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Abstract: A new method for the synthesis of lumisterin-type ste-
roids following the D→ABCD approach is reported. A key step is
the cobalt-induced cyclization of a cyclopentanoid enediyne, which
was prepared via thioalkylation of the zinc enolate of a 2,3-substi-
tuted cyclopentanone with a-chlorosulfides.
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Recently, we reported the cobalt-mediated [2+2+2] cy-
cloaddition of 4-hydroxy-substituted enediynes2 towards
2-hydroxy-substituted decahydrophenanthrenes.3 The hy-
droxy group in the propargylic position was tolerated un-
der the chosen reaction conditions. Furthermore, it has
been demonstrated that this stereogenic center does not
have any influence on the formation of the stereogenic
centers from the Z double bond, which were transformed
to trans-phenanthrenes in a diastereomeric ratio of almost
1:1. These trans-phenanthrenes represent the ABC-
framework of ergosterin or lumisterin. Consequently, a
diastereoselective synthesis of (3S)-hydroxyandrosta-5,7-
diene-17-ones 1, precursors of vitamin D, was envisioned
by following the D→ABCD approach. Recently, Mala-
cria reported the preparation of 11-aryl-substituted ste-
roids via cobalt(I)-mediated cyclization of allenediynes.4

In this convergent synthesis, the racemic ring D (building
block 9) and the alkene side chain 7 were connected by a

thioalkylation reaction5 at a very late stage of the synthe-
sis (Scheme 1). The PG2-protected hydroxy group of cy-
clopentanone 3 was then converted after deprotection,
oxidation, and a Corey–Fuchs alkynation to the desired
triple bond in 2. After cleavage of the protective group
PG1 and Swern oxidation, we introduced the propargylic
moiety enantiomerically using a chiral boron–allene com-
plex.6 Cobalt-mediated cyclization of enediyne 2 should
afford either ergosterin or lumisterin-type steroids. The si-
multaneous formation of the stereogenic center at C-9 and
C-10 of the steroid should be exclusively induced by the
trans-configured centers at C-2 and C-3 of the cyclopen-
tanone precursor since the stereogenic center in the
sidechain at C-7¢ does not have any stereochemical influ-
ence on the outcome of this cyclization.2

For the synthesis of the a-chlorosulfides 7 we started from
the TBDMS-7, TBDPS-,8 and Bn9-O-protected pentynols
4 (Scheme 2). After Cp2ZrCl2-catalyzed carbo-alumina-
tion of 4 the corresponding vinyl alanes were treated with
n-BuLi and ethylene oxide to afford the E-alkenols 5.2

The alcohols 5 were mesylated and then transformed into
the phenylsulfides 6 by reaction with KSPh in dimethyl-
sulfoxide at room temperature. Finally, chlorination with
N-chlorosuccinimide in CCl4 gave the chlorides 7. 

The synthesis of the cyclopentanones 9 was achieved
starting from the known racemic 3-hydroxymethyl-2-
methylcyclopentanone 8 by protection of the hydroxy
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group as its silyl ether rac-9a (TBDMSCl and imidazole),
as its benzoate ether rac-9b (BzCl and pyridine), or as
its benzyl ether rac-9c (benzyltrichloroacetimidate)
(Scheme 3).10

The a-thioalkylation of cyclopentanones 9 was achieved
by deprotonation of these cyclopentanones with potassi-
um hydride, transmetalation of the generated enolates
with ZnCl2 into the zinc enolates and reaction with the
a-chlorophenyl sulfides 7. However, only alkylation of
the TBDMS-O-protected cyclopentanone 9a with the
TBDPS- and Bn-O-protected alkenes 7b and 7c was suc-
cessful. While reductive desulfurization of rac-10c with
lithium in diethyl amide gave the desired alkene 11 with
concomitant cleavage of the benzyl protecting group, the

silyl protected rac-10b decomposed under the same con-
ditions. Protection of 11 with TBDPSCl and imidazole,
resulted in cleavage of the TBDMS group under mild con-
ditions and Swern oxidation of the alcohol obtained pro-
vided the aldehyde rac-12. Corey–Fuchs alkynation,11

desilylation with TBAF·3H2O, and oxidation under the
same conditions as above gave aldehyde rac-13, which
was converted to the enediyne 14 using Yamamoto’s
chiral allenylboronic ester6 and protection of the propar-
gylic alcohol obtained as its MEM ether.

