Carbon-13 nuclear magnetic resonance spectral data of steroidal vicinal ketols and related compounds

Darío Doller and Eduardo G. Gros

Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina

Carbon-13 nuclear magnetic resonance spectra for 31 $\beta\beta$ -hydroxy and acetoxy androstane derivatives bearing vicinal oxygenated functions at ring D with and without oxygenated functions at C-6 are reported. Relative substituent effects are discussed. (Steroids **56**:168–172, 1991)

Keywords: steroids; α -ketols, ¹³C NMR; 16,17-Ketols, ¹³C NMR spectral data; ¹³C NMR, substituent-induced chemical shifts

Introduction

Reformatsky reaction of an α -ketol function in steroidal derivatives is an important procedure for the synthesis of complex natural products.^{1,2} When the reaction was applied to 16 β -acetoxy-17-oxoandrostanes, a rearranged product was obtained^{3,4} that was produced by an isomerization reaction.⁵ The mechanism of this process has been established by carbon-13 nuclear magnetic resonance (NMR) experiments⁶ and mass spectroscopic measurements⁷ as an intramolecular 1,2shift of hydrogen. A similar ¹³C NMR spectroscopic study was performed on 16 α -acetoxy-17-oxo isomers, leading to the proposal of a dissimilar mechanism.⁸

Those experiments allowed us to obtain previously unreported ¹³C NMR spectroscopic data for several androstane derivatives and to study substituent-induced shifts of 6α -, 16α - and 16β -oxygenated substituents.

Experimental

¹³C NMR spectra were recorded at 25.2 MHz on a modified Varian XL-100-15 spectrometer operating in the FT mode, using a 620-L100 computer interfaced to a Sykes 7000 dual disk drive. Proton spectra were measured in chloroform-*d* (also acting as internal lock) with tetramethylsilane (TMS) as internal standard. ¹³C NMR spectra were measured for approximately 0.5 M

solutions in chloroform-*d* or benzene- d_6 /methanol- d_4 (1:1) containing TMS (approximately 1%) in 5-mm tubes at about 27 C. Totally proton-decoupled spectra were the result of 10,000 to 15,000 pulses over a spectral width of 5,700 Hz using 45-degree pulses and a pulse repetition rate of 0.71 seconds; they were obtained by irradiation of the ¹H NMR spectrum at a central frequency of 4 ppm, with the irradiation frequency modulated by an external swept-wave modulator. An 8-K data table was used, rendering, after Fourier transformation, spectra with 1.39 Hz per point. Attached proton test (APT) spectra and spectra of quaternary carbons were obtained using known pulse sequences.⁹

Compounds 1 and 2 were purchased from Sigma Chemical Co. (St. Louis, MO, USA). Compound 3 was obtained from 2 by protection of the carbonyl group (ethylene glycol, p-toluenesulfonic acid, benzene), hydroboration of the double bond (BH₃.THF, then H₂O₂, NaOH), and deprotection to 17-oxo steroid (AcOH- H_2O).¹⁰ Compounds 7, 8, and 9 were obtained from 1, 2, and 3, respectively, by treatment with *iso*-propenyl acetate-H₂SO₄ as described elsewhere.¹¹ Compounds 10 and 11 were prepared by epoxydation of the enol acetates 7 and 9, respectively (m-chloroperoxybenzoic acid, CH₂Cl₂, NaHCO₃).¹¹ Compounds 14 and 16 were obtained by SnCl₄-catalyzed rearrangement of epoxides 10 and 11, respectively.¹¹ Compounds 17 and 18 were prepared by a modified Glazier¹² method (CuBr₂, MeOH) starting from 2 and 3, respectively. Compounds 12 and 13 were obtained by alkaline hydrolysis (NaOH, DMF, H₂O) of bromoketones 17 and 18 according to a known procedure.¹³ Compounds 23, 24, and 25 were obtained by acetoxylation (lead tetraace-

Address reprint requests to Dr. Darío Doller, Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA. Received July 26, 1990; accepted September 21, 1990.

