5α , 6α - AND 5β , 6β -DICHLOROMETHYLENE ADDUCTS OF 3\beta-ACETOXY-5-ANDROSTEN-17-ONE

Bojan Hamlin Jennings, Sharon Martin Boudreau, Beverly Braasch, and Cheryl Garganta

Department of Chemistry, Wheaton College, Norton, Massachusetts 02766 Received 12-16-81

ABSTRACT

Both the 5α , 6α - and 5β , 6β -dichloromethylene adducts (<u>2a</u> and <u>2b</u>) of 3β -acetoxy-5-androsten-17-one (<u>1</u>) are produced when the latter is exposed to dichlorocarbene generated from chloroform and base by Phase Transfer Catalysis using ultrasound as a means of agitation. The ¹H NMR substituent effects of 5α , 6α - and 5β , 6β -dichloromethylene on the angular methyl groups (Zürcher values) are given. The ¹³C NMR spectra for both compounds are presented and discussed.

We used ultrasound instead of mechanical stirring [1] to generate dichlorocarbene from chloroform and base by Phase Transfer Catalysis (PTC). The carbene reacted with 3β -acetoxy-5-androsten-17-one (<u>1</u>) to yield a mixture of 5α , 6α - and 5β , 6β - adducts (<u>2a</u> and <u>2b</u>; 1:3).

<u>Beta</u> orientation of the dichloromethylene group in the major product (<u>2b</u>) was established by X-ray crystallographic data [3]; isomer <u>2a</u> must, therefore, have the α -configuration. Thus we have unambiguous structural assignments for the first recorded pair of 5α , 6α - and 5β , 6β -dichloromethylene adducts from the same Δ^5 steroid.

The ¹H NMR data for these compounds was used to calculate the substituent effects of the α - and β - dichloromethylene groups on the

Volume 39, Number 4

STEROIDS

angular methyl groups (Zürcher values [4]). The δ value for the C_{19H_3} signal of the α -isomer (2a), found at 1.20 ppm, compared with that of 3 β -acetoxy-5 α -androstan-17-one (0.86 ppm, as calculated from recorded Zürcher values [4]), gives a C_{19H_3} Zürcher value of 0.34 ppm for 5 α , 6 α -CCl₂. Similar comparison of the chemical shift for the C_{19} -protons of Compound 2b (at 1.29 ppm) with that of 3 β -acetoxy-5 β -androstan-17-one (1.00 ppm) leads to a C_{19H_3} Zürcher value of 0.29 ppm for 5 β , 6 β -CCl₂. As expected, the substituent effects on C_{18H_3} , calculated in the same way, are small and essentially the same for both 5 α , 6 α - and 5 β , 6 β -CCl₂, namely 0.04 and 0.05 ppm respectively.

Table I displays $\frac{13}{C}$ NMR data for 2a and 2b, along with shielding values calculated for the parents of the two compounds (3 β -acetoxy- 5α -androstan-17-one (13) and 3 β -acetoxy- 5β -androstan-17-one (14), and substituent effects ($\delta_2 - \delta_{parent}$) [5] of 5α , 6α -CCl₂ and 5β , 6β -CCl₂ on each carbon. The values of these substituent effects are measures of the degree to which the α - or the β -CCl₂ influences the 13 C NMR resonance of a given carbon.

The data are arranged according to the multiplicity of the signals in order to facilitate discussion; a sequential listing of the shifts is also given at the bottom of the Table. Models (Dreiding for 2aand to scale from X-ray data [3] for 2b) were used to ascertain the geometric relationships discussed below.

<u>Quartets</u> (-CH₃). The resonance for C₁₈ (δ 13.6, Table I) in both <u>2a</u> and <u>2b</u> is essentially the same as for both parents (<u>13</u> and <u>14</u>), just as expected for a carbon far removed from the -CCl₂ [5].

