (C-6), 126.5 (2C, C-2' and C-6'), 128.3 (C-1'), 129.3 (2C, C-3' and C-5'), 140.2 (C-5), 141.1 (C-17), 143.3 (C-16), 145.7 (C-4'), 156.4 (C-21), 162.1 (C-20), 170.5 (Ac-CO); ESI-MS 492 [M+H]⁺; Anal. Calcd. for C₃₀H₃₈N₂O₄ C 73.44; H 7.81. Found C 72.31; H 7.87.

4.1.2.8. *O-3β-Acetoxyandrost-5,16-diene-17-acyl-p-methoxybenzamidoxime* (11c)

Compound **6** and *p*-methoxybenzamidoxime (**IIc**, 399 mg) were used in the procedure described in section 4.1.2. After purification with EtOAc/CH₂Cl₂ = 5:95 as eluent, **11c** was obtained as a white solid (357 mg, 88%), mp 195–197 °C, $R_f = 0.32$ (ss C); ¹H NMR (CDCl₃, 500 MHz): δ_H 1.01 (s, 3H, 18-H₃), 1.06 (s, 3H, 19-H₃), 1.08 (m, 1H), 1.13 (m, 1H), 1.47–1.75 (overlapping m, 8H), 1.86 (m, 2H), 2.02 (s, 3H, Ac-H₃), 2.05 (m, 2H), 2.33 (m, 3H), 3.81 (s, 3H, 4'-OMe), 4.60 (m, 1H, 3-H), 5.05 (bs, 2H, NH₂), 5.38 (m, 1H, 6-H), 6.83 (bs, 1H, 16-H), 6.88 (d, 2H, *J* = 8.5 Hz, 3'-H and 5'-H), 7.66 (d, 2H, *J* = 8.5 Hz, 2'-H and 6'-H); ¹³C NMR (CDCl₃, 125 MHz): δ 16.1 (C-18), 19.2 (C-19), 20.7 (CH₂), 21.4 (Ac-CH₃), 27.7 (CH₂), 30.2 (CH), 31.4 (CH₂), 32.1 (CH₂), 34.8 (CH₂), 36.8 (C-10), 36.9 (CH₂), 38.1 (CH₂), 46.2 (C-13), 50.4 (CH), 55.3 (4'-OMe), 56.4 (CH), 73.8 (C-3), 113.9 (2C, C-3' and C-

5'), 122.0 (C-6), 123.4 (C-1'), 128.1 (2C, C-2' and C-6'), 140.1 (C-5), 143.3 (C-16), 145.7 (C-17), 156.3 (C-21), 161.7 (C-4'), 162.2 (C-20), 170.5 (Ac-CO); ESI-MS 530 [M+Na]⁺; Anal. Calcd. for C₃₀H₃₈N₂O₅ C 71.12; H 7.56. Found C 71.26; H 7.40.

4.1.2.9. O-3β-Acetoxyandrost-5,16-diene-17-acyl-p-bromobenzamidoxime (11d)

Compound **6** and *p*-bromobenzamidoxime (**IId**, 516 mg) were used in the procedure described in section 4.1.2. After purification with EtOAc/CH₂Cl₂ = 5:95 as eluent, **11d** was obtained as a white solid (369 mg, 83%), mp 206–209 °C, $R_f = 0.47$ (ss C); ¹H NMR (CDCl₃, 500 MHz): $\delta_{\rm H}$ 1.02 (s, 3H, 18-H₃), 1.07 (s, 3H, 19-H₃), 1.08 (m, 1H), 1.15 (m, 1H), 1.47–1.76 (overlapping m, 8H), 1.87 (m, 2H), 2.03 (s, 3H, Ac-H₃), 2.06 (m, 2H), 2.33 (m, 3H), 4.61 (m, 1H, 3-H), 5.08 (bs, 2H, NH₂), 5.39 (m, 1H, 6-H), 6.85 (bs, 1H, 16-H), 7.53 (d, 2H, *J* = 8.4 Hz) and 7.60 (d, 2H, *J* = 8.4 Hz): 2'-H, 6'-H and 3'-H, 5'-H); ¹³C NMR (CDCl₃, 125 MHz): $\delta_{\rm C}$ 16.1 (C-18), 19.2 (C-19), 20.7 (CH₂), 21.4 (Ac-CH₃), 27.7 (CH₂), 30.2 (CH), 31.4 (CH₂), 32.2 (CH₂), 34.8 (CH₂), 36.8 (C-10), 36.9 (CH₂), 38.1 (CH₂), 46.2 (C-13), 50.4 (CH), 73.8 (C-3), 122.0 (C-6), 125.4 (C-4'), 128.2 (2C, C-2' and C-6'), 130.1 (C-1'), 131.9 (2C, C-3' and C-5'), 140.2 (C-5), 143.7 (C-16), 145.5 (C-17), 155.5 (C-21), 162.0 (C-20), 170.5 (Ac-CO); ESI-MS 557 [M+H]⁺; Anal. Calcd. for C₂₉H₃₅BrN₂O₄ C 62.70; H 6.35. Found C 62.84; H 6.54.

4.1.2.10. $O-3\beta$ -Acetoxyandrost-5,16-diene-17-acylacetamidoxime (11e)

Compound **6** and acetamidoxime (**He**, 179 mg) were used in the procedure described in section 4.1.2. After purification with EtOAc/CH₂Cl₂ = 30:70 as eluent, **11e** was obtained as a white solid (292 mg, 88%), mp 205–208 °C, $R_{\rm f} = 0.32$ (ss E); ¹H NMR (CDCl₃, 500 MHz): $\delta_{\rm H}$ 0.97 (s, 3H, 18-H₃), 1.02 (m, 1H), 1.04 (s, 3H, 19-H₃), 1.12 (m, 1H), 1.39–1.50 (overlapping

19

m, 2H), 1.53–1.72 (overlapping m, 5H), 1.84 (m, 2H), 1.98 (s, 3H, CH₃), 2.00 (m, 2H), 2.02 (s, 3H, Ac-H₃), 2.29 (m, 4H), 4.58 (m, 1H, 3-H), 4.81 (bs, 2H, NH₂), 5.37 (m, 1H, 6-H), 6.78 (m, 1H, 16-H); ¹³C NMR (CDCl₃, 125 MHz): δ 16.1 (C-18), 17.0 (CH₃), 19.2 (C-19), 20.6 (CH₂), 21.4 (Ac-CH₃), 27.7 (CH₂), 30.2 (CH), 31.4 (CH₂), 32.1 (CH₂), 34.8 (CH₂), 36.7 (C-10), 36.8 (CH₂), 38.1 (CH₂), 46.0 (C-13), 50.3 (CH), 56.4 (CH), 73.8 (C-3), 122.0 (C-6), 140.1 (C-17), 143.3 (C-16), 145.7 (C-5), 155.2 (C-21), 162.2 (C-20), 170.5 (Ac-CO); ESI-MS 415 [M+H]⁺; Anal. Calcd. for C₂₄H₃₄N₂O₄ C 69.54; H 8.27. Found C 69.66; H 8.47.

4.1.3. General procedure for the cyclocondensation of O-acylamidoximes (10a-e, 11a-e)

O-Acylamidoxime (**10a–e** or **11a–e**, 0.50 mmol) was dissolved in dry THF (5 mL) and TBAF (1M solution in THF, 0.05 mL) was added under a N₂ atmosphere. The solution was stirred for 1 h at room temperature, and then poured into water (10 mL) and extracted with CH₂Cl₂ (2 \times 10 mL). The combined organic phase was dried over anhydrous Na₂SO₄, and evaporated. The crude product was purified by flash chromatography.

4.1.3.1. 3β-Acetoxy-17β-(5'-[3'-phenyl]-1',2',4'-oxadiazolyl)androst-5-ene (12a)

10a (239 mg) was used for the reaction in the procedure described in section 4.1.3. After purification with CH₂Cl₂ as eluent, **12a** was obtained as a white solid (214 mg, 93%), mp 131–134 °C, $R_{\rm f} = 0.40$ (ss A); ¹H NMR (CDCl₃, 500 MHz): $\delta_{\rm H} = 0.65$ (s, 3H, 18-H₃), 1.03 (s, 3H, 19-H₃), 1.05 (m, 1H), 1.17 (m, 1H), 1.28 (m, 1H), 1.40–1.66 (overlapping m, 7H), 1.87 (m, 3H), 2.03 (s, 3H, Ac-H₃), 2.08 (m, 2H), 2.19 (m, 1H), 2.33 (m, 2H), 2.46 (m, 1H), 2.96 (t, 1H, J = 9.5 Hz, 17-H), 4.61 (m, 1H, 3-H), 5.39 (m, 1H, 6-H), 7.47 (m, 3H, 3"-H, 4"-H and 5"-H), 8.09 (m, 2H, 2"-H and 6"-H), ¹³C NMR (CDCl₃, 125 MHz): $\delta_{\rm C} = 13.3$ (C-18), 19.3 (C-19),

20.8 (CH₂), 21.4 (Ac-CH₃), 24.7 (CH₂), 25.3 (CH₂), 27.7 (CH₂), 31.8 (CH₂), 32.1 (CH), 36.7 (C-10), 37.0 (CH₂), 37.6 (CH₂), 38.1 (CH₂), 45.3 (C-13), 48.5 (C-17), 49.9 (CH), 56.0 (CH), 73.8 (C-3), 122.2 (C-6), 127.2 (C-1"), 127.4 (2C, C-2" and C-6"), 128.7 (2C, C-3" and C-5"), 130.9 (C-4"), 139.8 (C-5), 167.9 (C-3'), 170.5 (Ac-CO), 180.9 (C-5'); ESI-MS 462 [M+H]⁺; Anal. Calcd. for C₂₉H₃₆N₂O₃ C 75.62; H 7.88. Found C 75.78; H 8.02.