Figure 1 Steroids analyzed by ¹³C NMR spectroscopy.

tate) of enol acetates **8**, **7**, and **9**, respectively.¹⁴ Compounds **20**, **21**, and **22** were prepared from **23** following Kincl's procedure.¹⁵ Compound **19** was obtained by catalytic hydrogenation (Pd/C, AcOEt) of compound **20**. Compounds **26**, **27**, and **31** were obtained by alkaline rearrangement (KOH, MeOH, benzene) of **24**, **23**,

Table 1 Steroids analyzed by ¹³C NMR spectroscopy

Compound	Structure	\mathbf{R}_1	R_2		R_3	R_4	Solvent
Compound 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	A A A A A B B B C C D D D D D D D D D D D D E E E E E E	HO HO HO AcO AcO AcO HO HO AcO AcO HO HO AcO AcO HO HO AcO AcO HO HO AcO AcO AcO HO HO AcO AcO AcO HO HO AcO AcO AcO AcO AcO AcO AcO AcO AcO Ac	K ₂ H H H H H H H H H H H H H H H H H H H	Δ^5	H OH H AcO H AcO H AcO H AcO H H AcO H H AcO H H AcO H H AcO	R₄	Solvent a a b c c c c c c c c c c c c c c c c c
31	F	AcU	н		AcU	AcO	С

a, C_6D_6/CD_3OD (1 : 1); b, $CDCI_3/CD_3OD$ (9 : 1); c, $CDCI_3$.

and 25, respectively.¹⁶ Compounds 4, 5, 6, 15, 28, 29, and 30 were obtained by acetylation (Ac₂O, Py) of compounds 1, 2, 3, 13, 24, 23, and 25, respectively. All of the compounds showed, in addition to the ¹H and ¹³C NMR data, satisfactory infrared and mass spectra.

Results and discussion

The structures of the compounds analyzed are presented in Figure 1 and Table 1, and their ¹³C NMR chemical shift values are given in Tables 2 through 5. Assignments were done by a combination of APT, single-frequency, off-resonance decoupled spectra (SFORD),¹⁷ single-frequency decoupling (SFD),¹⁸ empiric rules (acetylation shifts),¹⁹ and comparison with literature data.²⁰⁻²² Although ¹³C NMR spectra data for compounds **1**, **2**, **4**, and **5** have been previously reported, their respective spectra are also presented, for they were recorded in the same solvent as the other steroids. This was done to allow a substituent-induced chemical shift (SCS) study of 6α -, 16α -, and 16β -oxygenated substituents.

Substituent-induced chemical shift for 6-acetoxy group

To obtain SCS for a 6α -acetoxy group, individual resonances of each carbon for different pairs of compounds were compared. The results are indicated in Table 6.

Table 2 Chemical shifts (ppm) for compounds 1 through 8

	Compound								
Carbon	1	2	3	4	5	6	7	8	
1	37.5	37.7	37.4	36.6	36.9	36.7	36.5	36.9	
2	32.1	31.9	31.8	27.3	27.7	27.0	27.4	27.8	
3	70.9	71.4	70.7	73.3	73.6	72.3	73.4	73.8	
4	38.3	42.5	30.6	33.9	38.1	28.2	(33.5)	38.1	
5	45.3	141.6	51.3	44.6	139.8	48.4	44.8	139.9	
6	29.0	120.8	68.7	28.2	121.7	71.7	28.4	122.1	
7	31.3	31.7	40.0	30.8	31.5	36.4	31.0	30.9	
8	35.4	31.8	34.0	35.0	31.5	33.6	34.0	30.0	
9	54.9	50.7	54.0	54.3	50.2	53.5	54.7	50.6	
10	36.0	37.0	36.4	35.6	36.7	36.6	35.6	36.8	
11	20.9	20.7	20.5	20.4	20.3	20.3	20.7	20.4	
12	31.6	31.1	31.5	31.5	30.8	31.3	(33.3)	(33.4	
13	48.1	47.8	48.0	47.6	47.4	47.6	44.8	44.7	
14	51.7	51.9	51.7	51.3	51.7	50.9	53.9	54.1	
15	22.0	22.0	21.8	21.7	21.9	21.6	(28.8)	(29.0	
16	36.0	35.9	35.9	35.7	35.8	35.6	110.9	111.1	
17	221.5	220.9	222.1	220.5	220.4	219.9	159.4	159.4	
18	13.9	13.5	13.8	13.7	13.5	13.7	15.5	15.4	
19	12.4	19.5	13.4	12.2	19.3	13.2	12.2	19.2	
<i>C</i> H₃COOR	—	_		21.3	21.3	21.1	21.1	21.1	
CH₃COOR	_	—		170.2	170.0	21.4 170.2ª	21.4 168.4 170.2	21.4 168.5 170.2	

Values in parentheses may be interchanged.

^a Signals with double intensity.

