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a  b  s  t  r  a  c  t

Regioselective  Cu(I)-catalyzed  1,3-dipolar  cycloaddition  of  steroidal  17�-azides  with  different  terminal
alkynes  afforded  novel  1,4-disubstituted  triazolyl  derivatives  in  good  yields  in both  the estrone  and  the
androstane  series.  The  antiproliferative  activities  of  the  structurally  related  triazoles  were  determined
in  vitro  on  three  malignant  human  cell  lines (HeLa,  MCF7  and  A431),  with  the  microculture  tetrazolium
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. Introduction

In recent years, considerable interest has been focused on
teroidal heterocycles in view of the broad spectrum of their
iological activities. Several novel synthesized compounds have
een described as potent inhibitors of 17�-hydroxylase-C17,20-

yase (P45017�) which can block androgen synthesis at an early
tage, and may  therefore be useful in the treatment of prostatic
arcinoma [1–3]. Moreover, some steroidal heterocycles have also
een found to exert inhibitory effects on 5�-reductases [4] and to
isplay considerable cytotoxic activity [5].  Although a number of
iverse triazolyl derivatives have been reported to exhibit biologi-
al activity, including antibacterial [6],  antiallergic [7] and anti-HIV
8] effects, steroids containing this kind of structural moiety have
eceived less attention from both synthetic and pharmacological
spects [9,10].

Since the first reports [11,12], Cu-catalyzed azide-alkyne 1,3-
ipolar cycloaddition (CuAAC) has found numerous applications
cross a wide variety of disciplines, including polymer chemistry,
aterials research and pharmaceutical sciences, as evidenced by

 huge number of related articles and several reviews [13–15].
he certain advantageous properties (versatility, regiospecific reac-

ions, the lack of by-products and high conversions) have made
click’ chemistry [16] an ideal tool for the synthesis of libraries for
nitial screening and for structure–activity profiling.

∗ Corresponding author. Fax: +36 62 544199.
E-mail address: frank@chem.u-szeged.hu (É. Frank).

039-128X/$ – see front matter ©  2011 Elsevier Inc. All rights reserved.
oi:10.1016/j.steroids.2011.05.002
To the best of our knowledge, relatively few examples are to be
found in the literature in which Huisgen 1,3-dipolar cycloaddition
is applied to steroid azides [11,17], though it provides convenient
facilities for the construction of triazoles in which the hetero ring
is attached to the steroid nucleus through a nitrogen atom. Ban-
day and co-workers recently reported the syntheses of 21-triazolyl
derivatives of pregnenolone as potential anticancer agents through
use of the ‘click’ chemistry approach [18], but without any pro-
posal concerning their mode of action. Since some steroid-type
compounds are known to exert hormone receptor-independent
antiproliferative activity by the inhibition of angiogenesis, tubu-
lin polymerization, and the upregulation of apoptotic pathways
[19–21], we set out to prepare novel steroidal 17�-triazoles via
CuAAC, untinged by the structural features necessary for effective
binding to the hormone receptors [22,23]. Although determination
of the affinities to the hormonal receptors did not fall within the
scope of the present work, in the absence of a hydroxy or keto func-
tional group at position 3, the newly prepared triazolyl derivatives
are considered to have no estrogenic or androgenic effects. Nev-
ertheless, all compounds were screened in vitro for their activities
against a panel of three human cancer cell lines (HeLa, MCF7 and
A431).

2. Experimental
2.1. General

Melting points (Mps) were determined on a Kofler block and
are uncorrected. EI mass spectra were recorded with a Varian MAT

dx.doi.org/10.1016/j.steroids.2011.05.002
http://www.sciencedirect.com/science/journal/0039128X
http://www.elsevier.com/locate/steroids
mailto:frank@chem.u-szeged.hu
dx.doi.org/10.1016/j.steroids.2011.05.002
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11A spectrometer at an ionization energy of 70 eV. 1H NMR  spec-
ra were obtained in CDCl3 solution (if not otherwise stated) at
00 MHz  (Bruker DRX 500), and the 13C NMR  spectra at 125 MHz
ith the same instrument. Chemical shifts are reported relative to

MS; J values are given in Hz. 13C NMR  spectra are 1H-decoupled.
or determination of the multiplicities, the J-MOD pulse sequence
as used. Elemental analyses were carried out with a Perkin-Elmer
HN Analyzer (Model 2400). All solvents were distilled and dried
rior to use. Reagents and materials were obtained from commer-
ial suppliers and were used without purification. The reactions
ere monitored by TLC on Kieselgel-G (Merck Si 254F) layers

0.25 mm thick); solvent systems (ss) (A) CH2Cl2/hexane (70:30,
/v); (B) CH2Cl2/hexane (30:70, v/v); (C) CH2Cl2; (D) EtOAc/CH2Cl2
2:98, v/v); (E) EtOAc/CH2Cl2 (5:95, v/v). The spots were detected
y spraying with 5% phosphomolybdic acid in 50% aqueous H3PO4.
he Rf values were determined for spots observed by illumination
t 254 and 365 nm.  Flash chromatography: silica gel 60, 40–63 �m.

.2. Synthesis of 17ˇ-estradiol-3-benzyl ether 17-tosylate (5)

17�-Estradiol-3-benzyl ether 3 (11.0 g, 30.3 mmol) was dis-
olved in pyridine (100 mL)  and para-toluenesulfonyl chloride
12.0 g, 62.9 mmol) was added portionwise. The mixture was
tirred for 72 h at room temperature, then poured onto a mix-
ure of ice and concentrated H2SO4 (80 mL). The precipitate that
ormed was filtered off, washed until neutral with water and
ried. The crude product was purified by flash chromatography
CH2Cl2/hexane = 50:50, v/v) to give 5 (14.9 g, 95%) as a white solid.

p 115–117 ◦C; Rf = 0.34 (ss A). Anal. Calcd. for C32H36O4S: C, 74.39;
, 7.02. Found: C, 74.52; H, 7.11. 1H NMR  (500 MHz, CDCl3): ı = 0.84

s, 3H, 18-H3), 1.14 (m,  2H), 1.31 (m,  1H), 1.41 (m,  3H), 1.58–1.85
overlapping m,  4H), 1.99 (m,  1H), 2.14 (m,  1H), 2.23 (m,  1H), 2.47
s, 3H, 4′′-H3), 2.82 (m,  2H, 6-H2), 4.35 (t, 1H, J = 8.6 Hz, 17-H), 5.03
s, 2H, O-CH2), 6.71 (d, 1H, J = 2.3 Hz, 4-H), 6.78 (dd, 1H, J = 8.6 Hz,

 = 2.3 Hz, 2-H), 7.16 (d, 1H, J = 8.6 Hz, 1-H), 7.30–7.43 (overlapping
, 7H, 2′-H, 3′-H, 4′-H, 5′-H, 6′-H, 3′′-H and 5′′-H), 7.81 (d, 2H,

