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Abstract

Insomnia is one of the most common sleep probleitisam estimated prevalence of
10% to 15% in the general population. Although ademe Aa receptor (AaR)
agonists strongly induce sleep, their cardiovasceléects preclude their use in
treating sleep disorders. Enhancing endogenguR Aignaling, however, may be an
alternative strategy for treating insomnia, becaadenosine levels in the brain
accumulate during wakefulness. In the present stadyfound that 3,4-difluoro-2-
((2-fluoro-4-iodophenyl)amino)benzoic acid, denote&bsR positive allosteric
modulator (PAM)-1, enhanced adenosine signalinghatAsR and induced slow
wave sleep (SWS) without affecting body temperataraild-type male mice after
intraperitoneal administration, whereas the SWSwimp effect of this benzoic acid
derivative was abolished in,AR KO mice. In contrast to the,AR agonist CGS
21680, the AnR PAM-1 did not affect blood pressure or heart.rateese findings
indicate that enhancing,AR signaling promotes SWS without cardiovasculaga.
Therefore, small molecules that allosterically matkiAcaRs could help people with

insomnia to fall asleep.

Keywords
Adenosine Aa receptor, allosteric modulator, insomnia, slow-erleep, body

temperature, cardiovascular function

Abbreviations
CHO, Chinese hamster ovary; EEG, electroencepregpbgr EMG,
electromyography; ECG, electrocardiography; PAMsitie allosteric modulator;

REM, rapid eye movement; SWS, slow-wave sleep.
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1. Introduction

Insomnia is one of the most common sleep probleitisam estimated prevalence of
10% to 15% in the general population and 30% to GO%ae older population (Roth,
2007). Moreover, insomnia frequently co-occurs wattwide range of psychiatric
disorders, including depression and anorexia (debddti et al., 2017; Seow et al.,
2018). The most widely prescribed agents for theattment of insomnia are
benzodiazepines and non-benzodiazepines, which cardral nervous system
depressants that enhance signaling of the inhijbiteurotransmittey-aminobutyric
acid (Wafford and Ebert, 2008). These medicatitwsyever, are plagued by a wide
range of adverse effects, including muscle relaxatrebound insomnia, changes in
appetite, next-day sedation, cognitive impairmeantnesic effects, and development
of drug tolerance and dependence (Aragona, 2000ntZgs et al., 1995). Orexin
receptor antagonists were also recently developddapproved for treating insomnia
(Cox et al., 2010). The major issues of these dargsnext-morning sleepiness with
possible muscle weakness, strange dreams, sle&pigialand other nighttime
behaviors or suicidal ideation (Jacobson et all1420Moreover, because orexin
receptor antagonists mostly work by preventing sabérom sleep, they are generally
ineffectual in people who have problems fallingeagl. A highly selective adenosine
Aa receptor (AaR) agonist, CGS 21680, produces profound incremssieep after
infusion into the subarachnoid space underlying aetral surface region of the
rostral basal forebrain in rats, the lateral vetdrof mice, or the lateral preoptic area
of rats (Satoh et al., 1999; Scammell et al., 2Q0ade et al., 2003; Methippara et al.,
2005). Administration of an AR agonist is not considered to have clinical paaént
for the treatment of sleep disorders, however,tduts adverse cardiovascular effects,

which include hypotension and tachycardia (de Ruiz et al., 2014). A positive
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allosteric modulator (PAM) may evoke selective pbigjic A,aR responses because,
in contrast to an AR agonist, its actions are limited to when and wreenosine is
released. Adenosine levels in the brain progrebsiverease during wakefulness
(Porkka-Heiskanen et al., 1997), and thereforestdlic modulation of ARs to
promote the somnogenic effects of the increasediamilee may be an alternative
strategy for treating insomnia.

In the present study, we identified a small lipdiphmonocarboxylate (3,4-difluoro-2-
((2-fluoro-4-iodophenyl)amino)benzoic acid), dembté,pR PAM-1, that induces
slow-wave sleep (SWS), the major part of sleep adtarized by slow and high-
voltage brain waves, by enhancing;aR signaling without affecting body

temperature, blood pressure, or heart functionioem

2. Material and methods

2.1. Reagents

Adenosine (Nacalai Tesque, Kyoto, Japan), CGS 2168fma-Aldrich, St. Louis,
MO), Cremophor® EL (Sigma-Aldrich), DMSO (Nacalaedque), DMEM (Nacalai
Tesque), FBS (Nichirei Biosciences, Tokyo, Jap&BSS (Gibco, Waltham, MA),
hygromycin B (Wako, Tokyo, Japan), ketamine hydloctle (Ketalar, Daiichi
Sankyo, Tokyo, Japan), nonessential amino acids AGNENacalai Tesque),
penicillin/streptomycin (Wako), pentobarbital (Soopentyl, Kyoritsu Seiyaku,
Tokyo, Japan), puromycin (InvivoGen, San Diego, C#aaline (Otsuka, Tokyo,
Japan), Ultrance cAMP-kit (PerkinElmer, Waltham, MAylazine hydrochloride
(Celactal, Bayer, Tokyo, Japan), ZM241385 (TocrissBience, Bristol, UK), 3-

isobutyl-1-methylxanthine (IBMX; Tocris Biosciencajid HEPES (Gibco).
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2.2. Animals

Male mouse lines on a C57BL/6 background, includmg-type and AxR KO
(Chen et al.,, 1999) mice, which were maintainedhat International Institute of
Integrative Sleep Medicine and weighing 21-27 g150veeks old), were used in the
experiments. The animals were housed in an ingllatel soundproof recording
chamber that was maintained at an ambient temperafl23 + 0.5°C with a relative
humidity of 50 + 5% and an automatically controlte2l h light/12 h dark cycle (light
on at 8:00, illumination intensity 100 lux). All animals had free access to food and
water. This study was performed in strict accor@anith the recommendations in the
Guide for the Care and Use of Laboratory Animalgdhaf US National Institutes of
Health (2011). Experimental protocols were in caamie with relevant Japanese and
institutional laws and guidelines and approved lwy tniversity of Tsukuba animal
ethics committee (protocol #14-322). Every effoswmade to minimize the number

of animals used as well as any pain and discorefqérienced by the animals.