4.1.3.2. 3β-Acetoxy-17β-(5'-[3'-4"-tolyl]-1',2',4'-oxadiazolyl)androst-5-ene (**12b**)

10b (246 mg) was used for the reaction in the procedure described in section 4.1.3. After purification with CH₂Cl₂ as eluent, **12b** was obtained as a white solid (218 mg, 92%), mp 182–183 °C, $R_{\rm f} = 0.41$ (ss A); ¹H NMR (CDCl₃, 500 MHz): $\delta_{\rm H} = 0.64$ (s, 3H, 18-H₃), 1.02 (s, 3H, 19-H₃), 1.05 (m, 1H), 1.16 (m, 1H), 1.27 (m, 1H), 1.40–1.66 (overlapping m, 7H), 1.87 (m, 3H), 2.03 (s, 3H, Ac-H₃), 2.08 (m, 2H), 2.18 (m, 1H), 2.33 (m, 2H), 2.40 (s, 3H, 4"-CH₃), 2.45 (m, 1H), 2.94 (t, 1H, J = 9.5 Hz, 17-H), 4.61 (m, 1H, 3-H), 5.39 (m, 1H, 6-H), 7.27 (d, 2H, J = 8.1 Hz, 3"-H and 5"-H), 7.97 (d, 2H, J = 8.1 Hz, 2"-H and 6"-H); ¹³C NMR (CDCl₃, 125 MHz): $\delta_{\rm C} = 13.3$ (C-18), 19.3 (C-19), 20.8 (CH₂), 21.4 (Ac-CH₃), 21.5 (4"-CH₃), 24.7 (CH₂), 25.3 (CH₂), 27.7 (CH₂), 31.8 (CH₂), 32.1 (CH), 36.7 (C-10), 37.0 (CH₂), 37.6 (CH₂), 38.1 (CH₂), 45.2 (C-13), 48.5 (C-17), 49.9 (CH), 56.0 (CH), 73.8 (C-3), 122.2 (C-6), 124.3 (C-1"), 127.3 (2C, C-2" and C-6"), 129.4 (2C, C-3" and C-5"), 139.8 (C-5), 141.2 (C-4"), 168.0 (C-3'), 170.5 (Ac-CO), 180.7 (C-5'); ESI-MS 498 [M+Na]⁺; Anal. Calcd. for C₃0H₃₈N₂O₃ C 75.92; H 8.07. Found C 76.04; H 7.97.

4.1.3.3. 3β -Acetoxy-17 β -(5'-[3'-4"-methoxyphenyl]-1',2',4'-oxadiazolyl)androst-5-ene (12c) 10c (254 mg) was used for the reaction in the procedure described in section 4.1.3. After purification with hexane/CH₂Cl₂ = 20:80 as eluent, 12c was obtained as a white solid (231 mg, 94%), mp 193–196 °C, $R_{\rm f} = 0.43$ (ss A); ¹H NMR (CDCl₃, 500 MHz): $\delta_{\rm H}$ 0.64 (s, 3H,

21

18-H₃), 1.02 (s, 3H, 19-H₃), 1.05 (m, 1H), 1.17 (m, 1H), 1.26 (m, 1H), 1.39–1.67 (overlapping m, 7H), 1.87 (m, 3H), 2.03 (s, 3H, Ac-H₃), 2.08 (m, 2H), 2.17 (m, 1H), 2.33 (m, 2H), 2.44 (m, 1H), 2.93 (t, 1H, J = 9.5 Hz, 17-H), 3.86 (s, 3H, 4"-OMe), 4.62 (m, 1H, 3-H), 5.39 (m, 1H, 6-H), 6.97 (d, 2H, J = 8.5 Hz, 3"-H and 5"-H), 8.02 (d, 2H, J = 8.5 Hz, 2"-H and 6"-H); ¹³C NMR (CDCl₃, 125 MHz): δ_{C} 13.2 (C-18), 19.3 (C-19), 20.8 (CH₂), 21.4 (Ac-CH₃), 24.6 (CH₂), 25.2 (CH₂), 27.7 (CH₂), 31.8 (CH₂), 32.0 (CH), 36.7 (C-10), 37.0 (CH₂), 37.6 (CH₂), 38.1 (CH₂), 45.2 (C-13), 48.5 (C-17), 49.9 (CH), 55.3 (4"-OMe), 56.0 (CH), 73.8 (C-3), 114.1 (2C, C-3" and C-5"), 119.7 (C-1"), 122.2 (C-6), 129.0 (2C, C-2" and C-6"), 139.8 (C-5), 161.7 (C-4"), 167.6 (C-3'), 170.5 (Ac-CO), 180.6 (C-5'); ESI-MS 514 [M+Na]⁺; Anal. Calcd. for C₃₀H₃₈N₂O₄ C 73.44; H 7.81. Found C 73.62; H 7.96.

4.1.3.4. 3β-Acetoxy-17β-(5'-[3'-4"-bromophenyl]-1',2',4'-oxadiazolyl)androst-5-ene (12d)

10d (279 mg) was used for the reaction in the procedure described in section 4.1.3. After purification with hexane/CH₂Cl₂ = 20:80 as eluent, **12d** was obtained as a white solid (245 mg, 91%), mp 190–192 °C, $R_f = 0.47$ (ss A); ¹H NMR (CDCl₃, 500 MHz): $\delta_H = 0.64$ (s, 3H, 18-H₃), 1.02 (s, 3H, 19-H₃), 1.06 (m, 1H), 1.17 (m, 1H), 1.27 (m, 1H), 1.39–1.66 (overlapping m, 7H), 1.87 (m, 3H), 2.03 (s, 3H, Ac-H₃), 2.07 (m, 2H), 2.18 (m, 1H), 2.33 (m, 2H), 2.44 (m, 1H), 2.95 (t, 1H, J = 9.5 Hz, 17-H), 4.61 (m, 1H, 3-H), 5.39 (m, 1H, 6-H), 7.60 (d, 2H, J = 8.0 Hz, 2"-H and 6"-H), 7.96 (d, 2H, J = 8.0 Hz, 3"-H and 5"-H); ¹³C NMR (CDCl₃, 125 MHz): δ_C 13.3 (C-18), 19.3 (C-19), 20.8 (CH₂), 21.4 (Ac-CH₃), 24.7 (CH₂), 25.3 (CH₂), 27.7 (CH₂), 31.8 (CH₂), 32.1 (CH), 36.7 (C-10), 37.0 (CH₂), 37.6 (CH₂), 38.1 (CH₂), 45.3 (C-13), 48.5 (C-17), 49.9 (CH), 56.0 (CH), 73.8 (C-3), 122.1 (C-6), 124.4 and 126.1: C-1" and C-4", 128.9 (2C, C-2" and C-6"), 132.0 (2C, C-3" and C-5"), 139.8 (C-5), 167.2 (C-3'), 170.5 (Ac-CO), 181.2 (C-5'); ESI-MS 541 [M+H]⁺; Anal. Calcd. for C₂₉H₃₅BrN₂O₃ C 64.56; H 6.54. Found C 64.74; H 6.71.

4.1.3.5. 3β -Acetoxy-17 β -(5'-[3'-methyl]-1',2',4'-oxadiazolyl)androst-5-ene (12e)

10e (208 mg) was used for the reaction in the procedure described in section 4.1.3. After purification with EtOAc/CH₂Cl₂ = 2:98 as eluent, **12e** was obtained as a white solid (185 mg, 93%), mp 163–166 °C, $R_f = 0.43$ (ss B); ¹H NMR (CDCl₃, 500 MHz): $\delta_H 0.59$ (s, 3H, 18-H₃), 1.01 (s, 3H, 19-H₃), 1.03 (m, 1H), 1.15 (m, 1H), 1.24 (m, 1H), 1.35–1.64 (overlapping m, 7H), 1.85 (m, 3H), 2.02 (s, 3H, Ac-H₃), 2.05 (m, 2H), 2.12 (m, 1H), 2.32 (m, 3H), 2.37 (s, 3H, 3'-CH₃), 2.86 (t, 1H, J = 9.5 Hz, 17-H), 4.60 (m, 1H, 3-H), 5.38 (m, 1H, 6-H); ¹³C NMR (CDCl₃, 125 MHz): $\delta_C 11.6$ (3'-CH₃), 13.2 (C-18), 19.3 (C-19), 20.7 (CH₂), 21.4 (Ac-CH₃), 24.6 (CH₂), 25.2 (CH₂), 27.7 (CH₂), 31.8 (CH₂), 32.1 (CH), 36.6 (C-10), 37.0 (CH₂), 37.6 (CH₂), 38.1 (CH₂), 45.1 (C-13), 48.4 (C-17), 49.9 (CH), 56.0 (CH), 73.8 (C-3), 122.1 (C-6), 139.8 (C-5), 166.6 (C-3'), 170.5 (Ac-CO), 180.6 (C-5'); ESI-MS 399 [M+H]⁺; Anal. Calcd. for C₂₄H₃₄N₂O₃ C 72.33; H 8.60. Found C 72.51; H 8.54.

4.1.3.6. 3β-Acetoxy-17-(5'-[3'-phenyl]-1',2',4'-oxadiazolyl)androst-5,16-diene (13a)

11a (238 mg) was used for the reaction in the procedure described in section 4.1.3. After purification with hexane/CH₂Cl₂ = 20:80 as eluent, **13a** was obtained as a white solid (216 mg, 94%), mp 168–170 °C , $R_f = 0.47$ (ss A); ¹H NMR (CDCl₃, 500 MHz): δ_H 1.08 (s, 3H) and 1.10 (s, 3H): 18-H₃ and 19-H₃, 1.15 (m, 2H), 1.51–1.81 (overlapping m, 7H), 1.89 (m, 2H), 2.04 (s, 3H, Ac-H₃), 2.08 (m, 1H), 2.18 (m, 1H), 2.35 (m, 2H), 2.43 (m, 1H), 2.57 (m, 1H), 4.62 (m, 1H, 3-H), 5.41 (m, 1H, 6-H), 6.98 (m, 1H, 16-H), 7.48 (m, 3H, 3"-H, 4"-H and 5"-H), 8.11 (m, 2H, 2"-H and 6"-H); ¹³C NMR (CDCl₃, 125 MHz): δ_C 16.0 (C-18), 19.2 (C-19), 20.7 (CH₂), 21.4 (Ac-CH₃), 27.7 (CH₂), 30.3 (CH), 31.5 (CH₂), 32.6 (CH₂), 34.7 (CH₂), 36.8 (C-10), 36.9 (CH₂), 38.1 (CH₂), 46.8 (C-13), 50.3 (CH), 56.6 (CH), 73.8 (C-3), 122.0 (C-6), 127.1 (C-1"), 127.4 (2C, C-2" and C-6"), 128.7 (2C, C-3" and C-5"), 130.9 (C-4"), 139.8

(C-5), 140.2 (C-17), 141.4 (C-16), 168.4 (C-3'), 170.5 (Ac-CO), 173.2 (C-5'); ESI-MS 481 [M+Na]⁺; Anal. Calcd. for C₂₉H₃₄N₂O₃ C 75.95; H 7.47. Found C 76.08; H 7.65.