Table 3 Chemical shifts (ppm) for compounds 9 through 17

16 36.6 27.0 72.7	17 37.1 31.5
36.6 27.0 72.7	37.1 31.5
27.0 72.7	31.5
72.7	
00.0	71.3
28.3	42.1
48.4	141.0
71.6	120.4
36.1	32.2
33.6	30.7
53.6	50.0
36.6	36.6
19.9	20.3
31.1	30.6
47.6	47.5
48.4	48.3
29.5	34.1
72.2	46.2
213.2	213.3
14.2	14.0
13.2	19.4
20.8	
21.2	
21.3	
169.9	_
170.3	
170.6	
	48.4 71.6 36.1 33.6 53.6 36.6 19.9 31.1 47.6 48.4 29.5 72.2 213.2 14.2 13.2 20.8 21.2 21.3 169.9 170.3 170.6

Values in parentheses may be interchanged. ^a Signals with double intensity.

	Compound									
Carbon	18	19	20	21	22	23	24	25		
1	37.1	37.4	37.8	36.8	37.1	36.8	36.6	36.6		
2	32.1	31.6	31.8	27.6	31.4	27.7	27.3	26.9		
3	70.8	71.7	71.7	73.5	71.4	73.6	73.2	72.6		
4	29.6	38.3	42.6	38.0	42.1	38.1	33.9	28.2		
5	51.6	45.6	141.7	139.8	140.9	139.1	44.5	48.3		
6	68.8	29.4	121.2	121.5	120.4	121.5	28.1	71.4		
7	40.1	31.4	32.4	31.6	31.6	31.6	30.9	36.4		
8	33.1	35.5	31.2	30.5	30.7	30.7	34.2	32.7		
9	53.6	55.1	51.1	50.3	50.3	50.2	54.4	53.6		
10	36.3	36.1	37.3	36.6	36.7	36.8	35.6	36.6		
11	20.2	20.8	20.7	20.0	20.1	20.1	20.2	20.0		
12	30.8	31.4	31.5	30.9	30.8	30.9	31.7	31.4		
13	47.6	47.5	47.2	46.6	46.8	46.8	47.0	46.9		
14	47.6	44.8	46.3	45.8	46.2	46.2	45.8	45.4		
15	34.0	31.6	31.7	30.6	29.3	29.4	29.2	29.0		
16	46.1	75.3	75.2	75.1	74.6	74.6	74.6	74.2		
17	212.8	218.2	220.8	220.1	214.3	214.0	214.0	213.5		
18	14.2	14.4	14.4	14.6	14.2	14.3	14.5	14.4		
19	13.4	12.5	19.6	19.3	19.4	19.4	12.1	13.1		
CH-COOR	_		_	21.3	20.7	20.7	20.6	20.6		
01.300011						21.4	21.3	21.1		
								21.2		
CH-COOR	_	_		170.3	170.1	170.0	169.8	169.7		
030000						170.2	170.2	170.0		
								170.4		

Table 4 Chemical shifts (ppm) for compounds 18 through 25

From the values of Table 5 it can be established that the carbons significantly affected by the introduction of a 6α -acetoxy group are C-3 to C-10 and C-19, all of which are in the close neighborhood of C-6. The values for the α -effect (approximately 43.4 ppm) are in good agreement with the value proposed by Eggert and coworkers.²¹ Carbons in the β -position (C-5 and C-7) are deshielded, although the effect is larger for the latter (5.6 ppm) than for the former (3.8 ppm). C-4, C-8, and C-10 are in the γ -position to C-6. After introduction of a 6α -acetoxy group, C-4 and C-8 are shielded in different magnitude (5.6 and 1.5 ppm, respectively) while C-10 is deshielded (1.1 ppm). The shift for C-19 is in good agreement with the value reported by Grover and Stothers.²²

Substituent-induced chemical shift for 16α - and 16β -oxygenated groups

As previously, the SCS values for 16α - and 16β -oxygenated substituents were determined by comparison between pairs of compounds, as indicated in Table 6.

From the listed values it can be determined that carbons affected by introduction of an oxygenated substituent at position 16 are C-14 to C-18. If the substituent is β -oriented, C-8 and C-13 also change their respective chemical shift values.