2.3. Mouse AxaR-expressing Chinese hamster ovary cells

The flag epitope-tagged open reading frame gfRAwas amplified by PCR from
mouse brain total RNA. The resultant amplicon wlased into a pMXs-IRES-Puro
retroviral vector (Kitamura et al., 2003). The phed was then transfected into the
retrovirus packaging cell line Plat-E (Morita et,aP000). The supernatant of
transfected Plat-E cells was recovered after 2dh applied to Chinese hamster
ovary (CHO) cells strongly expressing the ecotropceptor for the retrovirus
(Montminy et al., 1990). Mouse AR-expressing CHO (mAR-CHO) cells were
selected in DMEM supplemented with 5% FBS and 1%AABby treatment with

hygromycin B (250ug-ml*) and puromycin (1Qug-mi?). The mAsR-CHO cells
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were subsequently maintained in DMEM supplementéd &% FBS, 1% NEAA,
1% penicillin/streptomycin, and 250 pug-ftlygromycin B at 37°C in an atmosphere

of 5% CQ.

2.4. cAMP assay

Activation of AppRs was quantified by cyclic adenosine monophosplcéiielP)
accumulation in CHO cells expressing mousgRs. CHO cells were suspended in
HBSS containing 1 M HEPES and 0.25 M IBMX in 384Hwmicro-plates (2x1®
cells/well), and incubated with adenosine andsRA PAM-1 at the indicated
concentrations for 30 min at 25°C. The detectiomtune containing the Eu-cAMP
tracer and ULight-anti-cAMP antibody was added amalibated for 1 h at 25°C. A
micro-plate reader (ARVO X5, Perkin Elmer; excibati 340 nm; emission: 665 nm)
was used to measure the Forster resonance enexgsferr (FRET) signal. All
experiments were performed according to the matwfacs instructions (LANCE
Ultra cAMP Kit, PerkinElmer). The cAMP levels araded on the dynamic range
(“linear portion”) of the cAMP standard curve andrmalized to the baseline or

adenosine treated group.

2.5. Sereotaxic surgery for the placement of EEG/EMG el ectrodes

Mice were anesthetized with pentobarbital [50 md; kgtraperitoneal (i.p.)] and then

placed in a stereotaxic apparatus. Electroencegtato (EEG) and electromyogram
(EMG) electrodes for polysomnographic recordingsenghronically implanted in the

mice (Oishi et al., 2016). The implant comprise® stainless steel screws (1 mm in
diameter) inserted through the skull above theesofanteroposterior, +1.0 mm; left-

right, -1.5 mm from bregma or lambda) accordinghe atlas of Paxinos and Franklin
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(Paxinos and Franklin, 2004) that served as the Eig8trodes. Two insulated,
stainless steel Teflon-coated wires were placeatdyilly into both trapezius muscles
and served as the EMG electrodes. All electrodes attached to a micro connector

and fixed to the skull with dental cement.

2.6. Pharmacol ogic treatment and infusion cannula implantation

For control data, mice were injected with salinevehicle (10 ml-kg body weight,
i.p.) at 22:00 or 21:30, respectively.,/R PAM-1 was dissolved in saline
immediately before use and administered intrapeeiddly at 22:00 on the
experimental day at a dose of 30, 60, or 75 m{-K§1241385 (15 mg-K§ i.p.) was
dissolved in vehicle (5% DMSO, 5% Cremophor® ELsgline) and injected into
C57BL/6J mice at 21:30Mice were randomly assigned to groups that received
control or drug injections.

For intracerebroventricular (i.c.v.) infusion 0p#R PAM-1, a stainless-steel cannula
was inserted into mice during surgery 0.5 mm aoteand 1.6 mm lateral to bregma
to a depth of 1.6 mm below the dura at an ang06f thus placing the cannula into
the lateral ventricle. To ensure correct placeno¢rannula, a plastic tube filled with
saline was attached to the infusion cannula; a drape meniscus indicated that the
cannula tip was in the ventricle. During the expemts, the mice were infused
continuously using an infusion pump with artificadrebrospinal fluid into the lateral
ventricle of the brain at a speed of 1 [{i- Bleep-wakefulness states were monitored
for a period of 36 h after infusion of each compmuBaline infusion recordings were
obtained in each animal for 36 h, beginning at @0which served as the control for
the same animal. In the next experimeniaA PAM-1 (200 nmol-H) was infused

into the lateral ventricle of the mouse brain farHL(20:00 to 8:00).
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2.7. Vigilance state assessment based on EEG/EMG polygraphic recordings

Ten days after surgery, the mice were individubthysed in transparent barrels in an
insulated soundproof recording chamber and condeaehe EEG-EMG recording
cables for 3 to 5 days of habituation before stgrthe polygraphic recordings. To
evaluate the spontaneous sleep-wake cycle, eachakhnvas recorded for 24 h
beginning at 20:00, the onset of the dark periode Bnimals then entered the
pharmacologic phase of the study in which sleepeftdkess parameters were
recorded for 36 h. The data collected during thst 24 h also served as baseline
comparison data for the second experimental daytidcab EEG/EMG recordings
were amplified, filtered (EEG 0.5-30 Hz; EMG 20-26{z), and digitized at a
sampling rate of 128 Hz, and then recording usiraga dacquisition software
SleepSign® (Kissei Comtec, Matsumoto, Japan). Tiggance states were classified
offline in 10-s epochs into three stages, i.e.,efakess, rapid eye movement (REM)
sleep, and SWS by SleepSign® (ver 3.4) accordingtandard criteria (Oishi et al.,
2016). As a final step, defined vigilance stagesevexamined visually, and corrected

when necessary.