4.1.3.7. 3β-Acetoxy-17-(5'-[3'-4"-tolyl]-1',2',4'-oxadiazolyl)androst-5,16-diene (13b)

11b (245 mg) was used for the reaction in the procedure described in section 4.1.3. After purification with EtOAc/CH₂Cl₂ = 2:98 as eluent, **13b** was obtained as a white solid (217 mg, 92%), mp 152–155 °C, $R_f = 0.47$ (ss A); ¹H NMR (CDCl₃, 500 MHz): $\delta_{\rm H}$ 1.07 (s, 3H) and 1.10 (s, 3H): 18-H₃ and 19-H₃, 1.17 (m, 2H), 1.51–1.79 (overlapping m, 7H), 1.88 (m, 2H), 2.04 (s, 3H, Ac-H₃), 2.08 (m, 1H), 2.16 (m, 1H), 2.35 (m, 2H), 2.41 (s, 3H, 4"-CH₃), 2.43 (m, 1H), 2.56 (m, 1H), 4.62 (m, 1H, 3-H), 5.41 (m, 1H, 6-H), 6.96 (m, 1H, 16-H), 7.27 (d, 2H, J = 8.1 Hz, 3"-H and 5"-H), 7.99 (d, 2H, J = 8.1 Hz, 2"-H and 6"-H); ¹³C NMR (CDCl₃, 125MHz): $\delta_{\rm C}$ 16.0 (C-18), 19.2 (C-19), 20.7 (CH₂), 21.4 (Ac-CH₃), 21.5 (4"-CH₃), 27.7 (CH₂), 30.3 (CH), 31.5 (CH₂), 32.6 (CH₂), 34.7 (CH₂), 36.8 (C-10), 36.9 (CH₂), 38.1 (CH₂), 46.8 (C-13), 50.3 (CH), 56.6 (CH), 73.8 (C-3), 122.0 (C-6), 124.4 (C-1"), 127.4 (2C, C-2" and C-6"), 129.4 (2C, C-3" and C-5"), 139.8 (C-5), 140.2 (C-17), 141.1 (C-4"), 141.2 (C-16), 168.4 (C-3'), 170.5 (Ac-CO), 173.0 (C-5'); ESI-MS 496 [M+Na]⁺; Anal. Calcd. for C₃0H₃₆N₂O₃ C 76.24; H 7.68. Found C 76.39; H 7.65.

4.1.3.8. 3β-Acetoxy-17-(5'-[3'-4"-methoxyphenyl]-1',2',4'-oxadiazolyl)androst-5,16-diene (13c)

11c (253 mg) was used for the reaction in the procedure described in section 4.1.3. After purification with CH₂Cl₂ as eluent, **13c** was obtained as a white solid (227 mg, 93%), mp 162–164 °C, $R_{\rm f} = 0.33$ (ss A); ¹H NMR (CDCl₃, 500 MHz): $\delta_{\rm H}$ 1.07 (s, 3H) and 1.10 (s, 3H):

18-H₃ and 19-H₃, 1.16 (m, 2H), 1.53–1.78 (overlapping m, 7H), 1.87 (m, 2H), 2.04 (s, 3H, Ac-H₃), 2.06 (m, 1H), 2.17 (m, 1H), 2.35 (m, 2H), 2.40 (m, 1H), 2.54 (m, 1H), 3.86 (s, 3H, 4"-OMe), 4.61 (m, 1H, 3-H), 5.41 (m, 1H, 6-H), 6.97 (m, 3H, 16-H, 3"-H and 5"-H), 8.04 (d, 2H, J = 8.4 Hz, 2"-H and 6"-H); ¹³C NMR (CDCl₃, 125 MHz): $\delta_{\rm C}$ 16.0 (C-18), 19.2 (C-19), 20.7 (CH₂), 21.4 (Ac-CH₃), 27.7 (CH₂), 30.3 (CH), 31.5 (CH₂), 32.6 (CH₂), 34.7 (CH₂), 36.8 (C-10), 36.9 (CH₂), 38.1 (CH₂), 46.8 (C-13), 50.3 (CH), 55.3 (4"-OMe), 56.6 (CH), 73.8 (C-3), 114.1 (2C, C-3" and C-5"), 119.7 (C-1"), 122.0 (C-6), 129.0 (2C, C-2" and C-6"), 139.8 (C-5), 140.2 (C-17), 141.2 (C-16), 161.7 (C-3'), 168.1 (C-4") 170.5 (Ac-CO), 173.4 (C-5'); ESI-MS 511 [M+Na]⁺; Anal. Calcd. for C₃₀H₃₆N₂O₄ C 73.74; H 7.43. Found C 73.56; H 7.61.

4.1.3.9. 3β -Acetoxy-17-(5'-[3'-4"-bromophenyl]-1',2',4'-oxadiazolyl)androst-5,16-diene (13d) 11d (278 mg) was used for the reaction in the procedure described in section 4.1.3. After purification with CH₂Cl₂ as eluent, 13d was obtained as a white solid (255 mg, 95%), mp 179–181 °C, $R_f = 0.51$ (ss A); ¹H NMR (CDCl₃, 500 MHz): δ_H 1.07 (s, 3H) and 1.10 (s, 3H): 18-H₃ and 19-H₃, 1.17 (m, 2H), 1.50–1.80 (overlapping m, 7H), 1.89 (m, 2H), 2.04 (s, 3H, Ac-H₃), 2.08 (m, 1H), 2.17 (m, 1H), 2.35 (m, 2H), 2.42 (m, 1H), 2.54 (m, 1H), 4.62 (m, 1H, 3-H), 5.41 (m, 1H, 6-H), 6.98 (m, 1H, 16-H), 7.61 (d, 2H, J = 8.4 Hz, 2"-H and 6"-H), 7.98 (d, 2H, J = 8.4 Hz, 3"-H and 5"-H); ¹³C NMR (CDCl₃, 125 MHz): δ_C 16.0 (C-18), 19.2 (C-19), 20.6 (CH₂), 21.4 (Ac-CH₃), 27.7 (CH₂), 30.3 (CH), 31.5 (CH₂), 32.7 (CH₂), 34.6 (CH₂), 36.8 (C-10), 36.9 (CH₂), 38.1 (CH₂), 46.8 (C-13), 50.3 (CH), 56.6 (CH), 73.8 (C-3), 122.0 (C-6), 125.5 and 126.2: C-1" and C-4", 129.0 (2C, C-2" and C-6"), 132.0 (2C, C-3" and C-5"), 139.6 (C-5), 140.2 (C-17), 141.8 (C-16), 167.7 (C-3'), 170.5 (Ac-CO), 173.4 (C-5'); ESI-MS 538 [M+H]⁺; Anal. Calcd. for C₂₉H₃₃BrN₂O₃ C 64.80; H 6.19. Found C 64.98; H 6.31.

4.1.3.10. 3β-Acetoxy-17-(5'-[3'-4"-methyl]-1',2',4'-oxadiazolyl)androst-5,16-diene (13e)

25

11e (207 mg) was used for the reaction in the procedure described in section 4.1.3. After purification with CH₂Cl₂ as eluent, **13e** was obtained as a white solid (180 mg, 91%), mp 92–94 °C, $R_{\rm f} = 0.49$ (ss B); ¹H NMR (CDCl₃, 500 MHz): $\delta_{\rm H}$ 1.02 (s, 3H) and 1.07 (s, 3H): 18-H₃ and 19-H₃, 1.15 (m, 2H), 1.45–1.78 (overlapping m, 7H), 1.87 (m, 2H), 2.03 (s, 3H, Ac-H₃), 2.05 (m, 1H), 2.13 (m, 1H), 2.34 (m, 2H), 2.39 (s, 3H, 3'-CH₃), 2.42 (m, 2H), 4.61 (m, 1H, 3-H), 5.39 (m, 1H, 6-H), 6.88 (m, 1H, 16-H); ¹³C NMR (CDCl₃, 125 MHz): $\delta_{\rm C}$ 11.7 (3'-CH₃), 16.0 (C-18), 19.2 (C-19), 20.6 (CH₂), 21.4 (Ac-CH₃), 27.7 (CH₂), 30.2 (CH), 31.4 (CH₂), 32.6 (CH₂), 34.6 (CH₂), 36.8 (C-10), 36.9 (CH₂), 38.1 (CH₂), 46.7 (C-13), 50.3 (CH), 56.6 (CH), 73.8 (C-3), 122.0 (C-6), 139.7 (C-17), 140.2 (C-5), 141.2 (C-16), 167.1 (C-3'), 170.5 (Ac-CO), 173.0 (C-5'); ESI-MS 397 [M+H]⁺; Anal. Caled. for C₂₄H₃₂N₂O₃ C 72.70; H 8.13. Found C 72.84; H 8.21.

4.1.4. General procedure for the synthesis of oxadiazoles 14a-e and 15a-e

Compound **12a–e** or **13a–e** (0.30 mmol) was dissolved in MeOH (10 mL), and KOH (50 mg, 0.89 mmol) was added. The solution was stirred at room temperature for 8 h, diluted with water and neutralized with dilute HCl. The precipitate that formed was filtered off, washed with water and dried.