 = 8.2 Hz, 2′′-H and 6′′-H) ppm. 13C NMR  (125 MHz, CDCl3): ı = 11.7
C-18), 21.6 (4′′-CH3), 23.0 (CH2), 25.9 (CH2), 27.0 (CH2), 29.7 (CH2),
9.6 (CH2), 36.0 (CH2), 38.4 (CH), 43.3 (C-13), 43.6 (CH), 49.0 (CH),
9.9 (O-CH2), 89.8 (C-17), 112.3 (C-2), 114.8 (C-4), 126.3 (C-4′),
27.4 (2C, C-2′ and C-6′), 127.8 (3C, C-4′, C-2′′ and C-6′′), 128.5 (2C,
-3′ and C-5′), 129.7 (2C, C-3′′ and C-5′′), 132.4 (C-10), 134.2 (C-1′′),
37.2 and 138.0: C-5 and C-1′, 144.4 (C-4′′), 156.6 (C-3) ppm. EI-MS
70 eV) m/z (%): 516 [M+] (26), 91 (100).

.3. Synthesis of 3-benzyloxyestra-1,3,5(10)-triene-17˛-azide (7)

Compound 5 (5.4 g, 10.5 mmol) was dissolved in N,N-
imethylformamide (80 mL)  and NaN3 (5.4 g, 83.1 mmol) was
dded. The mixture was stirred for 48 h at 100 ◦C, and then poured
nto water (50 mL)  and extracted with CH2Cl2 (3× 50 mL). The com-
ined organic phases were dried with Na2SO4 and concentrated in
acuo. The crude product was purified by flash chromatography
CH2Cl2/hexane = 20:80, v/v) to give 7 (3.3 g, 82%) as a white solid.

p 78–79 ◦C; Rf = 0.34 (ss B). Anal. Calcd. for C25H29N3O: C, 77.48;
, 7.54. Found: C, 77.34; H, 7.65. 1H NMR  (500 MHz, CDCl3): ı = 0.79

s, 3H, 18-H3), 1.28–1.57 (overlapping m,  6H), 1.69–1.92 (overlap-
ing m,  4H), 2.23 (m,  2H), 2.37 (m,  1H), 2.86 (m,  2H, 6-H2), 3.60 (d,
H, J = 6.4 Hz, 17-H), 5.04 (s, 2H, O-CH2), 6.74 (d, 1H, J = 2.1 Hz, 4-H),
.79 (dd, 1H, J = 8.6 Hz, J = 2.1 Hz, 2-H), 7.23 (d, 1H, J = 8.6 Hz, 1-H),
.33 (t-like m,  1H, 4′-H), 7.39 (t-like m,  2H, 3′-H and 5′-H), 7.44

d, 2H, J = 7.2 Hz, 2′-H and 6′-H) ppm. 13C NMR  (125 MHz, CDCl3):

 = 17.7 (C-18), 24.3 (CH2), 26.2 (CH2), 28.0 (CH2), 28.7 (CH2), 29.8
CH2), 32.6 (CH2), 39.0 (CH), 43.4 (CH), 46.0 (C-13), 48.5 (CH), 69.9
O-CH2), 71.5 (C-17), 112.2 (C-2), 114.8 (C-4), 126.4 (C-4′), 127.4
 (2011) 1141– 1148

(2C, C-2′ and C-6′), 127.8 (C-1), 128.5 (2C, C-3′ and C-5′), 132.8 (C-
10), 137.3 and 137.9: C-5 and C-1′, 156.7 (C-3) ppm. EI-MS (70 eV)
m/z (%): 387 [M+] (35), 91 (100).

2.4. General procedure for the synthesis of triazoles (10a–j and
11a–j)

3-Benzyloxyestra-1,3,5(10)-triene-17�-azide 7 (388 mg,
1.00 mmol) or 5�-androst-2-ene-17�-azide 8 (299 mg,  1.00 mmol)
was dissolved in CH2Cl2 (20 mL), and CuI (19.0 mg,  0.10 mmol),
triphenylphosphine (52 mg,  0.20 mmol) and substituted acetylene
derivative (9a–j, 1.00 mmol) were added. The mixture was stirred
under reflux for 24 h, and then diluted with water (20 mL)  and
extracted with CH2Cl2 (2× 20 mL). The combined organic phases
were dried over Na2SO4, and evaporated in vacuo.  The crude prod-
uct was purified by flash chromatography, using EtOAc/CH2Cl2
(2:98, v/v) as eluent.

2.4.1. Synthesis of 3-benzyloxy-17˛-[4-phenyl-1H-1,2,3-triazol-
1-yl]estra-1,3,5(10)-triene
(10a)

Compound 7 and phenylacetylene (9a,  0.11 mL)  were used for
the synthesis as described in Section 2.4.  After purification, 10a was
obtained as a white solid (416 mg). Mp  169–171 ◦C; Rf = 0.52 (ss D).
Anal. Calcd. for C33H35N3O: C, 80.95; H, 7.20. Found: C, 81.13; H,
7.12. 1H NMR  (500 MHz, CDCl3): ı = 0.56 (m, 1H), 1.01 (s, 3H, 18-
H3), 1.27 (m,  1H), 1.43–1.63 (overlapping m,  4H), 1.85 (m,  1H), 1.98
(m,  1H), 2.09 (m,  1H), 2.20 (m,  2H), 2.40 (m, 1H), 2.59 (m,  1H),
2.87 (m,  2H, 6-H2), 4.69 (dd, 1H, J = 8.2 Hz, J = 1.0 Hz, 17-H), 5.02
(s, 2H, Bn-CH2), 6.73 (d, 1H, J = 2.3 Hz, 4-H), 6.75 (dd, 1H, J = 8.5 Hz,
J = 2.3 Hz, 2-H), 7.10 (d, 1H, J = 8.5 Hz, 1-H), 7.30–7.46 (overlapping
m, 8H, 2′-H, 3′-H, 4′-H, 5′-H, 6′-H, 3′ ′ ′-H, 4′ ′ ′-H and 5′ ′ ′-H), 7.73 (s,
1H, 5′′-H), 7.88 (d, 2H, J = 7.3 Hz, 2′ ′ ′-H and 6′ ′ ′-H) ppm. 13C NMR
(125 MHz, CDCl3): ı = 18.7 (C-18), 24.9 (CH2), 25.9 (CH2), 27.9 (CH2),
28.7 (CH2), 29.8 (CH2), 32.6 (CH2), 39.1 (CH), 43.1 (CH), 46.6 (C-13),
48.8 (CH), 69.9 (Bn-CH2), 70.4 (C-17), 112.2 (C-2), 114.4 (C-4), 119.9
(C-5′′), 125.6 (2C, C-2′ ′ ′ and C-6′ ′ ′), 126.2 (C-1), 127.4 (2C, C-2′ and
C-6′), 127.8 (C-4′), 128.0 (C-4′ ′ ′), 128.5 (2C, C3′ and C-5′), 128.8 (2C,
C-3′ ′ ′ and C-5′ ′ ′), 130.7 (C-1′ ′ ′), 132.5 (C-10), 137.2 (C-5), 137.8 (C-
1′), 146.9 (C-4′′), 156.7 (C-3) ppm. EI-MS (70 eV) m/z (%): 489 [M+]
(51), 91 (100).