2.8. Blood pressure and heart rate measurement

The blood pressure of the mice was measured ubeggatl-cuff method with a BP-
98A blood pressure device (Softron, Tokyo, Japai)e same time period (13:00 —
16:00) was selected for testing the blood presstisach mouse (9-12 weeks old) to
avoid normal daily variations in blood pressureceFtonsecutive days were used to
habituate the mice to the device. To optimize @wascular circulation, mice were

wrapped in a cotton sheet and, except for the tadintained at 37°C within a



206 cylinder heater. A programmable sensor with amatafle balloon attached to a tail
207 cuff was used to monitor tail pulse waves and meaklood pressure when the pulse
208 waves were stable and rhythmic. Blood pressure uneamnt was read and recorded
209 Dby the software. After five consecutive trainingyslamice were randomly assigned to
210 one of three groups and injected with saline (10kgt, i.p.), AcaAR PAM-1 (75
211 mg-kg', i.p.) or CGS 21680 (1 mg-Rgi.p.). Blood pressure was measured at 30 min,
212 1 h 30 min, and 2 h 30 min after injection (at e@ioke-point, 20 readings for each
213 mouse were collected). After testing, the mice wgertly picked up by the tail and
214 gently returned to their cages.

215 The heart rate of the mice was measured by telgnmidice were anesthetized with
216 ketamine hydrochloride (80 mg-kgi.p.) and xylazine hydrochloride (8 mgg.p.)
217 and a PhysioTel F20-ETA mouse telemetry transmi@ata Science International, St.
218 Paul, MN) was placed in the midline of the mousekband fixed with surgical
219 sutures. The negative (white) electrode was platekle trapezius muscle, while the
220 positive (red) electrode was sutured to a muscléh@é back opposite the xiphoid
221 process. Each mouse was singly housed in a cagesaitgery with a distance of at
222 least 1 m between cages to avoid interference leetwedemetry transmitters. After 7
223 days of recovery, the mice were randomly assigmedre of three groups and
224  injected with saline (10 ml-Kgi.p.), AaR PAM-1 (75 mg-kd, i.p.), or CGS 21680
225 (1 mg-kd', i.p.). The transmitted cardiovascular signal waalyzed for 2 h after the
226 injections using Data Science International sofewvar

227

228  2.9. Heart rhythm measurement

229 The cardiac rhythm of mice was measured by eleatdiagraphy (ECG). Mice were

230 anesthetized with ketamine hydrochloride (80 mg;kd.p.) and xylazine
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hydrochloride (8 mg-Kkg i.p.) and fixed with needles on a styrofoam mlatf. Mice
were then gently pushed into a position where W front paws and the left rear
paw are in contact with 25-gauge needles that demg& ECG electrodes. For
intracardiac electrography, the throat of the mi@s opened and the internal jugular
vein was isolated to insert a catheter along thessoof the vein to the right atrium.
Electrographic signals were 5.000-10.000-fold afigali and filtered (0.5-250 Hz)
with an AC-601G system (Nihon Kohden, Tokyo, Japdit)e same time period
(10:00 — 12:00) was selected for testing the hdaythm to avoid normal daily
variations in the cardiac rhythm. Mice were randpnaksigned to groups that
received AxR PAM-1 (75 mg-kd, i.p.) or CGS 21680 (1 mg-Rgi.p.) injections.
After recording the baseline for 1-2 minutes, mwere injected with drugs and
recording continued for 30 minutes. The data weraly@ed using LabChart Pro

software (ADInstruments, Dunedin, New Zealand).

2.10. Body temperature measurement

The core body temperature of the mice was measusid)y Thermochron iButtons
(KN Laboratories, Osaka, Japan). iButtons were auogned to monitor core body
temperature every 5 min for 14 consecutive daysbety at the end of the recovery
period. The mice were anesthetized with pentobarfB0 mg-kg-1, i.p.). The skin of
the abdomen was shaved and cleaned with 70% etlaaabla longitudinal, 2-cm
incision was made along the midline. One iButtoeaoked with 70% ethanol was
placed in the peritoneal cavity and the incisiors wlbsed with nylon sutures. The
mice were housed individually in cages after syrgerd experiments were conducted

after a 10-day recovery period. iButtons were readofvom the animals after cervical
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dislocation under anesthesia and RhManager soft{iale Laboratories, Osaka,

Japan) was used to collect the recorded data fnenBlttons.