4.1.4.1. 3β-Hydroxy-17β-(5'-[3'-phenyl]-1',2',4'-oxadiazolyl)androst-5-ene (14a)

Substrate: **12a** (138 mg). **14a** was obtained as a white solid (116 mg, 92%), mp 184–186 °C, $R_{\rm f} = 0.34$ (ss C); ¹H NMR (CDCl₃, 500 MHz): $\delta_{\rm H}$ 0.65 (s, 3H, 18-H₃), 1.01 (s, 3H, 19-H₃), 1.03 (m, 1H), 1.12 (m, 1H), 1.27 (m, 1H), 1.40–1.70 (overlapping m, 7H), 1.85 (m, 3H), 2.08 (m, 2H), 2.13–2.33 (overlapping m, 3H), 2.46 (m, 1H), 2.95 (t, 1H, J = 9.5 Hz, 17-H), 3.53 (m, 1H, 3-H), 5.37 (m, 1H, 6-H), 7.47 (m, 3H, 3"-H, 4"-H and 5"-H), 8.09 (m, 2H, 2"-H and 6"-H); ¹³C NMR (CDCl₃, 125 MHz): $\delta_{\rm C}$ 13.3 (C-18), 19.4 (C-19), 20.8 (CH₂), 24.7 (CH₂), 25.3 (CH₂), 31.6 (CH₂), 31.8 (CH₂), 32.1 (CH), 36.6 (C-10), 37.3 (CH₂), 37.7 (CH₂), 42.2 (CH₂), 45.3 (C-13), 48.6 (C-17), 50.0 (CH), 56.1 (CH), 71.7 (C-3), 121.2 (C-6), 127.1 (C-1"), 127.4 (2C, C-2" and C-6"), 128.7 (2C, C-3" and C-5"), 130.9 (C-4"), 140.9 (C-5), 167.9 (C-3'), 180.9 (C-5'); ESI-MS 419 [M+H]⁺; Anal. Calcd. for C₂₇H₃₄N₂O₂ C 77.48; H 8.19. Found C 77.60; H 8.25.

4.1.4.2. 3β-Hydroxy-17β-(5'-[3'-4"-tolyl]-1',2',4'-oxadiazolyl)androst-5-ene (14b)

Substrate: **12b** (142 mg). **14b** was obtained as a white solid (121 mg, 93%), mp 162–164 °C, $R_{\rm f} = 0.33$ (ss C); ¹H NMR (CDCl₃, 500 MHz): $\delta_{\rm H}$ 0.64 (s, 3H, 18-H₃), 1.01 (s, 3H, 19-H₃), 1.03 (m, 1H), 1.11 (m, 1H), 1.27 (m, 1H), 1.39–1.69 (overlapping m, 7H), 1.85 (m, 3H), 2.08 (m, 2H), 2.13–2.33 (overlapping m, 3H), 2.40 (s, 3H, 4"-CH₃), 2.44 (m, 1H), 2.94 (t, 1H, J =9.5 Hz, 17-H), 3.53 (m, 1H, 3-H), 5.37 (m, 1H, 6-H), 7.27 (d, 2H, J = 8.1 Hz, 3"-H and 5"-H), 7.97 (d, 2H, J = 8.1 Hz, 2"-H and 6"-H); ¹³C NMR (CDCl₃, 125 MHz): & 13.3 (C-18), 19.4 (C-19), 20.8 (CH₂), 21.5 (4"-CH₃), 24.7 (CH₂), 25.3 (CH₂), 31.6 (CH₂), 31.8 (CH₂), 32.1 (CH), 36.6 (C-10), 37.3 (CH₂), 37.7 (CH₂), 42.2 (CH₂), 45.3 (C-13), 48.6 (C-17), 50.0 (CH), 56.1 (CH), 71.7 (C-3), 121.2 (C-6), 124.3 (C-1"), 127.3 (2C, C-2" and C-6"), 129.4 (2C, C-3" and C-5"), 140.9 and 141.2: C-5 and C-4", 167.9 (C-3'), 180.7 (C-5'); ESI-MS 433 [M+H]⁺; Anal. Calcd. for C₂₈H₃₆N₂O₂ C 77.74; H 8.39. Found C 77.86; H 8.27.

4.1.4.3. 3β -Hydroxy-17 β -(5'-[3'-4"-methoxyphenyl]-1',2',4'-oxadiazolyl)androst-5-ene (14c) Substrate: **12c** (147 mg). **14c** was obtained as a white solid (128 mg, 95%), mp 155–158 °C, $R_{\rm f} = 0.45$ (ss C); ¹H NMR (CDCl₃, 500 MHz): $\delta_{\rm H} = 0.64$ (s, 3H, 18-H₃), 1.00 (s, 3H, 19-H₃), 1.03 (m, 1H), 1.10 (m, 1H), 1.25 (m, 1H), 1.40–1.66 (overlapping m, 7H), 1.85 (m, 3H), 2.03–2.45 (overlapping m, 6H), 2.92 (t, 1H, J = 9.5 Hz, 17-H), 3.53 (m, 1H, 3-H), 3.85 (s, 3H, 4"-OMe), 5.36 (m, 1H, 6-H), 6.97 (d, 2H, J = 8.5 Hz, 3"-H and 5"-H), 8.02 (d, 2H, J = 8.5 Hz, 2"-H and 6"-H); ¹³C NMR (CDCl₃, 125 MHz): δ_{C} 13.2 (C-18), 19.4 (C-19), 20.8 (CH₂), 24.7 (CH₂), 25.2 (CH₂), 31.6 (CH₂), 31.8 (CH₂), 32.1 (CH), 36.6 (C-10), 37.2 (CH₂), 37.7 (CH₂), 42.2 (CH₂), 45.2 (C-13), 48.5 (C-17), 50.0 (CH), 55.3 (4"-OMe), 56.1 (CH), 71.7 (C-3), 114.1 (2C, C-3" and C-5"), 119.6 (C-1"), 121.2 (C-6), 129.0 (2C, C-2" and C-6"), 140.9 (C-5), 161.7 (C-4"), 167.6 (C-3'), 180.6 (C-5'); ESI-MS 449 [M+H]⁺; Anal. Calcd. for C₂₈H₃₆N₂O₃ C 74.97; H 8.09. Found C 75.14; H 8.24.

4.1.4.4. 3β-Hydroxy-17β-(5'-[3'-4"-bromophenyl]-1',2',4'-oxadiazolyl)androst-5-ene (**14d**) Substrate: **12d** (162 mg). **14d** was obtained as a white solid (140 mg, 94%), mp 172–174 °C, $R_{\rm f} = 0.39$ (ss C); ¹H NMR (CDCl₃, 500 MHz): $\delta_{\rm H} 0.64$ (s, 3H, 18-H₃), 1.00 (s, 3H, 19-H₃), 1.03 (m, 1H), 1.11 (m, 1H), 1.25 (m, 1H), 1.39–1.68 (overlapping m, 7H), 1.85 (m, 3H), 2.07 (m, 2H), 2.13–2.32 (overlapping m, 3H), 2.44 (m, 1H), 2.94 (t, 1H, J = 9.5 Hz, 17-H), 3.53 (m, 1H, 3-H), 5.36 (m, 1H, 6-H), 7.60 (d, 2H, J = 8.0 Hz, 2"-H and 6"-H), 7.96 (d, 2H, J = 8.0Hz, 3"-H and 5"-H); ¹³C NMR (CDCl₃, 125 MHz): $\delta_{\rm C}$ 13.3 (C-18), 19.4 (C-19), 20.8 (CH₂), 24.7 (CH₂), 25.3 (CH₂), 31.6 (CH₂), 31.8 (CH₂), 32.1 (CH), 36.6 (C-10), 37.3 (CH₂), 37.7 (CH₂), 42.2 (CH₂), 45.3 (C-13), 48.5 (C-17), 50.0 (CH), 56.1 (CH), 71.7 (C-3), 121.2 (C-6), 125.4 and 126.1: C-1" and C-4", 128.9 (2C, C-2" and C-6"), 132.0 (2C, C-3" and C-5"), 140.9 (C-5), 167.2 (C-3'), 181.2 (C-5'); ESI-MS 261; Anal. Calcd. for C₂₇H₃₃BrN₂O₂ C 65.19; H 6.69. Found C 65.31; H 6.85.

4.1.4.5. 3β -Hydroxy-17 β -(5'-[3'-methyl]-1',2',4'-oxadiazolyl)androst-5-ene (14e)

Substrate: **12e** (120 mg). **14e** was obtained as a white solid (93 mg, 87%), mp 152–155 °C, $R_f = 0.32$ (ss D); ¹H NMR (CDCl₃, 500 MHz): $\delta_H = 0.58$ (s, 3H, 18-H₃), 0.99 (s, 3H, 19-H₃), 1.02 (m, 1H), 1.22 (m, 1H), 1.24 (m, 1H), 1.32–1.83 (overlapping m, 10H), 2.02 (m, 2H), 2.10 (m, 1H), 2.29 (m, 3H), 2.37 (s, 3H, 3'-CH₃), 2.85 (t, 1H, J = 9.5 Hz, 17-H), 3.51 (m, 1H, 3-H),

5.35 (m, 1H, 6-H); ¹³C NMR (CDCl₃, 125 MHz): $\delta_{\rm C}$ 11.6 (3'-CH₃), 13.2 (C-18), 19.4 (C-19), 20.8 (CH₂), 24.6 (CH₂), 25.2 (CH₂), 31.6 (CH₂), 31.8 (CH₂), 32.1 (CH), 36.5 (C-10), 37.2 (CH₂), 37.6 (CH₂), 42.2 (CH₂), 45.2 (C-13), 48.4 (C-17), 50.0 (CH), 56.1 (CH), 71.6 (C-3), 121.2 (C-6), 140.9 (C-5), 166.6 (C-3'), 180.6 (C-5'); ESI-MS 357 [M+H]⁺ 356.50; Anal. Calcd. for C₂₂H₃₂N₂O₂ C 74.12; H 9.05. Found C 74.26; H 8.93.