C-19 appears at δ 18.6 for <u>2a</u>, 6.4 ppm downfield from C-19 of its parent (<u>13</u>), whereas C-19 of <u>2b</u>, at δ 21.2, lies upfield from parent <u>14</u>

		Table I. ¹³ C N	MR Data for Co	mpounds <u>2a</u> and <u>2</u>	р ^а	
Substit- uent Effect ^d α-CCl ₂	Parent of $\frac{2a}{(13)}$ Calc'd ^b	<u>2a</u> observed δ	Carbon	observed ô	Parent of $\frac{2b}{(14)}c$ δ	Substit- uent Bffect ^d β -CCl ₂
			QUARTETS (-CH	3)		
-0.2 6.4	13.8 12.2	13.6 18.6 21.1	18 <u>CH</u> 3C 0=C	13.6 21.2 ^e 21.3 ^e	13.9 23.8	-0.3 -2.6
			TRIPLETS (>CH	2)		
	0 76	C 9C	-	ar finant		10 41 21
-0.7	27.4	26.7	- 0	25.3(25.8)	~25.3	~0.0(0.5)
-2.5	33.0	30.5	4	25.8(25.3)	~30.8	~-5.0(-5.5)
-7.4	30.8	23.4	7	34.2(35.6)	25.3	8.9(10.3)
0.1	20.5	20.6	11	20.8	20.4	0.4
-0.2	31.6	31.4	12	31.3	31.9	-0.6
-0.1	21.7	21.6	15	21.5	21.8	-0.3
0.4	35.2	35.6	16	36.0(35.6)	35.9	0.1(-0.3)
			DOUBLETS (∋CH			
-2.1	73.3	71.2	Ś	68.4	~71.3	-2.9
0.5(2.1)	28.5	29.0(30.6)	9	29.8(31.5)	26.4	3.4(5.1)
-4.4(-6.0)	35.0	30.6(29.0)	8	31.5(29.8)	35.3	-3.8(-5.5)
-12.1	54.4	42.3	6	45.4	40.2	5.2
0.2	51.4	51.6	14	53.0	51.7	1.3

		Table I. ¹³ C NMI	R Data for Cc	mpounds <u>2a</u> and <u>2</u>	<u>2b</u> (cont.)	
Substit- uent Effect ^d α-CC1 ₂	Farent of $\frac{2a}{(13)}$ Calc'd ^b δ	2a observed ô	Carbon	observed ô	Parent of $\frac{2b}{(14)}c$ δ	substit-uent ent $Bffect^d$ β -CC1 ₂
		5	SINGLETS (-		
-8.6	44.6 25.6	36.0	υ	34.6 36 7	36.6 36	-2.0
	0°00	47.5 47.5	1.0	47.2	47.8	-0.6
1	•	72.9	>cc12	72.6		•
		170.0	o=COCH 3	170.4		
		219.6	<u>C</u> 17=0	219.9		
Absorption lis	ted in seque	ence (δ values, pi	: (ud			
2a 13.6, 18.6 42.3, 47.5	, 20.6, 21. , 51.6, 71.2	1, 21.6, 23.4, 26 2, 72.9, 170.0, 2	.7, 29.0, 30. 19.6.	5, 30.6, 31.4, 3	35.6, 36.0, 36.3	, 37.1,
2b 13.6, 20.8 45.4, 47.2	, 21.2, 21.3	3, 21.5, 25.3, 25. 4, 72.6, 170.4, 2	.8, 29.8, 31. 19.9.	3, 31.5, 34.2, 3	34.6, 35.6, 36.0	, 36.7,
^a Resonances a frequency 62.8 city. ^b Calcu tables [5]. ^c substitution e 3β -acetoxy-5 β - acetate: at C derived from o androstanes [1 tially the sam f Resonance as	re given in MHz. Off- lated for 3 Since neith ffects for (androstan-1 -2 (-2.6 ppr bserved valu 1]. The re e & values. signments in	ppm ($\delta \pm 0.03$) usi: resonance decoupl. β -acetoxy- 5α -andr her the values fo: β -steroids are av. 7-one [5] with ad. m), C-3 (4.5 ppm) ues for two pairs sonances for all ($d = \delta - \delta + \delta +$	ng CDC1 ₃ as t ed spectra we ostan-17-one r 3β -acetoxy- ailable, the justments mac , and C-4 (-2, of 3β -alcoho other carbons ee text. ^e I possible alt	the internal star reference used to deter (13) by use of E 5β -androstan-17- values shown are the for replacemer if the 3β -OH3 distinguished by cernatives.	ndard, spectrome rmination of mul 3lunt and Stothe one nor the req the observed d it of the C_3 -hyd corrections wer vatives of 5 β ,14 3 β -OAc pairs hav selective decou	ter tipli- r's uisite ata for roxy by e β- e essen- pling.