2.11. Synthesis of A;aR PAM-1

A solution of 2,3,4-fluorobenzoic acid (1.35 g, &.6imol), 2-fluoro-4-iodoaniline
(2.91 g, 8.06 mmol), and lithium amide (0.702 g,63®mol) in tetrahydrofuran (10.5
mL) was reacted using a standard method (Cai,e2@08) to give 3,4-difluoro-2-((2-
fluoro-4-iodophenyl)amino)benzoic acid {f/R PAM-1, 2.99 g, 99%) as a brown
solid (Figure S1); IR (KBr) 3311, 1673, 1602, 1520, 1500, 1444, 127@&8 cm'; *H
NMR (400 MHz CROD) & = 7.89 (1 H, dddJ = 2.3, 6.0, 9.2 Hz), 7.48 (1 H, dii=
1.8, 10.5 Hz), 7.41 (1 H, ddd,=1.4, 1.8, 8.5 Hz), 6.91 (1 H, dddi= 7.3, 9.4, 9.4
Hz), 6.75 (1 H, dddJ] = 5.6, 8.5, 8.5 Hz)**C NMR (100 MHz acetones) & = 169.9,
155.7 (ddJcr = 252.1, 4.8 Hz), 155.6 (dcr = 252.1 Hz), 143.6 (ddlcr = 247.8,
14.9 Hz), 137.4 (dd)ce= 7.7, 2.9 Hz), 135.0 (dcr = 3.8 Hz), 131.9(dJcr= 11.5
Hz), 129.8 (ddJcr= 9.6, 3.8 Hz), 125.8 (dicr= 21.0 Hz), 123.8 (dJcF= 5.8 Hz),
116.4, 110.1 (dJc = 18.2 Hz), 84.7 (dJc = 6.7 Hz); HRMS-ESIm/z [M-H] " calcd

for C13H6F3INO2, 391.9395; measured, 391.9414.

2.12. Formation of the sodium salt of AoaR PAM-1

Aqueous sodium hydroxide (1Qd4, 754 uL) was added to a stirred solution ofsR
PAM-1 (0.266 g, 75.4 mmol) in ethanol (20.0 mLP&C. The mixture was stirred for
45 min at room temperature and then concentratech@io and freeze-dried. The
residue was dissolved in water and filtered. Theafe was freeze-dried to obtain the

sodium salt of A\R PAM-1 (0.265 g, 89%) as a gray solid (m.p. 2929 Anal.
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Calcd for GaHgNO»-Na-1.5HO: C, 35.32; H, 2.05; N, 3.17. Measured: C, 35134;

1.91; N, 3.14). The sodium salt 0fAR PAM-1 was used for ailh-vivo experiments.

2.13. Satistical analysis

Statistical analyses were carried out using Syabétvare (SigmaPlot). All results are
presented as mean * standard error of the mean \SEMb-tailed Student’s-tests
were used for statistical comparisons between wwags (Fig. 1A, B, D, E, Fig. 2C,
D, F, Fig. 3B, D, Fig. 4B, Fig. 5A, B, Fig. S2A, Bjg. S4B, Fig. S5A-C, and Fig.
S6A-C). For t-tests, the normality of each dataset was estaulishsing the
Kolmogorov—Smirnov test. Two-way repeated-measuegglysis of variance
(ANOVA) followed by the Tukey test were used forsderesponse effects on the
amounts of the SWS, REM sleep, and wakefulness PHgFig. 3A, C, Fig. 4A, Fig.
S3A and Fig. S5A) (Chrivia et al., 1993). In diltbe casesP <0.05 was considered
significant (significance levels are indicated igufes as *:P<0.05, **: P <0.01 or

*kk P <0,001).

3. Results

3.1. Screening of small-molecule compounds for allosteric A;aR modulation

We established CHO cells that express mougR# Figure S2) using a retrovirus-
mediated gene transfer method (Kitamura et al.3200/e used these mAR-CHO
cells to screen 1173 small-molecule compoundskHeir tallosteric effects at ARs.
The compounds were synthesized in Dr. Hiroshi Naigdaboratory at the University
of Tsukuba. AaR activity in CHO cells was determined by measurt@yViP
produced after adding adenosine and small-molemngounds using a fluorescence

resonance energy transfer immunoassay. Because-e@ampound-one-well approach
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may be wasteful research conduct due to a likelgllsnumber of active compounds
in our library, we tested initially 391 mixturesntaining three compounds each in
triplicates. We selected mixtures that significarghhanced the effects of adenosine
at the AaRs P<0.01, unpaired-test) for individual compound testing and foundtth
eight of the mixtures showed an effect accordinghis criterion (Mixture 124:
t@=27.9, P<0.0001, Mixture 181:ts=31.5, P<0.0001, Mixture 194:t4=30.9,
P<0.0001, Mixture 211t4=9.6,P=0.0006, Mixture 274t4=11, P=0.0003, Mixture
319: t4=6.81, P=0.0024, Mixture 33214=8.62, P=0.0009, Mixture 346t4=4.71
P=0.0091, unpairetttest;Figure 1A). Further individual testing of compounds in the
eight mixtures revealed that only compound 371 -@fkhoro-2-((2-fluoro-4-
iodophenyl)amino)benzoic acid) in mixture 124 erdezh adenosine-induced,4R
activation {=9.14,P=0.0007, unpaired-test; Figure 1B). A cell culture bioassay
revealed that cCAMP levels were not altered by tngaf\,AR-expressing or native
CHO cells with compound 371 in the absence of asieemr by treating native CHO
with adenosine and compound 3Higure 1C), suggesting that compound 371 is
likely a positive allosteric modulator for ,ARs, and we therefore named this
compound AxR PAM-1. Co-treatment of AR-expressing CHO cells with 150 nM
adenosine and various concentrations gfRA PAM-1 (i.e., 25, 50, and 100 pM)
amplified adenosine AR-evoked cAMP accumulation in a dose-dependent Brann
by 42% + 1.4%, 46% + 1.1%, and 50% = 1.0%, respelsti(25 uM AsR PAM-1:
tu=4.47,P=0.011, 50 pM AnR PAM-1:1t4=7.21,P=0.0019, 50 pM AR PAM-1
vs. 25 pM AaR PAM-1:t4=4.71,P=0.0092, 100 pM AR PAM-1:t4=9 P=0.0008,
100 pM AsR PAM-1 vs. 25 pM AR PAM-1:14=8.08,P=0.0012, 100 pM AR
PAM-1 vs. 50 pM AaR PAM-1: t4=3.65, P=0.021, unpaired-test; Figure 1D).

