

Available online at www.sciencedirect.com



Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 6295-6298

## Androstene-3,5-dienes as ER-β selective SERMs

Timothy A. Blizzard,<sup>a,\*</sup> Candido Gude,<sup>a</sup> Jerry D. Morgan, II,<sup>a</sup> Wanda Chan,<sup>a</sup> Elizabeth T. Birzin,<sup>a</sup> Marina Mojena,<sup>b</sup> Consuelo Tudela,<sup>b</sup> Fang Chen,<sup>c</sup> Kristin Knecht,<sup>c</sup> Qin Su,<sup>c</sup> Bryan Kraker,<sup>a</sup> Ralph T. Mosley,<sup>a</sup> Mark A. Holmes,<sup>a</sup> Susan P. Rohrer<sup>a</sup> and Milton L. Hammond<sup>a</sup>

> <sup>a</sup>Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA <sup>b</sup>Merck Research Laboratories-CIBE, Madrid, Spain <sup>c</sup>Merck Research Laboratories, West Point, PA 19486, USA

Received 12 July 2007; revised 28 August 2007; accepted 4 September 2007 Available online 7 September 2007

**Abstract**—A series of androstene-3,5-diene derivatives were prepared. Despite lacking the C-3 hydroxyl previously believed necessary for ER activity, some of the analogs retained surprising affinity for ER- $\beta$ . For example, diene **4** retained excellent selectivity and potency as an ER- $\beta$  agonist and was more selective for ER- $\beta$  over the androgen receptor (AR). © 2007 Elsevier Ltd. All rights reserved.

The importance of the selective estrogen receptor modulators (SERMs) has prompted extensive research.<sup>1</sup> Much effort has focused on the discovery of ER- $\alpha^2$ and ER- $\beta^3$  subtype-selective SERMs. We have also reported non-selective spiroindene SERMs.<sup>4</sup>



During the course of our medicinal chemistry program based on the highly ER- $\beta$ -selective screening hit 1,<sup>3a</sup> we have discovered and report herein a series of androstene-3,5-diene SERMs (e.g., 4) with selectivity for ER- $\beta$  ranging from 6× to 160× in a ligand binding assay.

The 3,5-diene analog **4** was discovered serendipitously during our attempted synthesis of 3-methylated analogs **2** and **3**. Addition of methyl Grignard to ketone  $17^{3b}$  followed by ammonium chloride workup and deprotection afforded the 3,5-diene analog **4**. Similar chemistry has

Keywords: SERMs; Estrogen; Androstenediol; Androstenediene.

been reported for other steroids.<sup>5</sup> The structure of **4** was confirmed by NMR analysis.<sup>6</sup> Since **4** lacked the A-ring hydroxyl group thought to be essential for ER binding, we expected it to be at best a weak ligand for the ERs. However, to our surprise, **4** retained excellent selectivity and potency as an ER- $\beta$  agonist (Table 1) with reduced affinity for the androgen receptor AR (Table 2). We prepared the original synthetic targets **2** and **3** by first deconjugating **17** by treatment with base followed by addition of methyl Grignard to the resulting 3-keto- $\delta$ -5 intermediate. Subsequent deprotection afforded **2** and **3** which proved to be much weaker ER ligands than **4** (Scheme 1).

Molecular modeling suggests a possible explanation for the surprising ER- $\beta$  activity of diene 4 (Fig. 1).<sup>7</sup> The terminal carbon of the vinyl group at C-10 of both 1 and 4 appears to have a negative steric interaction with the Leu384 side chain of ER- $\alpha$  which is consistent with the observed decrease in ER- $\alpha$  activity for both series. The vinyl group also forces 1 away from Glu305 (a 0.4 Å shift from what is observed between estradiol and Glu353 in 1ERE7c) and toward Phe356 and other hydrophobic residues which line the cavity along the  $\alpha$ -face of the steroid. Presumably, these additional hydrophobic interactions compensate for the weakened Hoond interaction. When modeled into the cavity, 4 is similarly shifted toward Phe356 and more deeply toward His475 than is seen with 1 due to the steric bulk of the 3-methyl group along with the C10 vinyl group. It