by 2.6 ppm. This difference results from the magnetic anisotropy of the cyclopropyl ring, the influence of which has been described in terms of cones lying above and below the plane of the ring, their axes perpendicular to the plane, their vertices at its center [6]. Atoms lying within the cone should be shielded whereas those outside are deshielded. Although the angle of the cones has been variously estimated [6,7], it would seem that it should be large enough to encompass protons attached to the cyclopropyl ring (~100°) since they are known to be shielded. (See also the discussion of C-9, below.) C-19 of <u>2a</u> lies in a deshielded region (surface of ~120° cone) whereas C-19 of <u>2b</u> is well within a shielded zone (74.2° cone). The latter is shielded by no more than -2.6 ppm because it is δ - and almost <u>syn</u>-axial to the <u>endö</u>-Cl and therefore experiences a counter, deshielding influence [5].

The third set of quartets, at $\delta 21.1$ (<u>2a</u>) and $\delta 21.3$ (<u>2b</u>) is within the normal range for acetate methyl carbon [5].

<u>Triplets</u> $(-\dot{C}H_2)$. For both compounds the δ values for C-11, 12, 15, and 16, all distant from the substituent, are essentially the same as those for the obrresponding carbons in each parent compound (<u>13</u> and <u>14</u>).

For the assignments of the other four methylene carbons (C-1, 2, 4, and 7); first consider <u>2a</u>. C-1 and C-2 are both quite far from the cyclopropyl ring; although C-1 is δ to the chlorines, it escapes their influence because it is not <u>syn</u>-axial, the C-1--<u>exo</u>-Cl dihedral angle being ~50°; --<u>endo</u>, ~85°. Both carbons, therefore, resonate at essentially the same frequencies as C-1 and C-2 in the parent (<u>13</u>).

C-4 of 2a is in the same position as C-7 relative to the

STEROIDE

cyclopropyl ring (~100° cones) and also relative to a chlorine. The ring shields both carbons. C-4 suffers a counter, deshielding <u>anti</u>- γ -effect [5]: both C-5 and C-cyclopropyl, which lie between C-4 and the γ -<u>syn</u>-axial <u>exo</u>-Cl, are fully substituted. This effect is lacking for C-7 and it is therefore further shielded by the γ -<u>syn</u>-axial <u>endo</u>-Cl. Accordingly, δ 30.5 is assigned to C-4 (-3.2 ppm) and δ 23.4 to C-7 (-7.4 ppm).

In contrast with <u>2a</u>, none of the resonances for <u>2b</u> which remain after assignments are made for C-11, 12, 15 and 16 are near the resonance for C-1 of parent <u>14</u> (δ 30.0). Either δ 25.3 or δ 25.8 is suitable for C-2 which, being ε to the chlorines and far from the cyclopropyl ring, should resonate at approximately the same frequency as parent <u>14</u> (δ ~25.3). C-4 in <u>2b</u>, as in <u>2a</u>, is shielded by the cyclopropyl ring (100.0° cone). It is γ -gauche to the <u>exo</u>-C1, with a C-4--Cl dihedral angle of 8.6°. Thus either δ 25.8 (-5.0 ppm) or δ 25.3 (-5.5 ppm) is appropriate for C-4. C-7 in <u>2b</u>, unlike <u>2a</u>, is deshielded by the ring (112.7° cone; see discussion for C-9) and may be less shielded by the γ -<u>endo</u>-Cl than in <u>2a</u> because it is farther from the chlorine (C-7, C-6, C-cyclopropyl angle is 122.4° in <u>2b</u>, ~120° in <u>2a</u>). It lies at δ 34.2 or δ 35.6 (8.9 or 10.3 ppm). This leaves δ 35.6 or δ 34.2 for C-1, deshielded (5.6 or 4.2 ppm), in sharp contrast with the situation in <u>2a</u>.

<u>Doublets</u> (-CH). The signals for C-3, at δ 71.2 for <u>2a</u> and δ 68.4 for <u>2b</u> (confirmed by selective decoupling), are both somewhat upfield from the respective parents.