Similarly, co-treatment of AR-expressing CHO cells with 100 puM,/R PAM-1
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and 50, 100, or 150 nM adenosine increasggRAactivity in the CHO cells in a dose-
dependent manner by 55% * 0.4%, 66% * 1.5%, and ¥2% %, whereas 100 uM
A2aR PAM-1 did not significantly enhance the celluativity of AxaR-expressing
CHO cells treated with 250 nM adenosine (50 nM Axteme:t4=14.9,P=0.0001, 50
nM Adenosine vs. 100 nM Adenosing;=7.04,P=0.0021, 50 nM Adenosine vs. 150
nM Adenosine:tz=12.40, P=0.0011, 50 nM Adenosine vs. 250 nM Adenosine:
t4=11.79,P=0.00029, 100 nM Adenosings=6.18,P=0.034, 150 nM Adenosine:

t3=4.98,P=0.015, unpairetitest;Figure 1E).

3.2. Intraperitoneal administration of AR PAM-1 induces SWS without affecting
body temperaturein mice

We then tested the effect of intraperitoneal adstiation of AR PAM-1 on the
sleep/wake behavior of wild-type mice. We analygEéds and EMG recordings made
after saline or AW\R PAM-1 injections during the dark period at 22:@hen mice
usually spend most of their time awake. Althougkdhae sleep and wake of mice 24
h prior to treatment was not significantly diffetéretween the saline ang/R PAM-

1 groups during the dark periodrigure S3), A.aR PAM-1 dose-dependently
increased SWS after the injections for the follogvéh (SWSF(1,106)-13.97,P=0.033,
two way repeated measures ANOVA-Tukey test, 30 migAcaR PAM-1 vs. 60
mg-kg' A2aR PAM-1: t»=4.36,P=0.0032, 30 mg-K§AaR PAM-1 vs. 75 mg-Kg
AaR PAM-1: t=5.45, P=0.0015, unpaired-test; Figure 2A, B, D). The total
amount of SWS was increased by 60.8 £ 11.4 mirBfbrwith the highest dose of
AaR PAM-1 (i.e., 75 mg-K§ compared with saline treatment, whereas wake$sine
was decreased by 59.2 + 12.8 min (SW$=4.27, P=0.0036, Wake:t7=4.33,

P=0.0034, unpairetttest; Figure 2C). Intraperitoneal injection of AR PAM-1 did
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not significantly alter the REM sleep duration dwgrithe dark period compared with
saline injection.

Administration of AxR PAM-1 (75 mg-kd, i.p.) to the mice did not significantly
affect the episode numbers of SWS and REM sleef fom the dark period~(gure
SAA). On the other hand, wake episode numbers ladtdigto 239 s increased by
307% ()=3.88,P=0.006, unpaired-test), and wake episode numbers lasting 480 to
959 s and 960 to 1909 s decreased by 4{64.89, P=0.02, unpaired-test) and
88% (7=4.60, P=0.002, unpaired-test), respectively, compared with the saline
injection. The mean duration of wake episodes dsa® by 38%t)=3.38,P=0.01,
unpairedt-test) compared with saline, but the duration & 8WS and REM sleep
episodes was not significantly different aftepaR PAM-1 (75 mg-kd, i.p.)
administration Eigure $4B). A;aR PAM-1 (75 mg-kd, i.p.) also did not
significantly affect the number of transitions beem SWS, wake, and REM sleep
(Figure $4C).

To assess whether EEG activity was altered byRAPAM-1 administration, we
compared the normalized EEG power spectrum of SWSice treated with saline or
A,aR PAM-1 (Figure 2E). EEG activity in the frequency range of 0.5-25ddzing
SWS was indistinguishable betweennR PAM-1-induced and natural (saline
injection) SWS. These data suggest thatPA PAM-1 induced physiologic sleep
rather than abnormal sleep.

We also measured the effect of intraperitoneal aihination of 75 mg-Kg AzaR
PAM-1 or 1 mg-kg of the AsR agonist CGS 21680 (as positive control) on thgybo
temperature of the mice during the dark peribhre 2F). Although CGS 21680
strongly decreased the body temperature for al@bsg10=3.68,P=0.0042 at 22:15,

t10~10.48,P<0.0001 at 23:15,;0~2.33,P=0.041 at 00:05 vs. saline injected group,
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unpairedt-test), AaR PAM-1 did not affect the body temperature of thiee. These
data suggest that,AR PAM-1 induces physiologic sleep independent ef body

temperature.