2.4.2. Synthesis of 3-benzyloxy-17˛-[4-(4-methoxyphenyl)-1H-
1,2,3-triazol-1-yl]estra-1,3,5(10)-triene
(10b)

Compound 7 and 4-methoxyphenylacetylene (9b, 132 mg) were
used for the synthesis as described in Section 2.4.  After purifica-
tion, 10b was  obtained as a white solid (437 mg). Mp  187–189 ◦C;
Rf = 0.45 (ss E). Anal. Calcd. for C34H37N3O2: C, 78.58; H, 7.18. Found:
C, 78.70; H, 7.32. 1H NMR  (500 MHz, CDCl3): ı = 0.57 (m,  1H), 1.00
(s, 3H, 18-H3), 1.42–1.62 (overlapping m,  5H), 1.86 (m,  1H), 1.98 (m,
1H), 2.10 (m,  1H), 2.19 (m,  2H), 2.39 (m,  1H), 2.58 (m, 1H), 2.86 (m,
2H, 6-H2), 3.85 (s, 3H, 4′ ′ ′-OMe), 4.67 (dd, 1H, J = 8.3 Hz, J = 1.1 Hz,
17-H), 5.02 (s, 2H, Bn-CH2), 6.72 (d, 1H, J = 2.3 Hz, 4-H), 6.74 (dd,
1H, J = 8.6 Hz, J = 2.3 Hz, 2-H), 6.97 (d, 2H, J = 8.7 Hz, 3′ ′ ′-H and 5′ ′ ′-H),
7.01 (d, 1H, J = 8.6 Hz, 1-H), 7.31 (m,  1H, 4′-H), 7.37 (m,  2H, 3′-H and
5′-H), 7.42 (d, 2H, J = 7.3 Hz, 2′-H and 6′-H), 7.63 (s, 1H, 5′′-H), 7.80
(d, 2H, J = 8.7 Hz, 2′ ′ ′-H and 6′ ′ ′-H) ppm. 13C NMR  (125 MHz, CDCl3):
ı = 18.7 (C-18), 24.9 (CH2), 26.0 (CH2), 27.9 (CH2), 28.7 (CH2), 29.8
(CH2), 32.7 (CH2), 39.2 (CH), 43.1 (CH), 46.6 (C-13), 48.9 (CH), 55.3

(4′ ′ ′-OMe), 69.9 (Bn-CH2), 70.4 (C-17), 112.3 (C-2), 114.2 (2C, C-3′ ′ ′

and C-5′ ′ ′), 114.8 (C-4), 119.1 (C-5′′), 123.6 (C-1′ ′ ′), 126.2 (C-1), 126.9
(2C, C-2′ ′ ′ and C-6′ ′ ′), 127.4 (2C, C-2′ and C-6′), 127.8 (C-4′), 128.5
(2C, C3′ and C-5′), 132.6 (C-10), 137.3 (C-5), 137.8 (C-1′), 146.8 (C-
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′′), 156.8 (C-3), 159.5 (C-4′ ′ ′) ppm. EI-MS (70 eV) m/z (%): 519 [M+]
17), 491 (20), 91 (100).

.4.3. Synthesis of 3-benzyloxy-17˛-[4-(4-fluorophenyl)-1H-
,2,3-triazol-1-yl]estra-1,3,5(10)-triene
10c)

Compound 7 and 4-fluorophenylacetylene (9c,  0.11 mL)  were
sed for the synthesis as described in Section 2.4.  After purifica-
ion, 10c was obtained as a white solid (431 mg). Mp  189–192 ◦C;
f = 0.17 (ss C). Anal. Calcd. for C33H34FN3O: C, 78.08; H, 6.75. Found:
, 78.19; H, 6.92. 1H NMR  (500 MHz, CDCl3): ı = 0.57 (m,  1H), 1.01
s, 3H, 18-H3), 1.43–1.62 (overlapping m,  5H), 1.86 (m,  1H), 1.98
m,  1H), 2.10 (m,  1H), 2.19 (m,  2H), 2.39 (m,  1H), 2.59 (m, 1H),
.87 (m,  2H, 6-H2), 4.68 (dd, 1H, J = 8.3 Hz, J = 1.2 Hz, 17-H), 5.02
s, 2H, Bn-CH2), 6.72 (d, 1H, J = 2.3 Hz, 4-H), 6.75 (dd, 1H, J = 8.6 Hz,

 = 2.3 Hz, 2-H), 7.10 (d, 1H, J = 8.6 Hz, 1-H), 7.12 (dd, 2H, J = 15.6 Hz,
 = 8.5 Hz, 3′ ′ ′-H and 5′ ′ ′-H), 7.31 (m,  1H, 4′-H), 7.37 (m,  2H, 3′-H
nd 5′-H), 7.42 (d, 2H, J = 7.1 Hz, 2′-H and 6′-H), 7.68 (s, 1H, 5′′-H),
.84 (dd, 2H, J = 8.5 Hz, J = 5.4 Hz, 2′ ′ ′-H and 6′ ′ ′-H) ppm. 13C NMR
125 MHz, CDCl3): ı = 18.7 (C-18), 24.9 (CH2), 25.9 (CH2), 27.9 (CH2),
8.7 (CH2), 29.8 (CH2), 32.7 (CH2), 39.1 (CH), 43.1 (CH), 46.6 (C-13),
8.9 (CH), 69.9 (Bn-CH2), 70.5 (C-17), 112.3 (C-2), 114.8 (C-4), 115.7
d, 2C, J = 21.7 Hz, C-3′ ′ ′ and C-5′ ′ ′), 119.6 (C-5′′), 126.2 (C-1), 127.0
C-1′ ′ ′), 127.3 (d, 2C, J = 7.7 Hz, C-2′ ′ ′ and C-6′ ′ ′), 127.4 (2C, C-2′ and
-6′), 127.8 (C-4′), 128.5 (2C, C3′ and C-5′), 132.5 (C-10), 137.3 (C-5),
37.8 (C-1′), 146.1 (C-4′′), 156.8 (C-3), 162.6 (d, J = 247.3 Hz, C-4′ ′ ′)
pm. EI-MS (70 eV) m/z (%): 507 [M+] (32), 254 (12), 91 (100).

