
OXIDATION OF NON-ACTIVATED C-H BONDS IN HYDROCARBONS AND STEROIDS

T. Linz and H.J. Schäfer\* Organisch-Chemisches Institut der Universität, Orleansring 23, D-4400 Münster, FRG

<u>Summary</u>.  $CrO_3$  in  $CH_2Cl_2/CH_3COOH/(CH_3CO)_2O$  oxidizes hydrocarbons to alcohols and ketones,  $5\alpha$ -androstane and  $3\beta$ -acetoxy- $5\alpha$ -androstane are converted to  $5\alpha$ -androst-14-en-16-ones.

Regioselective oxidations of C-H bonds are desirable for the economic conversion of readily available natural products into higher value compounds. Useful methods to achieve this goal, more or less efficiently, are the template directed chlorination<sup>1</sup>, the Gif system<sup>2</sup> or the anode<sup>3</sup>.

We now found, that the convenient and inexpensive inorganic oxidant  $Cro_3$  can be used, too, for such conversions. With  $Cro_3$  in  $CH_2Cl_2/CH_3CO_2H/(H_3CO)_2O^4$  adamantane has been oxidized to 62% 1-adamantol, norbornane to 29%  $(40\%)^5$  norbornanone, camphane to 30% (39%) epicamphor and 7% camphor, <u>cis</u>-decaline to 36% (59%) <u>cis</u>-9-decalol. These partially moderate selectivities improved with steroids. So  $5\alpha$ -androstane (1a) and  $3\beta$ -acetoxy- $5\alpha$ -androstane (1b) were converted to 47% 2a and 68%  $2b^{6,7}$ .



<u>a</u>: R=H; <u>b</u>: R=0<sub>2</sub>CCH<sub>3</sub> i: Cr0<sub>3</sub>, CH<sub>3</sub>CO<sub>2</sub>H, (CH<sub>3</sub>CO)<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub> (<u>a</u>: 47%, <u>b</u>: 68%)

The steroids are identified by comparison of their mass spectra<sup>8</sup>, the chemical shifts of the 18- and 19-H in the <sup>1</sup>H-NMR<sup>9</sup> and the C=O frequencies in the IR<sup>10</sup> with data from the literature. 2a was converted by double bond hydroge nation<sup>11</sup> to  $5\alpha$ -androstan-16-one and 2b was deacetoxylated to 2a via its phenoxy thiocarbonate<sup>12</sup>.

<u>Acknowledgement</u> - Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

## REFERENCES

- <sup>1</sup> R. Breslow, Acc. Chem. Res. 13, 170 (1980).
- <sup>2</sup> D.H.R. Barton, J.C. Beloeil, <sup>--</sup> A. Billion, J. Boivin, J.Y. Lallemand,
- S. Mergui, Helv. Chim. Acta 70, 273 (1987), and earlier papers.
- <sup>3</sup> A. Hembrock, H.J. Schäfer, G. Zimmermann, Angew. Chem., Int. Ed. Engl. 24, 1055 (1985); Angew. Chem. 97, 1048 (1985).
- <sup>4</sup> For Cr(VI)-oxidations of hydrocarbons: D.G. Lee in R.L. Augustine, Oxidation, Techniques and Applications in Organic Chemistry, Vol. 2, p. 5, Marcel Dekker, Inc., New York (1969); K.B. Wiberg in Oxidation in Organic Chemistry, Part A, p. 109, Academic Press, New York and London (1965); for Cr(VI)-oxidations of steroids: C.M. Hol, M.G.J. Bos, H.I.C. Jacobs, Tetrahedron Lett. 15, 1157 (1969).
- <sup>5</sup> Yields in parenthesis are based on conversion.
- <sup>6</sup> Conditions for oxidation: 0.4 mmol la or b dissolved in 3 ml  $CH_2Cl_2$ , then addition of l ml  $CH_3CO_2H$  and l ml  $(CH_3CO)_2O$ .
- <sup>7</sup> Physical data of 2a and 2b:
  - 2a IR (KBr):  $v = 1680 \text{ cm}^{-1}$  (C=0), 1605 (C=C). -1 H-NMR (CDCl<sub>3</sub>):  $\delta = 5.85$ (d, 1H, 15-H), 3.45 (m, 1H, 8-H), 2.25 (q, 2H, 17-H), 1.2 (s, 3H, 18-H), 0.9 (s, 3H, 19-H). -MS (70 eV):  $\underline{m/2}$  (%) = 272 (100, M<sup>+</sup>), 257 (80, M<sup>+</sup>-CH<sub>3</sub>), 163 (52), 109 (80), 97 (65).
  - 2b IR (KBr):  $\sqrt{}$  = 1720 cm<sup>-1</sup>, 1680 (C=0), 1605 (C=C). <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  = 5.72 (d, 1H, 15-H), 4.65 (m, 1H, 3-H), 2.25 (q, 2H, 17-H), 2.0 (s, 3H, 21-H), 1.2 (s, 3H, 18-H), 0.9 (s, 3H, 19-H). MS (70 eV):  $\underline{m}/\underline{z}$  (%) = 330 (11, M<sup>+</sup>), 270 (100, M<sup>+</sup>-CH<sub>2</sub>COOH), 163 (41), 97 (55), 43 (81).
- $^{8}$  NBS-Bibliothek on the Data System SS 300 (Finnigan MAT).
- <sup>9</sup> J.E. Bridgeman, P.C. Cherry, A.S. Clegg, I.M. Evans, Sir Ewart
  R.H.Jones, A. Kasal, V. Kumar, G.D. Meakins, Y. Morisawa, E.E. Richards,
  P.D. Woodgate, J. Chem. Soc. (C), <u>1970</u>, 250.
- <sup>10</sup> A.D.Boul, J.W. Blunt, J.W. Browne, V. Kumar, G.D. Meakins, J.T. Pinhey, V.E.M. Thomas, J. Chem. Soc. (C), <u>1971</u>, 1130.
- 11 O. Louis-Andre, G. Gelbard, Tetrahedron Lett. 26, 831 (1985).
- <sup>12</sup> M.J. Robins, J.S. Wilson, F. Hanske, J. Am. Chem. Soc. 105, 4059 (1983). (Received in Germany 24 August 1987)

6582