3.3. Seep-inducing effect of A,aR PAM-1 was suppressed by blocking A.aRs

We further investigated whether,#/Rs mediate the sleep-inducing effect ofaR
PAM-1. First, we pretreated wild-type mice with tlselective AxR antagonist
ZM241385 (15 mg-Kg, i.p.) or vehicle 30 min before the,/R PAM-1 injection at
22:00. The dose of ZM241385 was selected basedewxiops studies (El Yacoubi et
al., 2000; Nakamura et al., 2016). In the presemic&M241385, AxR PAM-1
injection produced no significant changes in SWFsgfre 3A), indicating that
ZM241385 completely blocked the, /R PAM-1—induced SWS. When we calculated
the total amount of SWS for 4 h after the intrajoeeal injection of A\R PAM-1
(Figure 3B), we found that it did not significantly alter thatal amount of SWS after
ZM241385 pretreatment. ZM241385 pretreatment aldse had no significant effect
on SWS compared with vehicle pretreatment (Vehicl&aline vs. Vehicle + 75
mg-kg' A2aR PAM-1: tg=4.04, P=0.0037, 15 mg-Kk§j ZM241385 + 75 mg-Kg
AzaR PAM-1 vs. Vehicle + 75 mg-KgA,aR PAM-1: tg=2.63,P=0.029, 15 mg-K§
ZM241385 + Saline vs. Vehicle + 75 mg-ké\,aR PAM-1: tg=6.10, P=0.00028,
unpaired--test;Figure 3B).

We then administered 75 mg-kd.aR PAM-1 (i.p.) into AsR KO mice and their
wild-type littermates at 22:00. We observed no ificgmt changes in SWS in the
A,aR KO mice compared with saline treatment, wherd&SSvas increased by 74.3
+ 12.0 min for 6 h in wild-type littermates obAR KO mice £(1,19020.83,P=0.003,

two way repeated measures ANOVA-Tukey tegh=5.63, P<0.0001, unpaired-
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test; Figure 3C, D). Concomitantly, wakefulness was decreased inwhe-type
littermates of AAR KO mice E(1,190)-16.14,P=0.005, two way repeated measures
ANOVA-Tukey test, t14=5.50, P<0.0001, unpaired-test), whereas neither REM
sleep in these mice nor wakefulness and REM sleépei KO mice were affected by
intraperitoneal administration of 75 mgkd,sR PAM-1 (Figure S5). Baseline
sleep and wake of the KO mice and their wild-tyigerdmates 24 h prior to treatment
was not different between the saline angPRAPAM-1 groups during the dark period
(data not shown). These findings suggest thaRAare necessary for, AR PAM-1 to

induce SWS.

3.4. Intracerebroventricular administration of A,aR PAM-1 induces SWSin mice

To elucidate whether the sleep-inducing effect gl APAM-1 is mediated via ARS
expressed in the brain, we infuseghR PAM-1 into the lateral ventricle of wild-type
mice at 200 nmol-h during the dark period (20:00 to 8:00) and asse&EG and
EMG activity. Infusion with AsR PAM-1 for 12 h increased the time spent in SWS 5
h after the infusion, resulting in a total SWS @ase during the dark period of 141.6
+ 12.5 min compared with saline infusiof(118-34.40,P=0.004, two way repeated
measures ANOVA-Tukey testg=5.67,P=0.00047, unpairetitest; Figure 4A, B).
Concomitantly, total wakefulness was decreased4®d/51+ 15.8 min during a 12-h
i.c.v. infusion of AR PAM-1 (F(1,11843.46,P=0.003, two way repeated measures
ANOVA-Tukey test,t=5.08,P=0.00095, unpairetitest), whereas REM sleep was
not affected.

Intracerebroventricular infusion of AR PAM-1 (200 nmol-fi) into mice affected
SWS and wake episode numbers during the dark péfigdre S6A). SWS episode

numbers lasting 0 to 29 s, 30 to 59 s, and 60 slihcreased by 267%s(=7.56,
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P<0.0001, unpaired-test), 196% t{s=3.47, P=0.008, unpaired-test), and 154%
(te=2.88,P=0.02, unpaired-test), respectively, and wake episode numbersnst
to 29 s, 30 to 59 s, and 60 to 120 s also incredged05% {=3.97,P =0.004,
unpairedt-test), 177% t(s=3.55, P=0.007, unpaired-test), and 137%t§=2.77,
P=0.02, unpaired-test), respectively, compared with saline infusi@m the other
hand, episode numbers of REM sleep were not sogmfly affected by AR PAM-1
infusion (200 nmol-1, i.c.v.). The mean duration of wake episodes de@e by 72%
(t=3.06,P=0.01, unpaired-test) compared with the saline-infused group,rbaan
episode duration of the SWS and REM sleep did igpiifecantly change after AR
PAM-1 (200 nmol-H, i.c.v.) administration Rigure S6B). AR PAM-1 (200
nmol- K, i.c.v.) increased the number of transitions betm®WS and wakefulness by
148% ()=4.91,P =0.001, unpaired-test), and from wakefulness to SWS by 128%
(te=4.26,P=0.002, unpaired-test) compared with the saline-infused groEmyre
S6C).

Moreover, the EEG activity in the frequency rangeOdb—25 Hz during SWS
episodes was indistinguishable between mice treaidd saline or AAR PAM-1
(Figure 4C). These data suggest thataR PAM-1 induces physiologic sleep rather

than abnormal sleep viagARs that are likely expressed in the brain.