4.1.4.6. 3β-Hydroxy-17-(5'-[3'-phenyl]-1',2',4'-oxadiazolyl)androst-5,16-diene (15a)

Substrate: **13a** (138 mg). **15a** was obtained as a white solid (117 mg, 94%), mp 182–185 °C, $R_{\rm f} = 0.33$ (ss C); ¹H NMR (CDCl₃, 500 MHz): $\delta_{\rm H}$ 1.09 (s, 6H): 18-H₃ and 19-H₃, 1.11 (m, 2H), 1.48–1.87 (overlapping m, 9H), 2.07 (m, 1H), 2.18 (m, 1H), 2.26 (m, 1H), 2.33 (m, 1H), 2.43 (m, 1H), 2.56 (m, 1H), 3.54 (m, 1H, 3-H), 5.38 (m, 1H, 6-H), 6.98 (m, 1H, 16-H), 7.48 (m, 3H, 3"-H, 4"-H and 5"-H), 8.11 (m, 2H, 2"-H and 6"-H); ¹³C NMR (CDCl₃, 125 MHz): $\delta_{\rm C}$ 16.0 (C-18), 19.3 (C-19), 20.7 (CH₂), 30.3 (CH), 31.5 (CH₂), 31.6 (CH₂), 32.7 (CH₂), 34.7 (CH₂), 36.7 (C-10), 37.1 (CH₂), 42.3 (CH₂), 46.8 (C-13), 50.4 (CH), 56.7 (CH), 71.7 (C-3), 121.0 (C-6), 127.2 (C-1"), 127.4 (2C, C-2" and C-6"), 128.7 (2C, C-3" and C-5"), 130.9 (C-4"), 139.8 (C-5), 141.3 (C-17), 141.5 (C-16), 168.4 (C-3'), 173.2 (C-5'); ESI-MS 417 [M+H]⁺; Anal. Calcd. for C₂₇H₃₂N₂O₂ C 77.85; H 7.74. Found C 78.01; H 7.86.

4.1.4.7. 3β-Hydroxy-17-(5'-[3'-4"-tolyl]-1',2',4'-oxadiazolyl)androst-5,16-diene (15b)

Substrate: **13b** (142 mg). **15b** was obtained as a white solid (120 mg, 93%), mp 186–188 °C, $R_{\rm f} = 0.34$ (ss C); ¹H NMR (CDCl₃, 500 MHz): $\delta_{\rm C}$ 1.08 (s, 3H) and 1.09 (s, 3H): 18-H₃ and 19-H₃, 1.11 (m, 2H), 1.48–1.88 (overlapping m, 9H), 2.07 (m, 1H), 2.18 (m, 1H), 2.26 (m, 1H), 2.33 (m, 1H), 2.41 (s, 3H, 4"-CH₃), 2.43 (m, 1H), 2.56 (m, 1H), 3.54 (m, 1H, 3-H), 5.38 (m, 1H, 6-H), 6.97 (m, 1H, 16-H), 7.28 (d, 2H, J = 8.1 Hz, 3"-H and 5"-H), 8.00 (d, 2H, J =

8.1 Hz, 2"-H and 6"-H); ¹³C NMR (CDCl₃, 125 MHz): δ_{C} 16.0 (C-18), 19.3 (C-19), 20.7 (CH₂), 21.5 (4"-CH₃), 30.3 (CH), 31.5 (CH₂), 31.6 (CH₂), 32.6 (CH₂), 34.7 (CH₂), 36.7 (C-10), 37.1 (CH₂), 42.3 (CH₂), 46.8 (C-13), 50.4 (CH), 56.7 (CH), 71.7 (C-3), 121.0 (C-6), 124.4 (C-1"), 127.4 (2C, C-2" and C-6"), 129.4 (2C, C-3" and C-5"), 139.8 (C-5), 141.2 (2C, C-17 and C-4"), 141.3 (C-16), 168.4 (C-3'), 173.0 (C-5'); ESI-MS 431 [M+H]⁺; Anal. Calcd. for C₂₈H₃₄N₂O₂ C 78.10; H 7.96. Found C 77.92; H 8.14.

4.1.4.8. 3β-Hydroxy-17-(5'-[3'-4"-methoxyphenyl]-1',2',4'-oxadiazolyl)androst-5,16-diene
(15c)

Substrate: **13c** (147 mg). **15c** was obtained as a white solid (127 mg, 95%), mp 172–174 °C, $R_{\rm f} = 0.39$ (ss C); ¹H NMR (CDCl₃, 500 MHz): $\delta_{\rm H}$ 1.07 (s, 3H) and 1.08 (s, 3H): 18-H₃ and 19-H₃, 1.11 (m, 2H), 1.51–1.87 (overlapping m, 9H), 2.06 (m, 1H), 2.17 (m, 1H), 2.28–2.33 (m, 2H), 2.42 (m, 1H), 2.55 (m, 1H), 3.54 (m, 1H, 3-H), 3.86 (s, 3H, 4"-OMe), 5.37 (m, 1H, 6-H), 6.97 (m, 3H, 16-H, 3"-H and 5"-H), 8.04 (d, 2H, J = 8.4 Hz, 2"-H and 6"-H); ¹³C NMR (CDCl₃, 125 MHz): $\delta_{\rm C}$ 16.0 (C-18), 19.3 (C-19), 20.7 (CH₂), 30.3 (CH), 31.5 (CH₂), 31.6 (CH₂), 32.6 (CH₂), 34.7 (CH₂), 36.7 (C-10), 37.1 (CH₂), 42.3 (CH₂), 46.8 (C-13), 50.4 (CH), 55.3 (4"-OMe), 56.7 (CH), 71.6 (C-3), 114.1 (2C, C-3" and C-5"), 119.7 (C-1"), 121.0 (C-6), 129.0 (2C, C-2" and C-6"), 139.8 (C-5), 141.2 (C-16), 141.3 (C-17), 161.7 (C-3'), 168.1 (C-4"), 173.4 (C-5'); ESI-MS 448 [M+H]⁺; Anal. Calcd. for C₂₈H₃₄N₂O₃ C 75.31; H 7.67. Found C 75.56; H 7.77.

4.1.4.9. 3β-Hydroxy-17-(5'-[3'-4"-bromophenyl]-1',2',4'-oxadiazolyl)androst-5,16-diene
(15d)

Substrate: **13d** (161 mg). **15d** was obtained as a white solid (138 mg, 93%), mp 176–179 °C, $R_{\rm f} = 0.37$ (ss C); ¹H NMR (CDCl₃, 500 MHz): $\delta_{\rm H}$ 1.07 (s, 3H) and 1.08 (s, 3H): 18-H₃ and

19-H₃, 1.11 (m, 2H), 1.49–1.87 (overlapping m, 9H), 2.06 (m, 1H), 2.18 (m, 1H), 2.24–2.34 (m, 2H), 2.43 (m, 1H), 2.54 (m, 1H), 3.54 (m, 1H, 3-H), 5.37 (m, 1H, 6-H), 6.98 (m, 1H, 16-H), 7.61 (d, 2H, J = 8.4 Hz, 2"-H and 6"-H), 7.98 (d, 2H, J = 8.4 Hz, 3"-H and 5"-H); ¹³C NMR (CDCl₃, 125 MHz): $\delta_{\rm C}$ 16.0 (C-18), 19.3 (C-19), 20.7 (CH₂), 30.3 (CH), 31.4 (CH₂), 31.6 (CH₂), 32.7 (CH₂), 34.7 (CH₂), 36.7 (C-10), 37.1 (CH₂), 42.3 (CH₂), 46.8 (C-13), 50.4 (CH), 56.6 (CH), 71.6 (C-3), 121.0 (C-6), 125.5 and 126.1: C-1" and C-4", 128.9 (2C, C-2" and C-6"), 132.0 (2C, C-3" and C-5"), 139.6 (C-5), 141.3 (C-17), 141.8 (C-16), 167.7 (C-3'), 173.4 (C-5'); ESI-MS 261; Anal. Calcd. for C₂₇H₃₁BrN₂O₂ C 65.45; H 6.31. Found C 65.63; H 6.49.

4.1.4.10. 3β-Hydroxy-17-(5'-[3'-methyl]-1',2',4'-oxadiazolyl)androst-5,16-diene (15e)

Substrate: **13e** (119 mg). **15e** was obtained as a white solid (95 mg, 89%), mp 141–143 °C, $R_f = 0.31$ (ss D); ¹H NMR (CDCl₃, 500 MHz): $\delta_H 1.02$ (s, 3H) and 1.06 (s, 3H): 18-H₃ and 19-H₃, 1.10 (m, 2H), 1.44–1.77 (overlapping m, 7H), 1.86 (m, 2H), 2.05 (m, 1H), 2.14 (m, 1H), 2.25 (m, 1H), 2.31 (m, 1H), 2.39 (s, 3H, 3'-CH₃), 2.42 (m, 2H), 3.52 (m, 1H, 3-H), 5.37 (m, 1H, 6-H), 6.88 (m, 1H, 16-H); ¹³C NMR (CDCl₃, 125 MHz): $\delta_C 11.7$ (3'-CH₃), 16.0 (C-18), 19.3 (C-19), 20.6 (CH₂), 30.3 (CH), 31.2 (CH₂), 31.6 (CH₂), 32.6 (CH₂), 34.6 (CH₂), 36.7 (C-10), 37.1 (CH₂), 42.2 (CH₂), 46.7 (C-13), 50.4 (CH), 56.7 (CH), 71.6 (C-3), 121.0 (C-6), 141.2 (2C, C-5 and C-17), 141.3 (C-16), 167.1 (C-3'), 173.0 (C-5'). ESI-MS 355 [M+H]⁺; Anal. Calcd. for C₂₂H₃₀N₂O₂ C 74.54; H 8.53. Found C 74.72; H 8.59.