<sup>\*</sup> Corresponding author. Tel.: +1 732 594 6212; fax: +1 732 594 9556; e-mail: tim blizzard@merck.com

<sup>0960-894</sup>X/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2007.09.001

## Table 1. ER binding and transactivation data



| #         | R <sup>3</sup>                  | $\mathbb{R}^{10}$  | <b>R</b> <sup>17</sup> | ER binding (IC <sub>50</sub> , nM) <sup>8</sup> |       | ER transactivation (EC <sub>50</sub> , nM) <sup>9</sup> |             |             |       |
|-----------|---------------------------------|--------------------|------------------------|-------------------------------------------------|-------|---------------------------------------------------------|-------------|-------------|-------|
|           |                                 |                    |                        | hER-α                                           | hER-β | α/β                                                     | ER-α (% Ag) | ER-β (% Ag) | α/β   |
| 1         | Н                               | CH=CH <sub>2</sub> | Н                      | 2240                                            | 11    | 204                                                     | 980 (35)    | 4.1 (90)    | 240   |
| 2         | CH <sub>3</sub>                 | $CH=CH_2$          | Н                      | 5300                                            | 255   | 21                                                      | >1000 (28)  | 240 (57)    | >4    |
| 3         | $CH_3$                          | $CH=CH_2$          | _                      | >10000                                          | 2490  | >4                                                      | > 1000 (27) | >1000 (31)  | 1     |
| 4         | $CH_3$                          | $CH=CH_2$          | Н                      | 1440                                            | 9     | 160                                                     | >1000 (4)   | 69 (92)     | >14   |
| 5         | CH <sub>2</sub> CH <sub>3</sub> | CH=CH <sub>2</sub> | Н                      | 3110                                            | 115   | 27                                                      | > 1000 (3)  | 565 (54)    | >1.8  |
| 6         | $C_6H_5$                        | $CH=CH_2$          | Н                      | >10000                                          | 1760  | >5.6                                                    | >1000 (0)   | >1000 (0)   | 1     |
| 7         | Cl                              | $CH=CH_2$          | Н                      | 5740                                            | 64    | 90                                                      | 820 (38)    | 170 (84)    | 4.8   |
| 8         | $CH_3$                          | $CH=CH_2$          | $CH_3$                 | 4380                                            | 53    | 83                                                      | >1000 (4)   | 480 (52)    | >2    |
| 9         | CH <sub>3</sub>                 | $CH=CH_2$          | $CH \equiv CH$         | 1850                                            | 72    | 26                                                      | 490 (15)    | 31 (80)     | 15    |
| 10        | Н                               | $CH=CH_2$          | $CH_3$                 | 1050                                            | 25    | 42                                                      | >1000 (13)  | 190 (65)    | >5.2  |
| 11        | Н                               | $CH=CH_2$          | $CH \equiv CH$         | 150                                             | 14    | 11                                                      | 130 (82)    | 24 (78)     | 5.4   |
| 12        | Н                               | $CH_3$             | Н                      | 180                                             | 9.9   | 18                                                      | 26 (91)     | 5.6 (77)    | 4.6   |
| 13        |                                 | $CH=CH_2$          | _                      | >10000                                          | 120   | >83                                                     | 430 (49)    | 230 (59)    | 1.9   |
| 14        |                                 | CH <sub>3</sub>    | _                      | 640                                             | 34    | 19                                                      | >1000 (29)  | 210 (67)    | > 4.8 |
| 15        | CH <sub>3</sub>                 | CH <sub>3</sub>    | Н                      | 110                                             | 9.4   | 12                                                      | 540 (49)    | 220 (59)    | 2.4   |
| 16        |                                 | $CH=CH_2$          | _                      | >10000                                          | 780   | >13                                                     | >1000 (12)  | 380 (78)    | >2.6  |
| Estradiol |                                 | _                  | _                      | 1.4                                             | 1.2   | 1.2                                                     | 0.75 (100)  | 2.1 (100)   | 0.36  |