3.5. Intraperitoneal administration of A,aR PAM-1 does not affect blood pressure or
heart rate

A2aR agonists evoke cardiovascular effects (Hutchisbial., 1989; Kirkup et al.,
1998; Nekooeian and Tabrizchi, 1996). We thereftested the effect of
intraperitoneal administration of AR PAM-1 on blood pressure and heart rate in

wild-type mice. First, we measured blood pressarmice 30, 90, and 150 min after
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intraperitoneal injection of 75 mg-keA,aR PAM-1 or 1 mg-kd of the AR agonist
CGS 21680 using an electrosphygmomanomé&igu(e 5A). The dose of the AR
agonist CGS 21680 was selected based on previodestin mice (Carvalho et al.,
2017; Nakav et al., 2008; Ohta and Sitkovsky, 20@bmpared with saline treatment,
the systolic, and diastolic blood pressures wegeifstantly decreased for up to 90
min after injecting the AR agonist CGS 21680 (SBP at 30 mig)=10.55,
P<0.0001, SBP at 90 mirtg)=7.51,P<0.0001, DBP at 30 mirty)=6.60,P<0.0001,
DBP at 90 minit=5.86,P<0.0001, unpaired-test) and returned to normal levels
within 150 min after the injection. In contrastpbtl pressure was not changed after
intraperitoneal administration of ,AR PAM-1 (75 mg-kg) at 30, 90, or 150 min
after treatment. In addition, we measured the hedet of mice after intraperitoneal
injection of 75 mg-kg A-aR PAM-1 or 1 mg-kg A,aR agonist CGS 21680 using
the telemetry implantsF(gure 5B). The heart rate of the mice increased after
intraperitoneal administration of the,/R agonist CGS 21680 (HR at 60 min:
te=2.34, P=0.047, HR at 75 mintg=2.90, P=0.019, HR at 90 mintg)=2.80,
P=0.023, unpaired-test), whereas the heart rate was not affectethjbgtion of 75
mg-kg' A.aR PAM-1. Finally, we monitored the heart rhythmanesthetized mice
after intraperitoneal administration of 75 mg'kgf AaR PAM-1 or 1 mg-kg of
A2aR agonist CGS 21680 using intracardiac EGM. We mesksinus arrhythmia in
mice after intraperitoneal administration ohbyR agonist CGS 21680, whereas
injection of 75 mg-kg A,aR PAM-1 did not cause abnormalities of the cardiac

rhythm Figure 5C).

4. Discussion
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Our observations suggest that enhancingaRA signaling by intraperitoneal
administration of A\R PAM-1 induces SWS without cardiovascular effectmice.
Therefore, AsR-modulating compounds may provide safe optionstertreatment
of insomnia and poor-quality sleep.

Over the past century, several putative hypnogsulistances implicated in the sleep
homeostatic process have been identified, inclughegtaglandin B(Qu et al., 2006),
cytokines (Krueger et al., 1984), anandamide (@GaBadrcia et al., 2009), urotensin ||
peptide (Huitron-Resendiz et al., 2005), and adeeogPorkka-Heiskanen et al.,
1997). Adenosine represents a state of relativeggnéeficiency: ATP depletion
positively correlates with an increase in extradall adenosine levels (Kalinchuk et
al., 2003) and positively associates with sleepriRoHeiskanen et al., 1997).
Adenosine levels in samples collected from sevéwain areas of cats during
spontaneous sleep-wake cyclesyivo microdialysis were higher during SWS than
during wakefulness for all probed brain areas (RaiHeiskanen et al., 1997). The
observation in animals that adenosine levels amvagdd during prolonged
wakefulness may explain why an allosteric modulatmuld effectively enhance the
sleep-inducing effect of endogenous adenosine & drain. On the other hand,
adenosine is absent or its concentration is tooitothie cardiovascular system under
physiologic conditions to affect blood pressure hedrt function after administration
of an allosteric modulator of AR.

Medicinal chemistry for AnRs has been widely developed in recent decadesstor
in myocardial perfusion imaging and the treatmdninlammation and neuropathic
pain (de Lera Ruiz et al., 2014). SeveraghR agonists that entered clinical trials
elicited undesirable side effects, however, thiechoiding their further development.

On the other hand, allosteric modulators bind distinct site other than the natural
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ligand binding site (i.e., the orthosteric site)daexert their effects only in the
presence of the orthosteric ligand (Wenthur et 2014). As a consequence, an
allosteric modulator mimics the activity duratiohtbe natural ligand and thus the
pharmacologic response of an allosteric modulatmenclosely resembles the natural
physiologic activity of the receptor than is po$sivith a synthetic agonist. Because
efforts to evoke pharmacologic,AR responses have focused almost exclusively on
the use of orthosteric ligands, however, the pdggithat A;AR responses, especially
in the brain, can be fine-tuned using allostericdalators has received very little
attention (Gobly6s and ljzerman, 2009).

Moreover, it is widely accepted that the basic adare scaffold must be maintained
in an AAR agonist (Fredholm et al.,, 2011). Thus, the dguakent of adenosine
analogs for treating the central nervous systeniuding sleep induction for treating
insomnia, is restricted by the poor transport oésth drugs through the brain
endothelial cells, which are connected by tightcjions to establish a blood-brain
barrier (BBB) (Pardridge et al., 1994). In contrastaR PAM-1, when administered
intraperitoneally, exhibits a sleep-inducing effdwt is likely mediated by ARS in
the brain and thus appears to cross the BBB. Sipaphilic monocarboxylates like
AoaR PAM-1 likely pass through the BBB by passive whfbn or via a
monocarboxylate transport system (Tsuji, 2005).ré&toee, allosteric modulation of
A2aRs has the potential to cause pharmacologic effedtse central nervous system
after systemic administration, resulting in goo@lgy sleep.