.4.4. Synthesis of 3-benzyloxy-17˛-[4-(4-tolyl)-1H-1,2,3-
riazol-1-yl]estra-1,3,5(10)-triene
10d)

Compound 7 and 4-tolylacetylene (9d, 0.12 mL) were used for
he synthesis as described in Section 2.4. After purification, 10d was
btained as a white solid (428 mg). Mp  216–218 ◦C; Rf = 0.54 (ss D).
nal. Calcd. for C34H37N3O: C, 81.08; H, 7.40. Found: C, 81.17; H,
.23. 1H NMR  (500 MHz, CDCl3): ı = 0.55 (m,  1H), 1.00 (s, 3H, 18-
3), 1.27 (m,  1H), 1.43–1.54 (overlapping m,  4H), 1.85 (m,  1H), 1.97

m,  1H), 2.09 (m,  1H), 2.18 (m,  2H), 2.38 (s, 3H, 4′ ′ ′-H3), 2.39 (m,  1H),
.59 (m,  1H), 2.86 (m,  2H, 6-H2), 4.68 (dd, 1H, J = 8.3 Hz, J = 1.2 Hz,
7-H), 5.01 (s, 2H, Bn-CH2), 6.72 (d, 1H, J = 2.3 Hz, 4-H), 6.74 (dd,
H, J = 8.6 Hz, J = 2.3 Hz, 2-H), 7.01 (d, 1H, J = 8.6 Hz, 1-H), 7.24 (d,
H, J = 8.0 Hz, 3′ ′ ′-H and 5′ ′ ′-H), 7.31 (m,  1H, 4′-H), 7.37 (m,  2H, 3′-H
nd 5′-H), 7.41 (d, 2H, J = 7.1 Hz, 2′-H and 6′-H), 7.67 (s, 1H, 5′′-H),
.75 (d, 2H, J = 8.0 Hz, 2′ ′ ′-H and 6′ ′ ′-H) ppm. EI-MS (70 eV) m/z (%):
03 [M+] (23), 91 (100).

.4.5. Synthesis of 3-benzyloxy-17˛-[4-(4-ethylphenyl)-1H-
,2,3-triazol-1-yl]estra-1,3,5(10)-triene
10e)

Compound 7 and 4-ethylphenylacetylene (9e, 0.13 mL)  were
sed for the synthesis as described in Section 2.4.  After purifica-
ion, 10e was obtained as a white solid (430 mg). Mp  149–152 ◦C;
f = 0.52 (ss D). Anal. Calcd. for C35H39N3O: C, 81.20; H, 7.59. Found:
, 81.08; H, 7.67. 1H NMR  (500 MHz, CDCl3): ı = 0.56 (m, 1H), 1.00
s, 3H, 18-H3), 1.27 (t, 3H, J = 7.6 Hz, 4′ ′ ′-CH2CH3), 1.42–1.62 (over-
apping m,  5H), 1.86 (m,  1H), 1.98 (m,  1H), 2.09 (m,  1H), 2.19 (m,
H), 2.40 (m,  1H), 2.58 (m,  1H), 2.69 (q, 2H, J = 7.6 Hz, 4′ ′ ′-CH2CH3),
.86 (m,  2H, 6-H2), 4.67 (dd, 1H, J = 8.3 Hz, J = 1.2 Hz, 17-H), 5.02
s, 2H, Bn-CH2), 6.72 (d, 1H, J = 2.3 Hz, 4-H), 6.74 (dd, 1H, J = 8.6 Hz,

 = 2.3 Hz, 2-H), 7.10 (d, 1H, J = 8.6 Hz, 1-H), 7.27 (d, 2H, J = 8.1 Hz,
′ ′ ′-H and 5′ ′ ′-H), 7.31 (m,  1H, 4′-H), 7.37 (m,  2H, 3′-H and 5′-H),
.42 (d, 2H, J = 7.1 Hz, 2′-H and 6′-H), 7.68 (s, 1H, 5′′-H), 7.79 (d, 2H,
 = 8.1 Hz, 2′ ′ ′-H and 6′ ′ ′-H) ppm. 13C NMR  (125 MHz, CDCl3): ı = 15.5
4′ ′ ′-CH2CH3), 18.7 (C-18), 24.9 (CH2), 26.0 (CH2), 28.0 (CH2), 28.7
2C, 2 × CH2), 29.8 (CH2), 32.7 (CH2), 39.2 (CH), 43.1 (CH), 46.6 (C-
3), 48.9 (CH), 69.9 (Bn-CH2), 70.4 (C-17), 112.3 (C-2), 114.8 (C-4),
 (2011) 1141– 1148 1143

119.6 (C-5′′), 125.7 (2C, C-3′ ′ ′ and C-5′ ′ ′), 126.2 (C-1), 127.4 (2C, C-
2′ and C-6′), 127.8 (C-4′), 128.2 (C-1′ ′ ′), 128.3 (2C, C-2′ ′ ′ and C-6′ ′ ′),
128.5 (2C, C3′ and C-5′), 132.6 (C-10), 137.3 (C-5), 137.8 (C-1′), 144.2
(C-4′ ′ ′), 147.0 (C-4′′), 156.8 (C-3) ppm. EI-MS (70 eV) m/z  (%): 517
[M+] (25), 91 (100).