Table 2. Comparison of hER-β and AR binding data

| #            | $hER\text{-}\beta \text{ IC}_{50} \left(nM\right)^8$ | AR IC <sub>50</sub> $(nM)^{10}$ | AR/ER-β  |
|--------------|------------------------------------------------------|---------------------------------|----------|
| 1            | 11                                                   | 33                              | 3        |
| 2            | 255                                                  | 842                             | 3.3      |
| 3            | 2490                                                 | 2610                            | 1        |
| 4            | 9                                                    | 560                             | 62       |
| 5            | 115                                                  | 500                             | 4.3      |
| 6            | 1760                                                 | 3160                            | 1.8      |
| 8            | 53                                                   | 520                             | 9.8      |
| 9            | 72                                                   | 1615                            | 22       |
| 10           | 25                                                   | 170                             | 6.8      |
| 11           | 14                                                   | 290                             | 21       |
| 12           | 9.9                                                  | 230                             | 23       |
| 13           | 120                                                  | 330                             | 2.8      |
| 14           | 34                                                   | 40                              | 1.2      |
| 15           | 9.4                                                  | 2250                            | 240      |
| 16           | 780                                                  | 7.9                             | 0.01     |
| Estradiol    | 1.2                                                  | 26                              | 22       |
| Testosterone | >10,000                                              | 2.7                             | < 0.0002 |

may be that the proximity of the planar diene of **4** to Phe356 and increased ability to Hbond with His475 is responsible for maintaining its potency despite the lack of the A-ring hydroxyl group.

The surprising activity of **4** prompted us to prepare additional androstenediene analogs. Reaction of ketone



Scheme 1. Reagents: (i) MeMgBr, NH<sub>4</sub>Cl workup; (ii) *n*-Bu<sub>4</sub>NBr, THF; (iii) KO'Bu.

17 with ethyl Grignard afforded initially the exo-ethylene analog 18 which was isomerized to the desired 3ethyl derivative 5 (Scheme 2).

Similarly, treatment of 17 with phenyl Grignard gave the desired 3-phenyl analog 6 (Scheme 3).

The 3-chloro analog 7 was prepared by reaction of ketone  $16^{3a}$  with acetic anhydride (to protect C-17 OH) followed by phosphorus oxychloride (introduce C-3 Cl) and deprotection (Scheme 4).



Figure 1. Superposition of crystallographically determined 1 (orange) with 4 (cyan) in the context of hER- $\alpha$  (green) and hER- $\beta$  (purple) complexed with compound 1. Unless otherwise indicated, residue numbering is that of hER- $\beta$ .



Scheme 2. Reagents: (i) EtMgBr, NH<sub>4</sub>Cl workup; (ii) *n*-Bu<sub>4</sub>NBr, THF, 94% from **17**; (iii) HCl, EtOH, 61%.



**Scheme 3.** Reagents: (i) PhMgBr, NH<sub>4</sub>Cl workup; (ii) *n*-Bu<sub>4</sub>NF, THF, 50% overall.

The 17-methyl (8) and 17-ethynyl (9) analogs of 4 were readily prepared by oxidation of the 17-hydroxyl to afford ketone 19, followed by reaction with either methyl Grignard or lithium TMS-acetylide (Scheme 5). We have previously reported the corresponding 3-hydroxy analogs (10 and 11).<sup>3a</sup>



Scheme 4. Reagents and condition: (i) Ac<sub>2</sub>O, pyridine, DMAP, 100%; (ii) POCl<sub>3</sub>, AcOH, rt, 50%; (iii) KOH, MeOH, 40%.



Scheme 5. Reagents: (i) TPAP, NMO, 53%; (ii) MeMgBr, 59%; (iii)  $LiC \equiv CTMS$  then MeOH, NaOH, 49%.

The exo-methylene analog **13** was prepared from ketone  $16^{3a}$  by Wittig olefination<sup>5a</sup> (Scheme 6).

For comparison with the 10-vinyl dienes 4 and 13, the corresponding 10-methyl analogs<sup>5a</sup> 15 and 14 were prepared from testosterone 20 (Scheme 7). Wittig olefination of 20 afforded the exo-methylene analog 14 which was readily isomerized to the 3,5-diene 15.