4.2. Pharmacology

4.2.1. Determination of $C_{17,20}$ -lyase activity and its inhibition in the rat testis

The extents of the inhibitory effects exerted on the activity of C_{17,20}-lyase by the newly synthesized oxadiazolyl steroids (14a-e, 15a-e) were determined via an in vitro radiosubstrate incubation method described earlier [21, 43]. In brief, adult Wistar rat testicular tissue was homogenized with an Ultra-Turrax in 0.1 M HEPES buffer (pH = 7.3) containing 1 mM EDTA and 1 mM dithiotreitol. Aliquots of this homogenate were incubated in 200 μ L final volume at 37 °C for 20 min in the presence of 0.1 mM NADPH. 1 µM [³H]17hydroxyprogesterone was added to the incubate in 20 µL of a 25 v/v% propylene glycol solution. Test compounds were applied at 50 µM and introduced in 10 µL of DMSO. (These organic solvent contents did not reduce the enzyme activity substantially.) Control incubates without test substances, and incubates with the reference compound ketoconazole and abiraterone were also prepared in every series. Following incubation, the androst-4-ene-3,17dione formed and the 17-hydroxyprogesterone remaining were isolated through extraction and TLC. C_{17,20}-lyase activity was calculated from the radioactivity of the androst-4-ene-3,17dione obtained. At least two experiments were performed with each test compound and the standard deviations of the mean enzyme activity results were within \pm 10%. IC₅₀ values were determined for the more active inhibitors. In this case, the conversion was measured at 5 or 6 different concentrations of the test compound. IC50 results were calculated by linear regression analysis following a logit-log transformation of the data, and the standard deviations were determined from the fitted lines.

4.2.2. Determination of antiproliferative effects

Human cancer cell lines (Hela, MCF-7, A2780 and A431, isolated from cervical adenocarcinoma, breast adenocarcinoma, ovarian cancer and skin epidermoid carcinoma, respectively) were maintained in minimal essential medium supplemented with 10% fetal bovine serum, 1% non-essential aminoacids and an antibiotic-antimycotic mixture. All cell lines were purchased from the European Collection of Cell Cultures (Salisbury, UK) and grown in a humidified atmosphere of 5% CO₂ at 37 °C. For pharmacological investigations, 10 mM stock solutions of the tested compounds were prepared with dimethyl sulfoxide. The highest applied dimethyl sulfoxide concentration of the medium (0.3%) did not have any substantial effect on the proliferation of the cells. All the chemicals, if otherwise not specified, were purchased from Sigma-Aldrich Ltd. (Budapest, Hungary). Cells were seeded onto 96well plates at a density of 5000 cells/well and allowed to stand overnight, after which the medium containing the tested compound was added. After a 72-h incubation, viability was determined by the addition of 20 µL of MTT ([3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide]) solution (5 mg/mL). The precipitated formazan crystals were solubilized in dimethyl sulfoxide and the absorbance was determined at 545 nm with an ELISA reader [45]. Two independent experiments were performed with 5 parallel wells; cisplatin, an agent administered clinically in the treatment of certain gynecological malignancies, was used as a positive control. All tested agents were screened at 10 and 30 μ M first and when the lower concentration resulted in higher than 50% growth inhibition, and therefore an IC₅₀ value around 10 µM could be expected on any of the cell lines, the assay

was repeated with a set of dilutions. Sigmoidal dose–response curves were fitted to the measured data. Calculations of IC_{50} values were performed by means of GraphPad Prism 4.0 (GraphPad Software; San Diego, CA, USA).

Acknowledgments

The financial support by the Hungarian Scientific Research Fund (OTKA K-101659) and the New Hungary Development Plan (TÁMOP-4.2.2.A-11/1/KONV-2012-0047 and TÁMOP-4.2.2.A-11/1/KONV-2012-0035) is gratefully acknowledged. The research by D. Kovács was carried out in the frame of TÁMOP 4.2.4. A/2-11-1-2012-0001 "National Excellence Program Elaborating and operating an inland student researcher personal support system". The project was subsidized by the European Union and co-financed by the European Social Fund. The work of N. Szabó was supported by a PhD Fellowship of the Talentum Fund of Richter Gedeon Plc.

Supplementary data

Supplementary data related to this article can be found at

References

[1] R. Singh, G. Panda, An overview of synthetic approaches for heterocyclic steroids, Tetrahedron 69 (2013) 2853–2884.

[2] R. Dua, S. Shrivastava, S.K. Sonwane, S.K. Srivastava, Pharmacological significance of sythetic heterocycles scaffold: a review, Adv. Biol. Res. 5 (2011) 120–144.

[3] S.V. Stulov, A.Yu. Misharin, Synthesis of steroids with nitrogen-containing substituents in ring D, Chem. Heterocycl. Compd. 48 (2013) 1431–1472.

[4] M. Gheorghiade, D.J. van Velduisen, W.S. Colucci, Contemporary use of digoxin in the management of cardiovascular disorders, Circulation 113 (2006) 2556–2564.

[5] E. Hamad, P.J. Mather, S. Srinivasan, S. Rubin, D.J. Whellan, A.M. Feldman, Pharmacologic therapy of chronic heart failure, Am. J. Cardiovasc. Drugs 7 (2007) 235–248.

[6] R.A. Newman, P. Yang, A.D. Pawlus, K.I. Block, Cardiac glycosides as novel cancer therapeutic agents, Molec. Interven. 8 (2008) 36–49.

[7] Gy. Schneider, J. Wölfling, Synthetic cardenolides and related compounds, Curr. Org. Chem. 8 (2004) 1381–1403.

[8] J.A.R. Salvador, R.M.A. Pinto, S.M. Silvestre, Steroidal 5 α -reductase and 17 α -hydroxylase/17,20-lyase (CYP17) inhibitors useful int he treatment of prostatic diseases, J. Steroid. Biochem. Mol. Biol. (2013), http://dx.doi.org/10.1016/j.jsbmb.2013.04.006.

[9] N.M. DeVore, E.E. Scott, Structures of cytochrome P450 17A1 with prostate cancer drugs abiraterone and TOK-001, Nature 482 (2012) 116–120.

[10] J.P. Burkhart, C.A. Gates, M.E. Laughlin, R.J. Resvick, N.P. Peet, Inhibition of steroid $C_{17(20)}$ lyase with C-17-heteroaryl steroids, Bioorg. Med. Chem. 4 (1996) 1411–20.

[11] J. Chao, Y. Ling, X. Liu, X. Luo, A.M.H. Brodie, A versatile synthesis of 17heteroaryl androstenes via palladium-mediated Suzuki cross-coupling with heteroaryl boronic acids, Steroids 71 (2006) 585–90.

[12] N. Zhu, Y. Ling, X. Lei, V. Handratta, A.M.H. Brodie, Novel P450_{17 α} inhibitors: 17-(20-oxazolyl)- and 17-(20-thiazolyl)-androstene derivatives, Steroids 68 (2003) 603–611.

[13] N. Zhu, N. Zhao, L. Xiaoping, L. Yangzhi, V. Handratta, A.M.H. Brodie, The synthesis of some 17-(20-oxazolyl)-androsta-5,16-diene derivatives as 17α -hydroxylase/C_{17,20}-lyase inhibitors. J. Chin. Pharm. Sci. 10 (2001) 14–19.

[14] Y.Z. Ling, J.S. Li, Y. Liu, K. Kato, G.T. Klus, A.M.H. Brodie, 17-Imidazolyl, pyrazolyl and isoxazolyl androstene derivatives. Novel steroid inhibitors of human cytochrome $C_{17,20}$ -lyase (P450_{17 α}), J. Med. Chem. 40 (1997) 3297–3304.

[15] V.C.O. Njar, G.T. Klus, A.M.H. Brodie, Nucleophilic vinylic "addition-elimination" substitution reaction of 3β -acetoxy-17-chloro-16-formylandrosta-5,16-diene: A novel and general route to 17-substituted steroids. Part 1 - Synthesis of novel 17-azolyl- Δ^{16} steroids; inhibitors of 17 α -hydroxylase/17,20-lyase (17 α -lyase), Bioorg. Med. Chem. Lett. 6 (1996) 2777–2782.

[16] C.J. Ru, X.P. Lei, Y. Ling, L.H. Zhang, V. Handratta, A.M.H. Brodie, Syntheses and pharmacological activity of some 17-[(2'-substituted)-4'-pyrimidyl]androstene derivatives as inhibitors of human 17α -hydroxylase/C_{17,20}-lyase, J. Chin. Pharm. Sci. 10 (2001) 3–8.

[17] T.S. Vasaitis, V.C.O. Njar, Novel, potent anti-androgens of therapeutic potential: recent advances and promising developments, Future Med Chem 2 (2010) 667–680.

[18] É. Frank, Gy. Schneider, Synthesis of sex hormone-derived modified steroids possessing antiproliferative activity, J. Steroid. Biochem. Mol. Biol. (2013), http://dx.doi.org/10.1016/j.jsbmb.2013.02.018.

[19] D. Kovács, Z. Kádár, G. Mótyán, Gy. Schneider, J. Wölfling, I. Zupkó, É. Frank, Synthesis, characterization and biological evaluation of some novel 17-isoxazoles in the estrone series, Steroids 77 (2012) 1075-1085.

[20] É. Frank, J. Molnár, I. Zupkó, Z. Kádár, J. Wölfling, Synthesis of novel steroidal 17α -triazolyl derivatives via Cu(I)-catalyted azide-alkyne cycloaddition, and an evaluation of their cytotoxic activity *in vitro*, Steroids 76 (2011) 1141–1148.

[21] Z. Iványi, N. Szabó, J. Huber, J. Wölfling, I. Zupkó, M. Szécsi, T. Wittmann, Gy. Schneider, Synthesis of D-ring-substituted (5'R)- and (5'S)-17 β -pyrazolinylandrostene epimers and comparison of their potential anticancer activities, Steroids 77 (2012) 566–574.

[22] D. Ondré, J. Wölfling, Z. Iványi, Gy. Schneider, I. Tóth, M. Szécsi, J. Julesz, Neighboring group participation Part 17 Stereoselective synthesis of some steroidal 2-oxazolidones, as novel potential inhibitors of 17α -hydroxylase-C_{17,20}-lyase, Steroids 73 (2008) 1375–1384.

[23] Z. Kádár, Á. Baji, I. Zupkó, J. Wölfling, É. Frank, Efficient approach to novel 1α -triazolyl- 5α -androstane derivatives as potent antiproliferative agents, Org. Biomol. Chem. 9 (2011) 8051–8057.