It can be observed that α -effects are larger when the substituent is β -oriented than in the case of the α -epimer (2.3 ppm for the acetates and 3.7 ppm for the

Table 5 Chemical shifts (ppm) for compounds 26 through 31

		Compound					
Carbon	26	27	28	29	30	31	
1	37.3	37.3	36.4	36.6	36.4	36.5	
2	31.6	31.8	27.3	27.6	26.9	26.9	
3	71.1	71.7	73.3	73.5	72.7	72.7	
4	38.3	42.6	33.9	37.9	28.2	28.2	
5	(45.2)	141.8	44.5	139.8	48.2	48.3	
6	29.0	121.2	28.2	121.3	71.4	71.4	
7	32.2	32.1	31.6	31.4	37.0	37.3	
8	34.8	31.6	34.4	30.9	32.9	32.9	
9	54.8	50.9	54.0	49.7	53.2	53.4	
10	36.1	37.3	35.6	36.6	36.6	36.6	
11	21.0	21.0	20.3	20.1	20.1	20.3	
12	36.9	36.8	(36.3)	36.0	(35.8)	(36.2)	
13	42.9	42.6	41.7	41.3	41.6	42.4	
14	(45.3)	45.6	45.2	45.4	44.9	44.6	
15	36.2	36.3	(36.1)	36.0	(35.9)	(35.3)	
16	217.8	217.6	210.7	210.4	210.0	216.3	
17	86.6	86.6	85.6	85.4	85.2	86.0	
18	11.8	11.7	12.5	12.2	12.3	11.3	
19	12.5	1 9.7	12.2	19.3	13.1	13.2	
<i>C</i> H₃COOR	—	—	20.7	20.6	20.6	21.1	
			21.4	21.3	21.1 21.3	21.3	
CH₃COOR	_	_	170.0	170.0	170.0	170.3	
·			170.4	170.2	170.3 170.6	170.5	

Values in parentheses may be interchanged.

Table 6 Substituent-induced chemical shift values (ppm) for 6α -, 16α -, and 16β -oxygenated groups

Carbon	6α-OAc	16α-OAc	16α-OH	16β-OAc	16β-OH
1	0.1	0.0	0.0	- 0.1	- 0.1
2	-0.3	0.0	0.2	0.0	- 0.1
3	- 0.6	0.1	0.0	0.1	0.2
4	- 5.6	0.0	0.1	0.0	0.0
5	3.8	0.0	0.0	-0.3	0.1
6	43.4	- 0.2	0.2	-0.2	0.1
7	5.6	-0.4	0.4	0.1	0.4
8	- 1.5	-0.1	-0.1	- 0.8	- 0.8
9	- 0.7	-0.1	0.1	0.1	0.3
10	1.1	0.0	0.1	0.0	0.1
11	-0.2	- 0.4	-0.2	- 0.2	- 0.2
12	- 0.3	-0.3	0.5	0.1	0.3
13	0.0	- 0.1	0.2	-0.6	-0.7
14	- 0.3	- 2.7	- 2.7	- 5.5	- 5.8
15	- 0.1	7.8	9.1	7.5	9.2
16	- 0.3	36.5	35.6	38.8	39.3
17	-0.4	- 6.9	1.6	-6.4	-0.2
18	-0.1	0.5	0.6	0.8	1.0
19	1.0	0.0	0.1	0.0	0.1

alcohols). This fact could be explained by the interaction between 14α -H and 16α -H²³ or by interaction *quasi-syn*-oriented between C-18 and 16β -OR and the interaction *gauche* H-H with C-15.²¹

Carbonyl C-17 groups are shielded by 6.4 ppm for a 16 β -acetoxy group and 6.9 ppm for a 16 α -acetoxy group. This effect is similar to that produced by other electronegative substituents.²⁴

The SCS caused for a hydroxy group is more difficult to understand; in our examples, 16α -OH group shields C-17 in approximately 0.9 to 2.2 ppm while 16β -OH does not produce any significant effect.

On the other hand, C-15 suffers a strong deshielding for acetates (7.5 ppm) and alcohols (9.2 ppm); this value is in agreement with those reported by Eggert and coworkers.²¹

The γ -effect on C-14 differs significantly according to the spatial orientation of the C-16 acetoxy substituent. A shielding effect is observed in both cases, being larger for 16 β -isomers (5.5 ppm) than for 16 α -analogs (2.7 ppm). This difference could not be produced by the ester function, as alcohols and acetates show similar shift values. These values are in agreement with those reported for steroidal alcohols and decalols.^{21.23}

A δ -effect is observed on C-18. The observed values are similar for 16α - or 16β -oriented substituents.

Acknowledgments

We thank CONICET and the Organization of the American States for partial financial support.

References

 Seldes AM, Anding CA, Gros EG (1980). A new approach to the synthesis of 3β,21-diacetoxy-24-nor-5-cholene from 3β,21diacetoxy-5-pregnen-20-one. *Steroids* 36:575-580.