Our study did not investigate how and where thgRAPAM-1 binds at the receptor to
exert its allosteric effect. Therefore, an impottaext step will be to examine the
allosteric interactions of AR PAM-1 and the receptor using binding assays and

crystal structure analysis. With respect to theetaia crystal structure of the human
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A2aR bound to a bitopic antagonist revealed a poteali@steric pocket (Sun et al.,
2017) and another study suggested that a sodiurbinating site can be exploited for
allosteric modulation of AR (Gutiérrez-de-Teran et al., 2013). Moreover,dlidsfy
the sleep enhancing effect of theaR PAM-1, it may be necessary to test theRA
PAM-1 in mice at the time of normal sleep onset, il pR PAM-1 administration at
the onset of the light period, or in an animal madensomnia, for example, a mouse
model mimicking the human first-night effect (Xuadt, 2014).

Due to work schedules and expectations, lifestyleiaes, pre-existing medical
conditions, or aging, people are coping with anreasingly wide range of sleep
problems, including difficulties with falling andaying asleep, waking up too early,
and poor-quality ("non-restorative") sleep. Defigges in sleep cause significant
social losses due to increased prevalence of mosarders, lead to decreased
economic productivity, and are linked to trafficdawork-related accidents due to
excessive daytime sleepiness (Groeger et al., 2B@ddichha, 2010; Sutton et al.,
2001). Insufficient sleep is not only by itself @jor problem in modern society, but
is also an established risk factor for obesitybdtas, heart disease, and other lifestyle
diseases (Colten et al., 2006). Moreover, psydhidlnesses, especially anxiety and
mood disorders, are long recognized to be a frequemse of insomnia (Okuji et al.,

2002).

5. Conclusions

The findings of our study indicate that enhancing\RA signaling promotes SWS
without cardiovascular effects. Therefore, small lenoles that allosterically
modulate AaRs could help people with sleep problems to fdkegs and thus also be

a potential treatment for psychiatric disorders.
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Our study was conducted in mice, the most commadgd model organism of
human disease. Results in mice, however, are natylarly reliable for predicting
human study outcomes, mostly due to the limitedegerdiversity associated with
common laboratory mice. Therefore, many obstactssam to be overcome in

generating a novel drug for the treatment of insenmhumans.
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751 Fig. 1. Co-treatment of mAR-CHO cells with AsR PAM-1 and adenosine revealed
752 allosteric modulation. (A) High-throughput screepiof small-molecule compounds.
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mixtures are shown as percentage of CAMP levelSHI®© cells after treatment with
adenosine. Screening experiments were performettiphcate wells. (B) FRET
activity in mAppR-expressing CHO cells after treatment with ademeosind small
molecule compounds 370, 371, or 372. (C) FRET #gtim mA,aR-expressing (left
panel) and native (right panel) CHO cells afteatmgent with adenosine or adenosine
and AxR PAM-1, respectively. (D, E) Dose-dependent changiecAMP level in
mA2aR-expressing CHO cells after treatment with aderosiand different
concentrations of AR PAM-1 (D) or AxR PAM-1 and different concentrations of
adenosine (E). (B-E) Experiments were performedtriplicate wells for each
condition and repeated at least twice. Representalata are shown. Data are

presented as mean + SEM.
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for 8 h after saline or AR PAM-1 administration. Data are presented as niean
SEM (n=5/group). (F) Body temperature of mice aftgraperitoneal administration
of saline, AaAR PAM-1 or CGS 21680. Data are presented as med®EM

(n=6/group).
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(n=5/group, respectively). (C, D) Time-courses &yl total amount (D) of SWS in
wild-type (top panels) or AR KO mice (bottom panels) after administration of

saline or AaR PAM-1 (8/group). Data are presented as mean +.SEM
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793 Fig. 5. A,aR PAM-1 does not affect the cardiovascular systéh). Systolic, and
794 diastolic blood pressure after, /&R PAM-1 or CGS 21680 injection in mice
795 (n=5/group). (B) Heart rate of mice after injectiohsaline, AaR PAM-1, or CGS
796 21680, assessed by the telemetry implants (n=5yr¢A, B) Data are presented as
797 mean = SEM. (C) Typical heart rhythm profiles ofcemwithout treatment (left panel)
798 or after administration of AR PAM-1 (middle panel) or CGS 21680 (right panel).
799 Red and blue left/right arrows in the right paneldicate sinus arrhythmia.
800 Abbreviations used: SBP, systolic blood pressurBfDdiastolic blood pressure;
801 ECG, electrocardiogram; IC-EGM, intracardiac elegtam; A, atrial signal; V,

802 ventricular signal.



803 Supplementary figuresand legends

LNH,  Ho O  _
THF
99% \©\
F I
F

804 1 2 3

ZT
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Expression of Chinese hamster adenosine receptang\iaR-expressing (left panel)

and native (right panel) CHO cells.
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Fig. S5. REM sleep and wakefulness in wild-type andaR KO mice after
intraperitoneal administration of , AR PAM-1. (A-D) Time-courses (A and C) and
total amount (B and D) of REM sleep (top panels) aakefulness (bottom panels) in
wild-type (A and B) and AAR KO mice (C and D). Data are presented as mean *

SEM (n=8/group).
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Highlights

First small-molecule allosteric modulator for adenosine Aa receptors (A2aR PAM-1).
AR PAM-1 promotes slow-wave sleep (SWS) in a dose-dependent manner in mice.
Adenosine Aa receptors are necessary for A;aR PAM-1 to induce SWS.

Enhancing adenosine Aa receptor signaling does not induce hypothermia.

Systemic administration of A,aR PAM-1 does not affect blood pressure or heart rate.