2.4.6. Synthesis of 3-benzyloxy-17˛-[4-(4-propylphenyl)-1H-
1,2,3-triazol-1-yl]estra-1,3,5(10)-triene
(10f)

Compound 7 and 4-propylphenylacetylene (9f, 0.16 mL)  were
used for the synthesis as described in Section 2.4.  After purifica-
tion, 10f was obtained as a white solid (463 mg). Mp  136–138 ◦C;
Rf = 0.34 (ss D). Anal. Calcd. for C36H41N3O: C, 81.32; H, 7.77. Found:
C, 81.46; H, 7.64. 1H NMR  (500 MHz, CDCl3): ı = 0.54 (m,  1H),
0.96 (t, 3H, J = 7.0 Hz, 4′′-CH2CH2CH3), 1.00 (s, 3H, 18-H3), 1.28 (m,
1H), 1.47–1.69 (overlapping m,  6H), 1.84 (m, 1H), 1.97 (m, 1H),
2.08 (m,  1H), 2.19 (m,  2H), 2.42 (m,  1H), 2.58 (m,  1H), 2.61 (t,
2H, J = 7.0 Hz, 4′′-CH2CH2CH3), 2.86 (m,  2H, 6-H2), 4.72 (dd, 1H,
J = 8.3 Hz, J = 1.2 Hz, 17-H), 5.02 (s, 2H, Bn-CH2), 6.71 (d, 1H, J = 2.3 Hz,
4-H), 6.74 (dd, 1H, J = 8.6 Hz, J = 2.3 Hz, 2-H), 7.10 (d, 1H, J = 8.6 Hz,
1-H), 7.26 (d, 2H, J = 8.1 Hz, 3′ ′ ′-H and 5′ ′ ′-H), 7.31 (m, 1H, 4′-H),
7.37 (m,  2H, 3′-H and 5′-H), 7.42 (d, 2H, J = 7.1 Hz, 2′-H and 6′-H),
7.68 (s, 1H, 5′′-H), 7.85 (d, 2H, J = 8.1 Hz, 2′ ′ ′-H and 6′ ′ ′-H) ppm. 13C
NMR  (125 MHz, CDCl3): ı = 13.7 (4′ ′ ′-CH2CH2CH3), 18.7 (C-18), 24.4
(CH2), 24.9 (CH2), 25.9 (CH2), 27.9 (CH2), 28.7 (CH2), 29.8 (CH2), 32.7
(CH2), 37.8 (CH2), 39.1 (CH), 43.1 (CH), 46.5 (C-13), 48.9 (CH), 69.9
(Bn-CH2), 70.7 (C-17), 112.3 (C-2), 114.8 (C-4), 119.3 (C-5′′), 125.5
(2C, C-2′ ′ ′ and C-6′ ′ ′), 126.2 (C-1), 127.4 (2C, C-2′ and C-6′), 127.8
(C-4′), 128.2 (C-1′ ′ ′), 128.5 (2C, C-3′ ′ ′ and C-5′ ′ ′), 129.0 (2C, C3′ and
C-5′), 132.5 (C-10), 137.3 (C-5), 137.8 (C-1′), 142.8 (C-4′ ′ ′), 147.0
(C-4′′), 156.8 (C-3) ppm. EI-MS (70 eV) m/z  (%): 531 [M+] (22), 91
(100).

2.4.7. Synthesis of 3-benzyloxy-17˛-[4-(4-tert-butylphenyl)-1H-
1,2,3-triazol-1-yl]estra-1,3,5(10)-triene
(10g)

Compound 7 and 4-tert-butylphenylacetylene (9g,  0.18 mL)
were used for the synthesis as described in Section 2.4.  After purifi-
cation, 10g was obtained as a white solid (458 mg). Mp 157–159 ◦C;
Rf = 0.40 (ss D). Anal. Calcd. for C37H43N3O: C, 81.43; H, 7.94. Found:
C, 81.60; H, 8.07. 1H NMR  (500 MHz, CDCl3): ı = 0.53 (m,  1H), 1.01
(s, 3H, 18-H3), 1.34 (s, 9H, 3 × tBu-CH3), 1.45–1.61 (overlapping m,
5H), 1.84 (m,  1H), 1.98 (m,  1H), 2.08 (m,  1H), 2.19 (m,  2H), 2.45
(m,  1H), 2.63 (m,  1H), 2.86 (m,  2H, 6-H2), 4.75 (bs, 1H, 17-H), 5.02
(s, 2H, Bn-CH2), 6.71 (d, 1H, J = 2.3 Hz, 4-H), 6.74 (dd, 1H, J = 8.5 Hz,
J = 2.3 Hz, 2-H), 7.10 (d, 1H, J = 8.5 Hz, 1-H), 7.31 (m,  1H, 4′-H), 7.37
(m,  2H, 3′-H and 5′-H), 7.42 (d, 2H, J = 7.1 Hz, 2′-H and 6′-H), 7.49
(d, 2H, J = 8.1 Hz, 3′ ′ ′-H and 5′ ′ ′-H), 7.68 (s, 1H, 5′′-H), 7.91 (d, 2H,
J = 8.1 Hz, 2′ ′ ′-H and 6′ ′ ′-H) ppm. 13C NMR  (125 MHz, CDCl3): ı = 18.7
(C-18), 24.9 (CH2), 25.9 (CH2), 27.9 (CH2), 28.8 (CH2), 29.8 (CH2),
31.2 (3C, 3 × tBu-CH3), 32.7 (CH2), 34.7 (4′ ′ ′-tBu-C), 39.1 (CH), 43.1
(CH), 46.5 (C-13), 48.9 (CH), 69.9 (Bn-CH2), 70.2 (C-17), 112.3 (C-2),
114.8 (C-4), 119.5 (C-5′′), 125.3 (2C, C-3′ ′ ′ and C-5′ ′ ′), 125.7 (2C, C-2′ ′ ′

and C-6′ ′ ′), 126.2 (C-1), 127.4 (2C, C-2′ and C-6′), 127.8 (C-4′), 128.1
(C-1′ ′ ′), 128.5 (2C, C3′ and C-5′), 132.5 (C-10), 137.3 (C-5), 137.8 (C-
1′), 147.0 (C-4′′), 151.3 (C-4′ ′ ′), 156.8 (C-3) ppm. EI-MS (70 eV) m/z
(%): 545 [M+] (17), 91 (100).

2.4.8. Synthesis of 3-benzyloxy-17˛-[4-cyclopropyl-1H-1,2,3-
triazol-1-yl]estra-1,3,5(10)-triene
(10h)

Compound 7 and cyclopropylacetylene (9h,  0.09 mL)  were used

for the synthesis as described in Section 2.4. After purification, 10h
was obtained as a white solid (399 mg). Mp  74–76 ◦C; Rf = 0.21 (ss
D). Anal. Calcd. for C30H35N3O: C, 79.43; H, 7.78. Found: C, 79.26;
H, 7.92. 1H NMR  (500 MHz, CDCl3): ı = 0.45 (m,  1H), 0.95 (s, 3H,
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8-H3), 0.96 (m 2H), 1.42–1.56 (overlapping m,  6H), 1.76 (m, 1H),
.95 (m,  3H), 2.05–2.20 (overlapping m,  3H), 2.27 (m,  1H), 2.51 (m,
H), 2.85 (m,  2H, 6-H2), 4.58 (dd, 1H, J = 8.3 Hz, J = 1.0 Hz, 17-H), 5.02
s, 2H, Bn-CH2), 6.70 (d, 1H, J = 2.2 Hz, 4-H), 6.75 (dd, 1H, J = 8.6 Hz,

 = 2.2 Hz, 2-H), 7.11 (d, 1H, J = 8.6 Hz, 1-H), 7.19 (s, 1H, 5′′-H), 7.31
m,  1H, 4′-H), 7.37 (m,  2H, 3′-H and 5′-H), 7.42 (d, 2H, J = 7.2 Hz,
′-H and 6′-H) ppm. 13C NMR  (125 MHz, CDCl3): ı = 6.7 (C-1′ ′ ′), 7.7
2C, C-2′ ′ ′ and C-3′ ′ ′), 18.6 (C-18), 24.8 (CH2), 25.9 (CH2), 27.9 (CH2),
8.6 (CH2), 29.8 (CH2), 32.5 (CH2), 39.1 (CH), 43.1 (CH), 46.4 (C-13),
8.8 (CH), 69.9 (Bn-CH2), 70.1 (C-17), 112.2 (C-2), 114.7 (C-4), 120.0
C-5′′), 126.2 (C-1), 127.4 (2C, C-2′ and C-6′), 127.8 (C-4′), 128.5 (2C,
3′ and C-5′), 132.5 (C-10), 137.2 (C-5), 137.8 (C-1′), 149.3 (C-4′′),
56.7 (C-3) ppm. EI-MS (70 eV) m/z (%): 453 [M+] (30), 91 (100).