C-6 is β to two chlorines (deshielding) [5] and is incorporated

in the cyclopropyl ring (shielding) [9]. Since the only suitable resonances for this carbon are at δ 29.0 (or 30.6) for <u>2a</u> and at δ 29.8 (or 31.5) for <u>2b</u>, we see that the two conflicting influences are more balanced in <u>2a</u> (substituent effect: 0.5 or 2.1 ppm) than in 2b (substituent effect: 3.'4 or 5.1 ppm).

C-8, lying on the surface of an ~90° cone in 2a, 80.0° in 2b, is shielded by the cyclopropyl ring in both compounds. Accordingly their signals at δ 30.6 (or δ 29.0) and δ 31.5 (or δ 29.8) appear upfield from those of the parents (<u>13</u> and <u>14</u>).

In both <u>2a</u> and <u>2b</u> C-9 is δ - but not <u>syn</u>-axial to the chlorines. In <u>2a</u> it is on the surface of an ~30° cone, strongly shielded, and resonates at δ 42.3 (-12.1 ppm). On the other hand, C-9 of <u>2b</u>, at δ 45.4 is deshielded (5.2 ppm). This carbon is on the surface of a 107° cone and the fact that it is deshielded indicates that the angle of the cone which separates the shielding from the deshielding region is less than 107°.

The signal for C-14, in the C/D ring system, is at δ 51.6 for <u>2a</u>, close to that of parent <u>13</u>; it is downfield more than expected (1.3 ppm) for <u>2b</u> (δ 53.0).

<u>Singlets</u> $(-\dot{C}-)$. C-5 of <u>2a</u>, at δ 36.0, is shielded by -8.6 ppm; C-5 of <u>2b</u>, at δ 34.6, by -2.0 ppm. Like tertiary C-6, C-5 is β to two chlorines (deshielding) and also part of the cyclopropyl ring (shielding) but, being quaternary, it is, unlike C-6, overall shielded because incorporation in the ring is more important than chlorine proximity [10].

C-10 is mildly deshielded (1.5 ppm) in both <u>2a</u> and <u>2b</u>. It lies on a 100° cone emanating from the cyclopropyl ring and is γ -syn-axial

to the <u>endo-Cl</u> with complete substitution of the intervening C-5 and C-cyclopropyl.

C-13, at a C/D juncture, is too far from the substituted site to be affected and, for both <u>2a</u> and <u>2b</u>, its resonance is essentially the same as that of the respective parent and also each is about the same as the other (δ 47.5 and δ 47.2).

The resonances for $-CCl_2$, at $\delta72.9$ for <u>2a</u> and $\delta72.6$ for <u>2b</u>, can be compared with absorption at $\delta56.1$ for the α -carbon in l,l-dichlorocyclopropane [9]. The <u>COCH</u>₃ and <u>C</u>-17 absorptions at $\delta170$ and $\delta220$ respectively are normal for acetate and ketone carbonyl.

EXPERIMENTAL

The following instruments were used: Perkin-Elmer Model 137 Infrared Spectrometer; Perkin-Elmer Model 337 Grating Infrared Spectrometer; Varian Model T-60 NMR Spectrometer for ¹H NMR; Bruker Model WM-250 Spectrometer for both noise and off-resonance decoupled ¹³C NMR Spectra. Perkin-Elmer 241 Polarimeter; Bronsonic Ultrasonic Cleaner, Model B32, 55 KHz, 150 watts, 10x15x15 (depth) cm³. 3β-Acetoxy-5-androsten-17-one (dehydroepiandrosterane acetate) was purchased from Sigma Chemical Company; 18-crown-6, dibenzo-18-crown-6 (DBC), benzyltriethylammonium chloride (TEBA), and cetyltrimethylammonium bromide (CTMA) were obtained from Aldrich Chemical Company; alcohol-free HCCl₃ was prepared by washing reagent grade HCCl₃ three times with water and passing through Whatman phase separating paper. Brinkmann Silica Gel 60 was used for column chromatography; eluant solvents (benzene and ethyl acetate) were reagent grade. Merck thin layer chromatography (TLC) plates coated with 0.2 mm Silica Gel 60, without fluorescent indicator, were used. All IR spectra were taken as KBr discs; NMR spectra were obtained from DCCl₃ solutions, tetramethylsilane as internal reference. Melting points were taken in sealed tubes and are uncorrected. The molecular weight determination of Compound 2b and elemental analyses were made at Schwartzkopf Microanalytical Laboratory, Inc., Woodside, N.Y.