[24] Z. Kádár, Gy. Schneider, I. Zupkó, É. Frank, A facile 'click' approach to novel 15 β -triazolyl-5 α -androstane derivatives, and an evaluation of their antiproliferative activities *in vitro*, Bioorg. Med. Chem. 20 (2012) 1396-1402.

[25] A.R. Katritzky, A.A. Shestopalov, K. Suzuki, A convenient synthesis of chiral 1,2,4oxadiazoles from N-protected (α -aminoacyl)benzotriazoles, ARKIVOC vii (2005) 36–55.

[26] D. Kumar, G. Patel, A.K. Chavers, K-H. Chang, K. Shah, Synthesis of novel 1,2,4-oxadiazoles and analogues as potential anticancer agents, Eur. J. Med. Chem. 46 (2011) 3085–3092.

[27] D. Kumar, G. Patel, E.O. Johnson, K. Shah, Synthesis and anticancer activities of novel 3,5-disubstituted-1,2,4-oxadiazoles, Bioorg. Med. Chem. Lett. 19 (2009) 2739–2741.

[28] G.L. Khatik, J. Kaur, V. Kumar, K. Tikoo, V.A. Nair, 1,2,4-Oxadiazoles: a new class of prostate cancer agents, Bioorg. Med. Chem Lett. 22 (2012) 1912–1916.

[29] L.A. Kayukova, Drug synthesis methods and manufacturing technology; Synthesis of 1,2,4-oxadiazoles (a review), Pharm. Chem. J. 39 (2005) 539–547.

[30] Yu.S. Simanenko, T.M. Prokop'eva, I.A. Belousova, A.F. Popov, E.A. Karpichev, Amidoximes as effective acceptors of acyl groups, Theor. Exp. Chem. 37 (2001) 288–294.

[31] A.R. Gangloff, J. Litvak, E.J. Shelton, D. Sperandio, V.R. Wang, K.D. Rice, Synthesis of 3,5-disubstituted-1,2,4-oxadiazoles using tetrabutylammonium fluoride as a mild and efficient catalyst, Tetrahedron Lett 42 (2001) 1441–1443.

[32] Y. Lu, J. Chen, Z. Janjetovic, P. Michaels, E.K.Y. Tang, J. Wang, R.C. Tuckey, A.T. Slominski, W. Li, D.D. Miller, Design, synthesis, and biological action of 20R-hydroxyvitamin D3, J. Med. Chem. 55 (2012) 3573–3577.

[33] P. Xia, Z-Y. Yang, Y. Xia, Y-Q. Zheng, L.M. Cosentino, K-H. Lee, Anti-AIDS Agents. Part 36: 17-Carboxylated steroids as potential anti-HIV agents, Bioorg Med Chem 7 (1999) 1907–1911.

[34] S.M. Lukyanov, I.V. Bliznets, S.V. Shorshnev, Synthesis of sterically hindered 3-(azolyl)pyridines, ARKIVOC iv (2009) 21–45.

[35] K.K.D. Amarshinghe, M.B. Maier, A. Srivastava, J.L. Gray, One-pot synthesis of 1,2,4-oxadiazoles from carboxylic acid esters and amidoximes using potassium carbonate, Tetrahedron Lett. 47 (2006) 3629–3631.

[36] S. Sharma, S. Gangal, A. Rauf, An efficient, one-pot synthesis of novel 3,5disubstituted-1,2,4-oxadiazoles from long-chain carboxylic acid derivatives.

[37] J.J.R. de Freitas, J.C.R. de Freitas, L.P. da Silva, J.R. de Freitas Filho, G.Y.V. Kimura, R.M. Srivastava, Microwave-induced one-pot synthesis of 4-[3-(aryl)-1,2,4-oxadiazol-5-yl]-butan-2-ones under solvent free conditions, Tetrahedron Lett 48 (2007) 6195–6198.

[38] S. Pal, S.C. Pal, Single, Single-pot conversion of an acid to the corresponding 4chlorobutyl ester, Acta Chim. Slov. 58 (2011) 596–599.

[39] H.A. Rajapakse, H. Zhu, M.B. Young, B.T. Mott, A mild and efficient one pot synthesis of 1,3,4-oxadiazoles from carboxylic acids and acyl hydrazides, Tetrahedon Lett. 47 (2006) 4827–4830.

[40] G. Ferrara, A. Ius, C. Parini, G. Sportoletti, G. Vecchio, Steroidal 1,2,4-oxadiazoles by 1,3-dipolar cycloaddition, Tetrahedron 28 (1972) 2461-2467.

[41] E. Mernyák, J. Huber, J. Szabó, Gy. Schneider, A. Hetényi, L. Márk, G. Maász, Á. Berényi, I. Kovács, R. Minorics, I. Zupkó, J. Wölfling, Cycloaddition of steroidal cyclic nitrones to C=N dipolarophiles: Stereoselective synthesis and antiproliferative effects of

oxadiazolidinones in the estrone series, Steroids (2013), http://dx.doi.org/10.1016/j.steroids.2013.06.009

[42] M. Kundu, J. Singh, B. Singh, T. Ghosh, B.C. Maiti, T.K. Maity, Synthesis and anticancer activity of 3,5-diaryl-1,2,4-oxadiazole derivatives, Indian J. Chem. B. 51 (2012) 493–497.

[43] Z. Iványi, N. Szabó, J. Wölfling, M. Szécsi, J. Julesz, Gy. Schneider, Novel series of 17β-pyrazolylandrosta-5,16-diene derivatives and their inhibitory effect on 17α -hydroxylase/C_{17,20}-lyase, Steroids 77 (2012) 1152–1159.

[44] Z. Iványi, J. Wölfling, T. Görbe, M. Szécsi, T. Wittmann, Gy. Schneider, Synthesis of regioisomeric 17β -*N*-phenylpyrazolyl steroid derivatives and their inhibitory effect on 17α -hydroxylase/C_{17,20}-lyase, Steroids 75 (2010) 450-456.

[45] T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods 65 (1983) 55–63.

Legends for Figures and Schemes

Figure 1. The natural substrate and two effective synthetic inhibitors of $P450_{17\alpha}$

Scheme 1. Synthesis of 17-carboxylic acids and an ester in the androstane series.

Reagents and conditions: (i) Br₂, NaOH, H₂O, dioxane, 0 °C \rightarrow rt, 3 h then Na₂SO₃, reflux,

15 min; (*ii*) Ac₂O, pyridine, 8 h, rt; (*iii*) BF₃ OEt₂, MeOH, 65 °C, 3 h.

Scheme 2. Synthesis of steroidal 17-5'-(1',2',4')-oxadiazoles

Reagents and conditions: (*i*) NH₂OHHCl, NaOH, EtOH, H₂O, reflux for 2-7 h or MW, 110 °C, 200 W, 15-20 min; (*ii*) oxalyl chloride, cat. DMF, CH₂Cl₂, 12 h, 0 °C \rightarrow rt; (*iii*) pyridine, **IIa**, 115 °C for 7 h (method A) or MW, 150 °C, 250 W, 30 min (method B); (*iv*) CDI, CH₂Cl₂, rt, 2 h, then **IIa–e**, rt, 2 h; (*v*) TBAF, THF, N₂ atm, rt, 1 h; (*vi*) KOH, MeOH, rt, 8 h.

Table 1. Inhibition of rat to	esticular C_{17}	₂₀ -lyase by steroida	l oxadiazoles	-
		R	elative conversion	on ^a
_	Compd	R	(%)	IC ₅₀ (µM)
R	14a	Ph	n.i. ^b	-
>=N	14b	p-CH ₃ -C ₆ H ₄	84±4	-
N	14c	<i>p</i> -OMe-C ₆ H ₄	n.i.	-
	14d	p-Br-C ₆ H ₄	n.i.	-
H	14e	CH ₃	30±4	-
HO R				
	15a	Ph	n.i.	
	15b	p-CH ₃ -C ₆ H ₄	n.i.	-
	15c	<i>p</i> -OMe-C ₆ H ₄	n.i.	
	15d	p-Br-C ₆ H ₄	87±4	-
	15e	CH_3	-	0.60±0.19
HO				
-	KTZ ^c	-		0.32+0.02
	ABT ^c	-		0.0125±0.0015

^ameasured in the presence of 50 μ M of the compound tested; control incubation with no inhibition is taken as 100%

^bno inhibition

^cKTZ: ketoconazole; ABT: abiraterone (reference compounds)

Table 2. Cytotoxic activity of O-acylamidoximes and oxadiazoles in the androstene series