.4.9. Synthesis of 3-benzyloxy-17˛-[4-cyclopentyl-1H-1,2,3-
riazol-1-yl]estra-1,3,5(10)-triene
10i)

Compound 7 and cyclopentylacetylene (9i,  0.12 mL)  were used
or the synthesis as described in Section 2.4.  After purification, 10i
as obtained as a white solid (385 mg). Mp  105–107 ◦C; Rf = 0.35

ss E). Anal. Calcd. for C32H39N3O: C, 79.79; H, 8.16. Found: C,
9.95; H, 8.26. 1H NMR  (500 MHz, CDCl3): ı = 0.45 (m,  1H), 0.97
s, 3H, 18-H3), 0.40–1.57 (overlapping m,  5H), 1.69–1.87 (overlap-
ing m,  7H), 1.97 (m,  1H), 2.07–2.21 (overlapping m,  5H), 2.33
m,  1H), 2.53 (m,  1H), 2.86 (m,  2H, 6-H2), 3.23 (m,  1H), 4.60 (d,
H, J = 7.8 Hz, 17-H), 5.02 (s, 2H, Bn-CH2), 6.71 (d, 1H, J = 2.3 Hz, 4-
), 6.75 (dd, 1H, J = 8.5 Hz, J = 2.3 Hz, 2-H), 7.11 (d, 1H, J = 8.5 Hz,
-H), 7.26 (s, 1H, 5′′-H), 7.31 (m,  1H, 4′-H), 7.37 (m,  2H, 3′-H
nd 5′-H), 7.42 (d, 2H, J = 7.2 Hz, 2′-H and 6′-H) ppm. 13C NMR
125 MHz, CDCl3): ı = 18.7 (C-18), 24.9 (CH2), 25.1 (CH2), 25.9 (CH2),
7.9 (CH2), 28.6 (2C, 2 × CH2), 29.8 (CH2), 32.6 (CH2), 33.3 (2C,

 × CH2), 36.5 (C-1′ ′ ′), 39.1 (CH), 43.1 (CH), 46.5 (C-13), 48.8 (CH),
9.9 (Bn-CH2), 70.5 (C-17), 112.3 (C-2), 114.8 (C-4), 120.4 (C-5′′),
26.2 (C-1), 127.4 (2C, C-2′ and C-6′), 127.8 (C-4′), 128.5 (2C, C3′

nd C-5′), 132.5 (C-10), 137.3 (C-5), 137.8 (C-1′), 151.4 (C-4′′),
56.7 (C-3) ppm. EI-MS (70 eV) m/z  (%): 481 [M+] (47), 228 (18),
1 (100).

.4.10. Synthesis of 3-benzyloxy-17˛-[4-cyclohexyl-1H-1,2,3-
riazol-1-yl]estra-1,3,5(10)-triene
10j)

Compound 7 and cyclohexylacetylene (9j,  0.13 mL)  were used
or the synthesis as described in Section 2.4. After purification, 10j
as obtained as a white solid (392 mg). Mp  120–122 ◦C; Rf = 0.35

ss E). Anal. Calcd. for C33H41N3O: C, 79.96; H, 8.34. Found: C,
0.08; H, 8.49. 1H NMR  (500 MHz, CDCl3): ı = 0.45 (m,  1H), 0.97
s, 3H, 18-H3), 1.29 (m,  1H), 1.38–1.56 (overlapping m,  9H), 1.74
m,  1H), 1.81 (m,  3H), 1.97 (m,  1H), 2.08 (m,  3H), 2.17 (m,  2H),
.33 (m,  1H), 2.52 (m,  1H), 2.78 (m,  1H), 2.86 (m,  2H, 6-H2), 4.59
dd, 1H, J = 8.3 Hz, J = 1.1 Hz, 17-H), 5.02 (s, 2H, Bn-CH2), 6.72 (d,
H, J = 2.3 Hz, 4-H), 6.75 (dd, 1H, J = 8.6 Hz, J = 2.3 Hz, 2-H), 7.11 (d,
H, J = 8.6 Hz, 1-H), 7.19 (s, 1H, 5′′-H), 7.31 (m,  1H, 4′-H), 7.37 (m,
H, 3′-H and 5′-H), 7.42 (d, 2H, J = 7.2 Hz, 2′-H and 6′-H) ppm. 13C
MR (125 MHz, CDCl3): ı = 18.7 (C-18), 24.9 (CH2), 26.0 (CH2), 26.1

3C, 3 × CH2), 27.9 (CH2), 28.6 (CH2), 29.8 (CH2), 32.5 (CH2), 33.1
2C, 2 × CH2), 35.3 (C-1′ ′ ′), 39.1 (CH), 43.1 (CH), 46.5 (C-13), 48.8
CH), 69.9 (Bn-CH2), 70.1 (C-17), 112.3 (C-2), 114.8 (C-4), 119.6 (C-
′′), 126.2 (C-1), 127.4 (2C, C-2′ and C-6′), 127.8 (C-4′), 128.5 (2C,
3′ and C-5′), 132.6 (C-10), 137.3 (C-5), 137.8 (C-1′), 152.8 (C-4′′),
56.7 (C-3) ppm. EI-MS (70 eV) m/z  (%): 495 [M+] (51), 242 (17),
1 (100).
.4.11. Synthesis of
7˛-[4-phenyl-1H-1,2,3-triazol-1-yl]-5˛-androst-2-ene (11a)