Procedure for PTC Reactions Using Ultrasound for Agitation. 3 β -Acetoxy-5-androsten-17-one (0.6 mmole: 200 mg), catalyst (0.2 mmole: 53 mg 18-crown-6, 72 mg DBC, 46 mg TEBA, 73 mg CTMA), HCCl₃ (23 ml), and saturated base (KOH or NaOH, 10 ml) were placed in a 1 liter Erlenmeyer flask, fitted with a reflux condensor, positioned as close as possible to the bottom of the ultrasound tank which was filled with water kept sufficiently hot (by replacement when necessary) to sustain reflux. After exposure to ultrasound for one hour, the mixture was transferred to a separatory funnel along with approximately

200 ml CH_2Cl_2 and water. After separation of layers, the organic phase was washed with 6N HCl and water, then passed through phase separating paper (Whatman $l_{\rm E}^{\rm B}$), and evaporated. Before analysis, the last traces of volatile material were removed by a vacuum pump.

The molar ratios of combined products ($\underline{2a}$ plus $\underline{2b}$) to starting material ($\underline{1}$) were determined by ¹H NMR as described below. With 18-crown+6 and NaOH, the ratio was 2:1; with KOH, 1:1. DBC, with both bases, gave a 2:1 yield. A 5:1 ratio was achieved with both TEBA and CTMA when NaOH was used; with KOH, only 1:1. Reproducibility (at least four runs) was occasionally poor but all reactions gave at least 50% yield. The yield of $\underline{2b}$ was consistently three times that of $\underline{2a}$, determined by ¹H NMR.

Analysis of Crude Product Mixtures

<u>TLC</u>. Ethyl acetate-benzene solution (10% ethyl acetate) was used to develop the chromatogram on Silica Gel 60 plates; visualization was accomplished by exposure to iodine vapor. Only two spots appeared, the one with lower R_p value corresponding to <u>2b</u>, the other to a mixture of <u>1</u> and <u>2a</u>.

¹<u>H NMR</u>. The yield data reported above was obtained by comparing the height of the sharp C_{19H_3} peak of <u>1</u> (δ 1.05) with the height of the superimposed C_{16H_3} peaks of the products, both of which appear at δ 0.83. To test the accuracy of this method, we prepared quantitative mixtures of the purified products and starting material, in approximately the mole ratios we perceived in the crude products, and compared the ratios obtained from the methyl peaks in the ¹H NMR spectra, as described above, with the known compositions. There was complete agreement.

The relative heights of the C_{19H_3} peaks at $\delta 1.29$ (<u>2b</u>) and $\delta 1.20$ (<u>2a</u>) were 3:1 (<u>2b:2a</u>).

Isolation and Purification of Products

Crude product mixtures from several PTC reactions were combined and chromatographed on a Silica Gel 60 column, using a 10% ethyl acetate-benzene solvent system. After elution of an orange oil, fractions containing 1 and 2a (¹H NMR analysis) were obtained (~14% of material put in column), followed by mixtures of 2a, 2b and 1 (~30%). The final fractions held 2b only (~26%). Dark brown material remained on the column. Compound $\overline{2a}$ was separated from 1 by washing early fractions with small amounts of ether or acetone, which removed most of the starting material (1), followed by several recrystallizations from either solvent. (In this latter process, care was taken not to force into solution small amounts (<1 mg from 82 mg) of highly insoluble unidentified material which did not have the correct IR spectrum for 2a). Thus were obtained white crystals of 2a (58 mg, for example, from 657 mg chromatographed fractions): mp $232-233^{\circ}$; Molecular rotation, [M] (.03374 g/ml) 589 nm, +67.0; 578, +71.9; 546, +92.6; 436, +291.2; 365, +1005. UV λ_{max} 295.9 nm. IR 1736(s), 1244(s), 1031(m), 839(m), and 819(m) cm⁻¹. ¹H NMR δ 0.83 (s, 3H, C_{18H3}), 1.20(s, 3H, C19H3), 2.00(s, 3H, acetate CH3), 5.02 (heptet, J=1.2 Hz, 1H, C₃H). ¹³C NMR, see Table I.