The novel steroids were evaluated in estrogen receptor  $(ER-\alpha \text{ and } ER-\beta)^8$  binding assay and in a cell-based ER- $\beta$  transactivation assay<sup>9</sup> to measure estrogen agonism in HEK293 cells (Table 1). New compounds were also evaluated in an androgen receptor (AR)<sup>10</sup> ligand binding assay (Table 2). Diene 4 was comparable to the lead compound 1 as an ER- $\beta$  ligand (IC<sub>50</sub> = 9 nM for 4 vs 11 nM for 1), despite the lack of a C-3 hydroxyl group, and retained excellent selectivity for ER- $\beta$  over ER- $\alpha$  although 4 (160×) is a bit less selective than 1  $(204\times)$ . The excellent binding affinity of 4 was also reflected in the ER- $\beta$  transactivation assay wherein 4 had a higher EC<sub>50</sub> (69 nM for 4 vs 4 nM for 1) but comparable maximum agonism (92% of estradiol for 4 vs 90% for 1). Interestingly, 4 was much more selective for ER- $\beta$  over AR (62× for 4 vs 3× for 1). Similar SAR was observed in the 10-methyl series (compare 12 and 15); diene 15 is comparable to alcohol 12 as an



Scheme 6. Reagents: (i) Ph<sub>3</sub>PCH<sub>3</sub>Br, <sup>1</sup>BuLi, 56%.



Scheme 7. Reagents: (i) Ph<sub>3</sub>PCH<sub>3</sub>Br, <sup>t</sup>BuLi, 26%; (ii) HCl, EtOH, 99%.

ER ligand (both are less selective for ER- $\beta$  than the corresponding 10-vinyl analogs 4 and 1) but is more selective for ER- $\beta$  over AR. Diene 4 and lead compound 1 were both considerably more active and selective than alcohols 2 and 3. In the diene series (compounds 4–7), increasing the size of the C-3 substituent is clearly detrimental to ER- $\beta$  binding and selectivity; with the largest compound, the 3-phenyl analog 6, being inactive in the ER transactivation assay. In the diene series, addition of a substituent at C-17 (compounds 8 and 9) results in a slight decrease in ER-ß binding and selectivity relative to the unsubstituted analog 4. A similar result was observed in the 3-hydroxy series (compare compounds 10 and 11–1). The internal diene 4 was clearly a better ER- $\beta$  ligand than the external diene 13 and was also more selective for ER- $\beta$  over AR. A similar trend was observed in the 10-methyl series (compare compounds 15 and 14). The external dienes 13 and 14 are better AR ligands than the corresponding internal dienes 4 and 15 but are weaker ligands than the corresponding ketones  $16^{3a}$  and testosterone. Diene 15 had the best ER- $\beta$ /AR ratio of all the tested compounds due to its poor AR binding. However, 15 was not very potent in the ER transactivation assay.

In conclusion, androstene-3,5-diene 4 exhibits excellent binding affinity and selectivity for ER- $\beta$  over ER- $\alpha$  and AR and is a potent ER- $\beta$  agonist despite lacking the traditional hydroxyl substitution at C-3.

## **References and notes**

- (a) Jordan, V. C. J. Med. Chem. 2003, 46, 883; (b) Jordan, V. C. J. Med. Chem. 2003, 46, 1081; (c) Veeneman, G. H. Curr. Med. Chem. 2005, 12, 1077.
- Blizzard, T. A.; DiNinno, F.; Chen, H. Y.; Kim, S.; Wu, J. Y.; Chan, W.; Birzin, E. T.; Yang, Y.; Pai, L.; Hayes, E. C.; DaSilva, C. A.; Rohrer, S. P.; Schaeffer, J. M.; Hammond, M. L. *Bioorg. Med. Chem. Lett.* 2005, 15, 3912.
- (a) Blizzard, T. A.; Gude, C.; Morgan, J. D., II; Chan, W.; Birzin, E. T.; Mojena, M.; Tudela, C.; Chen, F.; Knecht, K.; Su, Q.; Kraker, B.; Mosley, R. T.; Holmes, M. A.; Sharma, N.; Fitzgerald, P. M. D.; Rohrer, S. P.; Hammond, M. L. *Bioorg. Med. Chem. Lett.* 2006, 16, 834; (b) Blizzard, T. A.; Gude, C.; Chan, W.; Birzin, E. T.; Mojena, M.; Tudela, C.; Chen, F.; Knecht, K.; Su, Q.; Kraker, B.; Holmes, M. A.; Rohrer, S. P.; Hammond, M. L. *Bioorg. Med. Chem. Lett.* 2007, 17, 2944.