Compound 8 and phenylacetylene (9a, 0.11 mL)  were used for
he synthesis as described in Section 2.4. After purification, 11a
 (2011) 1141– 1148

was obtained as a white solid (329 mg). Mp  192–193 ◦C; Rf = 0.35
(ss D). Anal. Calcd. for C27H35N3: C, 80.75; H, 8.78. Found: C, 80.63;
H, 8.91. 1H NMR  (500 MHz, CDCl3): ı = 0.29 (m, 1H), 0.60 (m,  1H),
0.73 (s, 3H, 19-H3), 0.96 (s, 3H, 18-H3), 1.03 (m,  1H), 1.29 (m,
1H), 1.26–1.47 (overlapping m,  7H), 1.51–1.70 (overlapping m,  3H),
1.73–1.87 (overlapping m,  3H), 2.08 (m,  1H), 2.29 (m,  1H), 2.52 (m,
1H), 4.63 (dd, 1H, J = 7.2 Hz, J = 1.2 Hz, 17-H), 5.55 (m,  2H, 2-H and
3-H), 7.32 (t-like m,  1H, 4′′-H), 7.42 (t-like m, 2H, 3′′-H and 5′′-
H), 7.67 (s, 1H, 5′-H), 7.86 (d-like m,  2H, 2′′-H and 6′′-H) ppm. 13C
NMR (125 MHz, CDCl3): ı = 11.6 (C-19), 18.6 (C-18), 20.2 (CH2), 25.2
(CH2), 28.6 (2C, 2 × CH2), 30.2 (CH2), 31.9 (CH2), 32.6 (CH2), 34.6
(C-10), 35.9 (CH), 39.5 (CH2), 41.2 (CH), 46.2 (C-13), 49.9 (CH), 53.1
(CH), 70.4 (C-17), 119.7 (C-5′), 125.6 (2C, C-2′′ and C-6′′), 125.7 (2C,
C-2 and C-3), 128.0 (C-4′′), 128.8 (2C, C-3′′ and C-5′′), 130.8 (C-1′′),
146.8 (C-4′) ppm. EI-MS (70 eV) m/z (%): 401 [M+] (40), 372 (71),
358 (44), 145 (100), 117 (41), 93 (45), 91 (62), 79 (51), 67 (37), 55
(27).

2.4.12. Synthesis of 17˛-[4-(4-methoxyphenyl)-1H-1,2,3-triazol-
1-yl]-5˛-androst-2-ene
(11b)

Compound 8 and 4-methoxyphenylacetylene (9b, 132 mg) were
used for the synthesis as described in Section 2.4.  After purifica-
tion, 11b was  obtained as a white solid (345 mg). Mp  243–245 ◦C;
Rf = 0.46 (ss E). Anal. Calcd. for C28H37N3O: C, 77.92; H, 8.64. Found:
C, 78.08; H, 8.76. 1H NMR  (500 MHz, CDCl3): ı = 0.30 (m,  1H), 0.60
(m,  1H), 0.73 (s, 3H, 19-H3), 0.96 (s, 3H, 18-H3), 1.04 (m,  1H),
1.15–1.88 (overlapping m,  14H), 2.08 (m,  1H), 2.28 (m,  1H), 2.52 (m,
1H), 3.84 (s, 3H, 4′′-OMe), 4.62 (d, 1H, J = 7.5 Hz, 17-H), 5.55 (m,  2H,
2-H and 3-H), 6.96 (d, 2H, J = 8.7 Hz, 3′′-H and 5′′-H), 7.58 (s, 1H, 5′-
H), 7.78 (d, 2H, J = 8.7 Hz, 2′′-H and 6′′-H) ppm. 13C NMR  (125 MHz,
MeOD/CDCl3 = 10:90): ı = 11.1 (C-19), 18.0 (C-18), 17.7 (CH2), 24.6
(CH2), 28.1 (2C, 2 × CH2), 29.7 (CH2), 31.5 (CH2), 32.1 (CH2), 34.1
(C-10), 35.4 (CH), 39.1 (CH2), 40.8 (CH), 45.8 (C-13), 49.5 (CH), 52.8
(CH), 54.8 (4′′-OMe), 70.1 (C-17), 113.8 (2C, C-3′′ and C-5′′) 118.8
(C-5′), 122.6 (C-1′′), 125.2 (2C, C-2 and C-3), 126.5 (2C, C-2′′ and C-
6′′), 146.3 (C-4′), 159.1 (C-4′′) ppm. EI-MS (70 eV) m/z (%): 431 [M+]
(63), 403 (95), 388 (76), 282 (31), 175 (55), 147 (63), 132 (100), 91
(57), 79 (50), 67 (35), 55 (31).

2.4.13. Synthesis of 17˛-[4-(4-fluorophenyl)-1H-1,2,3-triazol-1-
yl]-5˛-androst-2-ene
(11c)

Compound 8 and 4-fluorophenylacetylene (9c,  0.11 mL)  were
used for the synthesis as described in Section 2.4.  After purifica-
tion, 11c was  obtained as a white solid (352 mg). Mp  184–187 ◦C;
Rf = 0.24 (ss C). Anal. Calcd. for C27H34FN3: C, 77.29; H, 8.17. Found:
C, 77.13; H, 8.28. 1H NMR  (500 MHz, CDCl3): ı = 0.29 (m,  1H), 0.61
(m,  1H), 0.74 (s, 3H, 19-H3), 0.97 (s, 3H, 18-H3), 1.03 (m,  1H), 1.20
(m,  1H), 1.27–1.45 (overlapping m,  8H), 1.52–1.70 (overlapping m,
4H), 1.74–1.87 (overlapping m,  3H), 2.08 (m,  1H), 2.30 (m, 1H),
2.54 (m,  1H), 4.63 (d, 1H, J = 7.0 Hz, 17-H), 7.11 (m, 2H, 3′′-H and
5′′-H), 7.70 (s, 1H, 5′-H), 7.86 (bs, 2H, 2′′-H and 6′′-H) ppm. 13C
NMR (125 MHz, CDCl3): ı = 11.6 (C-19), 18.6 (C-18), 20.2 (CH2), 25.2
(CH2), 28.6 (CH2), 28.7 (CH2), 30.2 (CH2), 32.0 (CH2), 32.7 (CH2), 34.6
(C-10), 35.9 (CH), 39.6 (CH2), 41.3 (CH), 46.2 (C-13), 49.9 (CH), 53.2
(CH), 70.8 (C-17), 115.8 (d, 2C, J = 21.7 Hz, C-3′′ and C-5′′), 119.6 (C-
5′), 125.7 (2C, C-2 and C-3), 127.4 (d, 2C, J = 7.7 Hz, C-2′′ and C-6′′),
126.8 (C-1′′), 146.8 (C-4′), 163.0 (d, J = 247.3 Hz, C-4′′) ppm. EI-MS
(70 eV) m/z (%): 419 [M+] (46), 390 (54), 376 (42), 163 (100), 91 (49),
79 (48), 67 (33), 55 (25).
2.4.14. Synthesis of
17˛-[4-(4-tolyl)-1H-1,2,3-triazol-1-yl]-5˛-androst-2-ene (11d)