Anal. Calc'd for $C_{22}H_{30}O_{3}Cl_{2}$: C, 63.92; H, 7.32, Cl, 17.15 Found: C, 63.99; H, 7.51; Cl, 17.40.

Chromatographic fractions containing only Compound <u>2b</u> (¹H NMR) were recrystallized from ether to give white orthorhombic crystals (e.g. 299 mg from 363 mg): mp 154.5-155°.MW (Osmometry) Calc'd 413.4 g/m Found 412±5% g/m. [M] (0.01567 g/ml) 589 nm, -7.0; 578, -5.0; 546, -5.8; 436, +158; 365, +863.6. UV λ_{max} 295.3 nm. IR 1733(s), 1245(s), 1042(s), 1025(m), 1013(s), 1007(s), 837(s), 802(m) cm⁻¹. ¹H NMR $\delta 0.83(s, 3H, C_{18}H_3)$, 1.29(s, 3H, $C_{19}H_3$), 2.06(s, 3H, acetate CH₃), 4.98(m, 1H, $C_{3}H$). ¹³C NMR, see Table I. X-ray crystallography, see Reference 3.

Anal. Calc'd for C₂₂H₃₀O₃Cl₂:C, 63.92; H, 7.32; Cl, 17.15. Found: C, 63.94; H, 7.54: Cl, 17.43.

Multiple recrystallizations from ether (in which $\underline{2a}$ is less soluble than $\underline{2b}$) were needed to separate the two products in the intermediate fractions which contained both compounds.

For comparison with ¹H NMR data for <u>2a</u> and <u>2b</u>, we found the following resonances for <u>1</u>: $\delta 0.87(s, 3H, C_{18}H_3)$, 1.05(s, 3H, $C_{19}H_3$), 2.00(s, 3H, acetate CH₃), 4.51(m, 1H, C₃H), 5.33(d, 1H, C₆H).

ACKNOWLEDGMENT

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society for support of this work. We also thank Dr. Charles Lerman of Stuart Pharmaceuticals, Division of ICI Americas, for his generosity and expertise in obtaining the ¹³C NMR spectra. We are indebted to Dr. Styliani Pastra-Landis (Wheaton College/ Brandeis University) for taking the polarimetric data; to Harry Pastra-Landis for suggesting the use of ultrasound; and to Dr. Donna Stevenson Amenta for help with the manuscript.

REFERENCES

- Cavitation, which is responsible for chemical changes in some other systems [2] is not involved in the reactions reported here: the transmission of ultrasonic energy through the relatively thick glass vessels which were used does not produce cavitation in contained liquids.
- e.g. Jennings, B. H., and Townsend, S. N., J. PHYS. CHEM. <u>65</u>, 1574 (1961).
- 3. Boudreau, S. M., and Jennings, B. H., STEROIDS, subsequent paper in this issue.
- Bhacca, N. S., and Williams, D. H., "Applications of NMR Spectroscopy in Organic Chemistry: Illustrations from the steroid field," Holden-Day, Inc., San Francisco, Chapter 2 (1966).
- 5. Blunt, J. W., and Stothers, J. B., ORG. MAG. RES. <u>9</u>, 439 (1977).
- 6. Hahn, R. C., and Howard, P. H., J. AM. CHEM. SOC. <u>94</u>, 3143 (1972).
- 7. Kohout, L. and Kajkoš, J., COLLECTION CZECHOSLOV. CHEM. COMMUN. 37, 3490 (1972).
- 8. Stothers, J. B., Tan, C. T., and Teo, K. C., J. MAG. RES. <u>20</u>, 570 (1975).
- Stothers, J. B., "Carbon-13 NMR Spectroscopy," Academic Press, New York, p. 60 et seq. (1972).
- Grutzner, J. B., Jautelat, M., Dence, J. B., Smith, R. A., and Roberts, J. D., J. AM. CHEM. SOC. <u>92</u>, 7107 (1970).
- 11. Reference 5, Table 1, Compounds 131, 132, 135, and 136.