	C -	HeLa M		MCF7		A2780		A431	
Compd	Con.	Inhibition %	IC_{50}^{a}	Inhibition %	IC ₅₀	Inhibition %	IC ₅₀	Inhibition %	IC ₅₀
I	μM	(± SEM)	(µM)	(± SEM)	(µM)	(± SEM)	(µM)	(± SEM)	(µM)
	10	74.8 (± 1.4)	0.01	42.1 (± 1.6)	11.01	95.9 (± 0.3)	0.00	$16.4 (\pm 0.4)$	10.01
10a	30	94.3 (± 0.4)	8.84	78.8 (± 1.1)	11.06	96.2 (± 0.5)	2.20	65.7 (± 0.6)	13.94
101	10	61.5 (± 1.1)	0.22	43.7 (± 1.4)	10.10	95.8 (± 0.2)	0.47	$16.5 (\pm 1.1)$. 20
10b	30	$89.7 (\pm 1.0)$	8.22	$76.0(\pm 0.6)$	12.12	$96.1 (\pm 0.3)$	2.47	$43.1 (\pm 1.0)$	>30
10	10	$67.9(\pm 2.7)$		46.8 (± 2.2)	10.00	$95.9(\pm 0.2)$	1.00	$44.6(\pm 2.4)$	10.77
10c	30	93.8 (± 0.6)	7.75	$82.0(\pm 0.5)$	10.26	95.8 (± 0.5)	1.32	83.0 (± 1.9)	10.77
101	10	66.6 (± 0.9)	0.07	65.1 (± 1.6)	0.20	91.2 (± 1.9)	276	55.1 (± 2.0)	0.40
10d	30	$90.0(\pm 0.8)$	8.07	83.6 (± 1.1)	9.39	95.6 (± 0.3)	2.76	$62.9 (\pm 0.6)$	8.40
10	10	96.3 (± 0.2)	< 00	49.0 (± 1.0)	10.02	96.8 (± 0.2)	0.24	44.7 (± 1.6)	10.00
10e	30	96.3 (± 0.3)	6.00	$78.6 (\pm 0.7)$	10.23	96.7 (± 0.1)	0.34	88.7 (± 0.9)	10.98
11	10	95.2 (± 0.2)	5.50	80.5 (± 1.1)	474	95.6 (± 0.2)	0.00	70.0 (± 2.7)	5.07
11a	30	95.8 (± 0.2)	5.50	$91.3 (\pm 0.8)$	4./4	95.8 (± 0.2)	0.69	$79.3(\pm 2.5)$	5.27
111	10	60.3 (± 0.8)	0.75	58.3 (± 0.8)	5 (0	71.9 (± 1.2)	2.90	56.7 (± 0.4)	7.00
11b	30	$61.2 (\pm 0.3)$	8.75	65.8 (± 0.7)	5.60	86.4 (± 0.9)	2.80	63.7 (± 0.6)	7.90
	10	$95.5(\pm 0.3)$	2.04	$83.6 (\pm 0.5)$	0.50	96.1 (± 0.2)	0.05	83.5 (± 1.5)	1 50
11c	30	$96.1 (\pm 0.2)$	3.86	$84.1 (\pm 0.6)$	3.52	$95.9(\pm 0.1)$	0.95	$83.0(\pm 0.7)$	1.78
	10	$73.2 (\pm 0.5)$	7 17	$77.2 (\pm 0.5)$	< 00	$95.6 (\pm 0.4)$	2 20	$54.8 (\pm 0.8)$	0.71
11d	30	$95.7(\pm 0.1)$	7.17	$92.5(\pm 0.8)$	6.00	$96.5 (\pm 0.2)$	2.30	$72.1(\pm 1.0)$	8.71
	10	$96.4 (\pm 0.3)$		$62.0(\pm 1.9)$	2.04	$95.6 (\pm 0.3)$	0.00	$66.0(\pm 1.0)$	0.51
11e	30	$96.0 (\pm 0.3)$	3.22	89.3 (+ 0.7)	3.94	95.2 (+ 0.2)	0.22	$93.3 (\pm 0.4)$	3.71
	10	<20 [°]	. h	<20		<20		40.3(+1.0)	
12a	30	49.0(+0.5)	n.d. ^b	43.2(+1.3)	n.d.	44.9(+2.2)	n.d.	59.1 (+ 0.4)	n.d.
	10	<20		<20		<20		<20	
12b	30	<20	n.d.	<20	n.d.	<20	n.d.	<20	n.d.
	10	<20		<20		282(+27)		<20	
12c	30	447(+12)	n.d.	432(+09)	n.d.	$52.8(\pm 2.1)$	n.d.	$25.6(\pm 1.5)$	n.d.
	10	<20		<20		<20		<20	
12d	30	<20	n.d.	<20	n.d.	20.4 ± 2.0	n.d.	<20	n.d.
	10	$31.6(\pm 1.8)$		20.0(+0.9)	Y	$34.3 (\pm 0.8)$		<20	
12e	30	52.7 (+ 1.4)	n.d.	$30.6(\pm 1.4)$	n.d.	$53.0 (\pm 1.0)$	n.d.	28.1(+2.8)	n.d.
	10	<20		$28.3(\pm 1.4)$		<20		<20	
13 a	30	339(+05)	n.d.	$39.0(\pm 1.0)$	n.d.	257(+17)	n.d.	203(+20)	n.d.
	10	$27.7 (\pm 1.0)$		<20		<20		<20	
13b	30	$20.7 (\pm 1.0)$	n.d.	<20	n.d.	231(+14)	n.d.	<20	n.d.
	10	$35.0(\pm 1.1)$		<20		33.8(+2.2)		<20	
13c	30	$52.9(\pm 1.2)$	n.d.	$33.0(\pm 0.8)$	n.d.	$57.7 (\pm 0.9)$	n.d.	299(+09)	n.d.
	10	<20		<20		<20		<20	
13d	30	<20	n.d.	<20	n.d.	<20	n.d.	<20	n.d.
	10	<20		<20		$32.6(\pm 1.5)$		<20	
13e	30	344(+25)	n.d.	57.5(+2.8)	n.d.	$80.4 (\pm 0.4)$	n.d.	<20	n.d.
	10	$70.8(\pm 0.6)$		$405(\pm 11)$		$30.7 (\pm 1.5)$		$740(\pm 0.2)$	
14a	30	72.7 (+ 0.8)	4.82	43.8(+2.6)	>30	$35.7 (\pm 1.3)$ 35.5 (+ 2.4)	>30	$763(\pm 0.2)$	4.52
	10	$70.1 (\pm 0.6)$		39.6(+1.8)		<20 <20		736(+02)	
14b	30	71.9(+0.4)	5.04	38.3(+1.6)	>30	38.0(+2.6)	>30	$74.0(\pm 0.2)$	4.64
	10	$72.7 (\pm 0.4)$		$61.5(\pm 1.0)$		$37.0(\pm 0.8)$		$74.5(\pm 0.3)$	
14c	30	$72.7 (\pm 0.1)$ 79.2 (± 0.4)	2.24	$63.0(\pm 1.0)$	5.65	$44.4 (\pm 0.6)$	>30	$79.6 (\pm 0.2)$	2.17
	10	$63.4 (\pm 0.9)$		$43.8(\pm 1.2)$				$71.3 (\pm 0.2)$	
14d	30	$65.7 (\pm 0.2)$	6.58	$49.5(\pm 1.2)$	>30	<20	>30	$71.3 (\pm 0.4)$ 73 3 (± 0.5)	5.76
	10	$23.7 (\pm 0.2)$		$\frac{1}{268} (\pm 24)$		$353(\pm 0.9)$		$42.6(\pm 2.2)$	
14e	30	$78.7(\pm 1.4)$	n.d.	$77.7(\pm 1.0)$	n.d.	$59.7 (\pm 0.7)$	n.d.	$78.4 (\pm 0.8)$	n.d.
	10	$\frac{70.7(\pm 1.0)}{23.4(\pm 1.0)}$		$\frac{11.1}{371(\pm 1.0)}$		<u> </u>		/0.+ (± 0.0) ~20	
15a	20	$23.4 (\pm 1.9)$ 73 7 (± 0.2)	n.d.	$37.1 (\pm 1.3)$ 81 1 (± 0.6)	n.d.	<20 78.8 (± 1.0)	n.d.	<20 04 7 (± 0 4)	n.d.
	10	$13.1 (\pm 0.3)$ 20.8 (± 1.5)		$01.1 (\pm 0.0)$ $28.8 (\pm 2.1)$		/0.0 (± 1.0) ~20		$74.7 (\pm 0.4)$ 33 3 (± 1 2)	
15b	20	$20.0 (\pm 1.3)$ 53 7 (± 0.5)	n.d.	$20.0 (\pm 2.1)$	n.d.	<20 40 0 (± 1 0)	n.d.	$33.3 (\pm 1.3)$ 80 5 (± 2.2)	n.d.
	50 10	$53.7 (\pm 0.3)$		$50.0 (\pm 2.0)$		$47.7 (\pm 1.8)$		$00.3 (\pm 2.2)$	
15c	10	$03.0(\pm 0.7)$	7.94	$37.4 (\pm 1.4)$	8.60	$42.3 (\pm 1.3)$	13.24	(1.0)	7.72
4 - 1	3U	$\delta / .1 (\pm 0.9)$	و	$35.5 (\pm 0.4)$	1	$00.7 (\pm 0.9)$	د	$33.2 (\pm 1.0)$	1
15d	10	37.4 (± 1.6)	n.d.	42.5 (± 2.6)	n.d.	39.9 (± 1.6)	n.d.	45.6 (± 1.2)	n.d.

	30	91.9 (± 0.4)		92.3 (± 1.1)		77.0 (± 0.9)		93.7 (± 0.4)	
15.	10	<20	nd	23.5 (± 2.5)	nd	21.2 (± 0.9)	nd	$28.3 (\pm 0.8)$	nd
15e	30	$29.6 (\pm 0.7)$	n.a.	49.4 (± 2.5)	n.a.	41.1 (± 1.8)	n.a.	25.8 (± 1.2)	n.a.
CDd	10	42.6 (± 2.3)	12 /2	53.0 (± 2.3)	0.62	83.6 (± 1.2)	1.20	88.6 (± 0.5)	281
Cr	30	99.9 (± 0.3)	12.43	86.9 (± 1.3)	9.05	95.0 (± 0.3)	1.50	90.2 (± 1.8)	2.04

 ${}^{a}IC_{50}$ values were determined when the tested compound elicited at least 50% growth inhibition at 10 μ M against any of the cell lines used. The presented values are from two independent determinations with five parallel wells; standard deviation < 15%.

^b n.d.: not determined.

^c inhibition values < 20% are not presented. ^d cisplatin (reference compound).

Supplementary Material for

An efficient approach to novel 17-5'-(1',2',4')-oxadiazolyl androstenes via the cyclodehydration of cytotoxic *O*-steroidacylamidoximes, and an evaluation of their inhibitory action on 17α-hydroxylase/C_{17,20}-lyase

Dóra Kovács^a, János Wölfling^a, Nikoletta Szabó,^b Mihály Szécsi,^b Ida Kovács,^c István Zupkó,^c Éva Frank^{a,*}

^aDepartment of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary ^b 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, H-6720 Szeged, Hungary ^cDepartment of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary

E-mail address: frank@chem.u-szeged.hu

Table of Contents

Representative ¹H and ¹³C NMR spectra of the synthesized compounds S1-S15

ppm (t1)

ppm (t1)

S8

ppm (f1)