- Blizzard, T. A.; Morgan, J. D.; Mosley, R. T.; Birzin, E. T.; Frisch, K.; Rohrer, S. P.; Hammond, M. L. *Bioorg. Med. Chem. Lett.* 2003, 13, 479.
- (a) Sondheimer, F.; Mechoulam, R. J. Am. Chem. Soc. 1957, 79, 5029; (b) Weintraub, P. L.; Tiernan, H. D.; Benson, H. D.; Grunwell, J. F.; Johnston, J. O.; Petrow, V. J. Med. Chem. 1976, 19, 1395.
- 6. All new compounds were characterized by LC–MS and 500 or 600 MHz <sup>1</sup>H NMR. HMBC was useful in confirming the carbon skeleton of **4**. Key HMBC correlations observed for **4** were H-21 → C-2, C-3, and C-4; H-4 → C-2 and C-6; and H-6 → C-4, C-10, and C-7. In addition, NOE correlations were observed for H-4 → H-21 and H-6 → H-7 of **4**. Selected <sup>1</sup>H NMR data (600 MHz, CDCl<sub>3</sub>, δ) for **4**: 5.75 (dd, *J* = 17, 10 Hz, 1H, H-19), 5.73 (br s, 1H, H-4), 5.49 (t, *J* = 3 Hz, 1H, H-6), 5.18 (dd, *J* = 10, 2 Hz, 1H, H-20), 4.84 (dd, *J* = 17, 2 Hz, 1H, H-20), 3.63 (t, *J* = 9 Hz, 1H, H-17), 1.67 (s, 3H, H-21), 0.69 (s, 3H, H-18). Selected <sup>13</sup>C NMR data for **4**: (125 MHz, CDCl<sub>3</sub>, δ): 140.1 (C-19), 137.7 (C-5), 133.6 (C-3), 124.5 (C-4), 122.6 (C-6), 117.4 (C-20), 81.8 (C-17), 11.0 (C-18).
- 7. (a) Models were built using the 1.8 Å resolution crystallographic coordinates of compound 1 as cocrystallized with hER- $\beta$  (Fitzgerald et al., in preparation). Energy minimization for all of the models within context of the hER- $\beta$  receptor (1 cocrystallized) was accomplished by rigidly fixing all residues except for side chains which fell within 5 Å of the modeled ligand which were allowed to minimize in conjunction with the ligand. All minimizations were conducted using the MMFFs force field<sup>7b</sup> with a distance dependent dielectric model of 2r. Multiple binding orientations of 2 were considered, including those that had the D-ring flipped up to interact with Glu305. However, the most energetically favored binding orientation was found to be the same as estradiol (Fig. 1); (b) Halgren, T. A. J. Comp. Chem. 1999, 20, 730; (c) 1ERE = pdb code for crystal structure of estradiol in ER-α.
- 8. The IC<sub>50</sub> values were generated in a scintillation proximity estrogen receptor ligand binding assay conducted in NEN Basic Flashplates using tritiated estradiol and full length recombinant human ER- $\alpha$  or ER- $\beta$  proteins. Compounds were evaluated in duplicate in a single assay. This assay provides IC<sub>50</sub> values that are reproducible to within a factor of 2–3.
- This assay was run in agonist mode at Merck-CIBE in Spain using the procedure described by Barkhem, T.; Carlsson, B.; Nilsson, Y.; Enmark, E.; Gustafsson, J.; Nilsson, S. *Mol. Pharmacol.* 1998, 54, 105, Compounds were tested in triplicate; results were generally reproducible to within a factor of 2–3.
- Chen, F.; Knecht, K.; Leu, C.; Rutledge, S. J.; Scafonas, A.; Gambone, C.; Vogel, R.; Zhang, H.; Kasparcova, V.; Bai, C.; Harada, S.; Schmidt, A.; Reszka, A.; Freedman, L. J. Ster. Biochem. Mol. Biol. 2004, 91, 247.