Papers

- 2. Seldes AM, Gros EG (1982). Acyl migration in the Reformatsky reaction of 21-acyloxy-5-pregnen-20-one derivatives with ethyl bromoacetate. *Steroids* **39**:181–190.
- 3. Oka K, Hara S (1978). Synthesis of γ -lactone ring fused to steroidal ring D of salamander alkaloids. J Org Chem **43**:4408-4410.
- Doller D, Gros EG (1990). Side chain introduction in 16βacetoxy-17-oxoandrostanes. Synthetic Commun 20:3115– 3124.
- Kirk DN, Hartshorn MP (1968). Steroid Reaction Mechanisms. Elsevier, Amsterdam, pp. 388-392.
 Doller D, Gros EG (1988). ¹³C NMR spectroscopic study of
- Doller D, Gros EG (1988). ¹³C NMR spectroscopic study of the rearrangement of 16β-hydroxy-17-oxosteroids to 17β-hydroxy-16-oxo isomers. *Magn Reson Chem* 26:539-541.
- 7. Numazawa M, Nagaoka M, Mutsumi A (1987). Stereospecific 1,2 hydride shift in the rearrangement of 16β -hydroxy-17-oxo steroids to 17β -hydroxy-16-ones with acid and base. *Chem Pharm Bull* **35:**4763–4768.
- 8. Doller DE, Gros EG (1989). Dissimilar behavior of 3β , 16α dihydroxy- 5α -androstan-17-one diacetate under basic and acidic conditions. *Helv Chim Acta* **72**:1241–1247.
- 9. Patt SL, Shoolery JN (1982). Attached proton test for C-13 NMR. J Magn Reson 46:535-539.
- Iwasaki M (1967). The Reformatsky reaction of 17-keto-steroids with ethyl α-bromopropionate. *Steroids* 9:373–386.
- 11. Leeds NS, Fukushima DK, Gallagher TF (1954). Studies of steroid ring D epoxides of enol acetates; a new synthesis of estriol and androstane- 3β , 16α , 17β -triol. J Am Chem Soc **76**:2943–2948.
- 12. Glazier ER (1962). Bromination with cupric bromide. II. Bromination in the presence of an olefinic double bond. *J Org Chem* **27**:4397–4399.
- 13. Numazawa M, Nagaoka M, Osawa Y (1982). Stereospecific synthesis of 16α -hydroxy-17-oxo steroids by controlled alka-

line hydrolysis of corresponding 16α -bromo-17-ketones and its reaction mechanism. J Org Chem **47**:4024–4029.

- 14. Johnson WS, Gastambide B, Pappo R (1957). The action of lead tetraacetate on an enol acetate. The epimeric 16-acetoxy derivatives of epiandrosterone acetate, their interconversion and rearrangement J Am Chem Soc **79**:1991-1994.
- Kincl FA (1976). An improved synthesis of 16β-hydroxy-dehydroepiandrosterone. J Steroid Biochem 7:419-420.
- Fishman J (1960). Rearrangements of steroidal ring D ketols. J Am Chem Soc 82:6143-6147.
- 17. Freeman R (1988). Off-resonance decoupling. In A Handbook of Nuclear Magnetic Resonance. Essex, UK, pp. 148–150.
- 18. Abraham RJ, Fisher J, Loftus P (1988). Introduction to NMR Spectroscopy. Wiley, New York, pp. 103-105.
- Blunt J, Stothers JB (1977). ¹³C NMR spectra of steroids—a survey and commentary. Org Magn Reson 9:439–464.
- Eggert H, VanAntwerp CL, Bhacca NS, Djerassi C (1976). Carbon-13 nuclear magnetic resonance spectra of hydroxy steroids. J Org Chem 41:71-78.
- VanAntwerp CL, Eggert H, Meakins GD, Miners JO, Djerassi C (1977). Additivity relationships in carbon-13 nuclear magnetic resonance spectra of dihydroxy steroids. J Org Chem 42:789-793.
- 22. Grover SH, Stothers JB (1974). ¹³C Nuclear magnetic resonance studies. 38. Examination of the long-range shieldings effects of the hydroxyl group in alicyclic systems. *Can J Chem* **52**:870–878.
- Beierbeck H, Saunders JK (1977). The semiempirical derivation of ¹³C nuclear magnetic resonance chemical shifts. Hydrocarbons, alcohols, amines, ketones, and olefins. *Can J Chem* 55:2813–2828.
- Levy GC, Lichter RL, Nelson GL (1980). Carbon-13 Nuclear Magnetic Resonance Spectroscopy. Wiley, New York, pp. 138–139.