Subsequent CpCo(CO)2-mediated [2+2+2] cycloaddition
of the diastereomeric pair 14/14¢ (1:1) in refluxing toluene
with exposure to visible light followed by oxidative de-
metallation with FeCl3 afforded the (3S)-hydroxyandros-
ta-5,7-diene-17-ones 15 (Scheme 5).12 Both the ratio and
the absolute configuration of the obtained steroids were
determined by comparison of their 13C NMR spectra with
the 13C NMR spectrum of an authentic sample of (3b)-3-
methoxyethoxymethoxyandrosta-5,7-dien-17-one 17.14

Scheme 2 Reagents and conditions: (a) (i) AlMe3 (3 equiv),
Cp2ZrCl2 (40 mol%), toluene, 0 °C, 30 min, then 4, 50 °C, 76 h; (ii)
n-BuLi (3 equiv), –65 °C to –40 °C, then ethylene oxide (3.5 equiv);
(b) Et3N (1.5 equiv), MsCl (1.1 equiv), CH2Cl2, –10 °C, 15 min; (c) t-
BuOK (1.2 equiv), PhSH (1.2 equiv), DMSO, r.t., 1 h; (d) NCS (1.3
equiv), CCl4, r.t., 12 h. 7a: R1 = TBDMS (60% overall yield), 7b:
R1 = TBDPS (55% overall yield), and 7c: R1 = Bn (44% overall
yield).
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Scheme 3 Reagents and conditions: (a) rac-9a: R2 = TBDMS,
TBDMS-Cl (1.2 equiv), imidazole (2.5 equiv), DMF, 0 °C to r.t., 3 h
(70%); rac-9b: R2 = Bz, BzCl (1.25 equiv), pyridine (1.25 equiv),
CH2Cl2, r.t., 18 h (74%); rac-9c: R2 = Bn, BnOC=NHCCl3 (2 equiv),
CH2Cl2–THF (5:1), 0 °C, 2 h (60%).
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Scheme 4 Reagents and conditions: (a) KH (1 equiv), THF, r.t., then ZnCl2 (2.5 equiv), –15 °C to –80 °C, then 7, –80 °C to r.t., 15 h; 7b:
R1 = TBDPS (32%, 10b); 7c: R1 = Bn (35%, 10c); (b) R1 = Bn, Li (3 equiv), EtNH2, –20 °C to reflux (68%); (c) TBDPSCl (1.2 equiv), imidazole
(2.5 equiv), DMF, r.t. (94%); (d) 1% HCl in EtOH, r.t., 2 h (80%); (e) (COCl)2, Et3N, DMSO, CH2Cl2, –65 °C (94%); (f) (i) PPh3 (4 equiv),
CBr4 (2 equiv), CH2Cl2, 0 °C, 30 min, then 12, 30 min (76%); (ii) t-BuLi (3 equiv), THF, –80 °C, 30 min (78%); (g) TBAF·3H2O (1.2 equiv),
THF, r.t., 4 h (90%); (h) (COCl)2, Et3N, DMSO, CH2Cl2, –65 °C (78%); (i) CH2=C=CHB(OH)2 (1 equiv), D-(–)-diisopropyl tartrate (2 equiv),
toluene, –80 °C, then 13, 24 h (78%); (j) i-Pr2NEt (1.5 equiv), CH3OCH2CH2OCH2Cl (1.5 equiv), CH2Cl2, 0 °C to r.t., 18 h (88%).
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This was synthesized starting from commercially
available13 (3b)-3-androsta-5-en-17-one 16 by employing
the phenylsulfoxide method of Confalone and co-workers
(Scheme 6).14

Starting from a 1:1 mixture of 14 and 14¢ the formation of
the stereogenic centers C-9 and C-10 should be controlled
only by the cyclopentanoid  moiety. Consequently, the
diastereomeric pairs 15a/15¢a and 15b/15¢b must be ob-
tained each in a 1:1 ratio. The lumisterin and ergosterin
precursors ratio of 15a/15b was found to be 7:1 after the
13C NMR data of 15b were determined, which coincided
with those of 17, prepared from 16 (Scheme 6). Table 1
shows selected data and the ratio of the prepared steroids. 

Scheme 5

Scheme 6

In summary, the formation of the tetracyclic core 1 is re-
ported via an intramolecular cobalt-mediated [2+2+2] cy-
cloaddition of an enediyne, which has been synthesized
starting from a substituted thiochloride and a 2,3-disubsti-
tuted cyclopentanone. Since several chiral syntheses of

substituted cyclopentanones and cyclopentanes are well-
known,1a the synthesis of the steroid skeleton described
herein offers a new convergent approach to vitamin D
compounds (deltanoids) following the construction prin-
ciple D→ABCD. Extension of this strategy to the synthe-
sis of substituted steroids (provitamin analogues), which
can been transformed directly, after photolysis and ther-
mal isomerization, to related vitamin D is under investiga-
tion.
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Table 1 Selected 13C NMR data

Steroida 15a 15¢a 15¢b 15b 17b
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Ratio 7 7 1 1 –

a Chemical shift in ppm.
b Prepared from 16 in enantiomerically and diastereomerically pure 
form.
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