Compound 8 and 4-tolylacetylene (9d, 0.12 mL) were used for
the synthesis as described in Section 2.4.  After purification, 11d
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as obtained as a white solid (345 mg). Mp  251–253 ◦C; Rf = 0.31
ss D). Anal. Calcd. for C28H37N3: C, 80.92; H, 8.97. Found: C, 81.05;
, 8.88. 1H NMR  (500 MHz, CDCl3): ı = 0.29 (m,  1H), 0.60 (m,  1H),
.73 (s, 3H, 19-H3), 0.96 (s, 3H, 18-H3), 1.04 (m,  1H), 1.20 (m,
H), 1.26–1.47 (overlapping m,  7H), 1.51–1.70 (overlapping m,  3H),
.74–1.88 (overlapping m,  3H), 2.08 (m,  1H), 2.28 (m,  1H), 2.37 (s,
H, 4′′-H3), 2.52 (m,  1H), 4.63 (dd, 1H, J = 8.3 Hz, J = 1.2 Hz, 17-H),
.55 (m,  2H, 2-H and 3-H), 7.23 (d, 2H, J = 8.0 Hz, 3′′-H and 5′′-H),
.63 (s, 1H, 5′-H), 7.74 (d, 2H, J = 8.0 Hz, 2′′-H and 6′′-H) ppm. 13C
MR  (125 MHz, MeOD/CDCl3 = 5:95): ı = 11.4 (C-19), 18.4 (C-18),
0.0 (CH2), 21.0 (4′′-CH3), 25.0 (CH2), 28.4 (2C, 2 × CH2), 30.0 (CH2),
1.8 (CH2), 32.5 (CH2), 34.4 (C-10), 35.7 (CH), 39.4 (CH2), 41.1 (CH),
6.1 (C-13), 49.8 (CH), 53.1 (CH), 70.4 (C-17), 119.4 (C-5′), 125.4
2C, C-2′′ and C-6′′), 125.6 (2C, C-2 and C-3), 127.4 (C-1′′), 129.4 (2C,
-3′′ and C-5′′), 137.9 (C-4′′), 146.8 (C-4′) ppm. EI-MS (70 eV) m/z
%): 415 [M+] (63), 386 (82), 372 (68), 159 (100), 131 (52), 91 (65),
9 (60), 67 (45), 55 (34).

.4.15. Synthesis of
7˛-[4-(4-ethylphenyl)-1H-1,2,3-triazol-1-yl]-5˛-androst-2-ene
11e)

Compound 8 and 4-ethylacetylene (9e, 0.13 mL)  were used for
he synthesis as described in Section 2.4. After purification, 11e
as obtained as a white solid (369 mg). Mp  214–216 ◦C; Rf = 0.32

ss D). Anal. Calcd. for C29H39N3: C, 81.07; H, 9.15. Found: C, 80.94;
, 9.23. 1H NMR  (500 MHz, CDCl3): ı = 0.29 (m,  1H), 0.60 (m,  1H),
.73 (s, 3H, 19-H3), 0.96 (s, 3H, 18-H3), 1.04 (m,  1H), 1.18 (m,
H), 1.25 (t, 3H, J = 7.6 Hz, 4′′-CH2CH3), 1.26–1.46 (overlapping m,
H), 1.51–1.70 (overlapping m,  3H), 1.74–1.88 (overlapping m,  3H),
.08 (m,  1H), 2.29 (m,  1H), 2.52 (m,  1H), 2.68 (q, 2H, J = 7.6 Hz, 4′′-
H2CH3), 4.63 (dd, 1H, J = 8.4 Hz, J = 1.2 Hz, 17-H), 5.54 (m,  2H, 2-H
nd 3-H), 7.25 (d, 2H, J = 8.0 Hz, 3′′-H and 5′′-H), 7.63 (s, 1H, 5′-H),
.77 (d, 2H, J = 8.0 Hz, 2′′-H and 6′′-H) ppm. 13C NMR  (125 MHz,
eOD/CDCl3 = 10:90): ı = 11.2 (C-19), 15.2 (4′′-CH2CH3), 18.2 (C-

8), 19.9 (CH2), 24.9 (CH2), 28.3 (2C, 2 × CH2), 28.4 (CH2), 29.9 (CH2),
1.8 (CH2), 32.4 (CH2), 34.3 (C-10), 35.7 (CH), 39.3 (CH2), 41.0 (CH),
6.0 (C-13), 49.8 (CH), 53.0 (CH), 70.3 (C-17), 119.5 (C-5′), 125.4
2C, C-2′′ and C-6′′), 125.5 (2C, C-2 and C-3), 127.5 (C-1′′), 128.1 (2C,
-3′′ and C-5′′), 144.3 (C-4′′), 146.8 (C-4′) ppm. EI-MS (70 eV) m/z
%): 429 [M+] (48), 400 (81), 386 (76), 173 (100), 130 (47), 91 (66),
9 (61), 67 (44), 55 (33).

.4.16. Synthesis of 17˛-[4-(4-propylphenyl)-1H-1,2,3-triazol-1-
l]-5˛-androst-2-ene
11f)

Compound 8 and 4-propylacetylene (9f,  0.16 mL)  were used for
he synthesis as described in Section 2.4.  After purification, 11f was
btained as a white solid (382 mg). Mp  192–194 ◦C; Rf = 0.48 (ss D).
nal. Calcd. for C30H41N3: C, 81.21; H, 9.31. Found: C, 81.40; H, 9.22.
H NMR  (500 MHz, CDCl3): ı = 0.28 (m,  1H), 0.59 (m,  1H), 0.73 (s,
H, 19-H3), 0.95 (t, 3H, J = 7.4 Hz, 4′′-CH2CH2CH3), 0.96 (s, 3H, 18-
3), 1.03 (m,  1H), 1.20 (m,  1H), 1.25–1.59 (overlapping m,  9H), 1.65

m,  3H), 1.75 (m,  1H), 1.84 (m,  2H), 2.07 (m,  1H), 2.28 (m,  1H), 2.52
m,  1H), 2.61 (t, 2H, J = 7.6 Hz, 4′′-CH2CH2CH3), 4.62 (d, 1H, J = 8.3 Hz,
7-H), 5.54 (m,  2H, 2-H and 3-H), 7.23 (d, 2H, J = 8.0 Hz, 3′′-H and
′′-H), 7.64 (s, 1H, 5′-H), 7.77 (d, 2H, J = 8.0 Hz, 2′′-H and 6′′-H) ppm.
3C NMR  (125 MHz, CDCl3): ı = 11.6 (C-19), 13.8 (4′′-CH2CH2CH3),
8.6 (C-18), 20.2 (CH2), 24.5 (CH2), 25.1 (CH2), 28.6 (2C, 2 × CH2),
0.2 (CH2), 31.9 (CH2), 32.6 (CH2), 34.6 (C-10), 35.9 (CH), 37.8 (CH2),
9.5 (CH2), 41.2 (CH), 46.2 (C-13), 49.8 (CH), 53.1 (CH), 70.3 (C-17),

19.3 (C-5′), 125.5 (2C, C-2′′ and C-6′′), 125.7 (2C, C-2 and C-3), 128.2
C-1′′), 128.9 (2C, C-3′′ and C-5′′), 142.6 (C-4′′), 146.9 (C-4′) ppm. EI-

S (70 eV) m/z (%): 443 [M+] 60), 415 (98), 400 (92), 187 (100), 130
52), 115 (65), 91 (73), 79 (66), 67 (47), 55 (37).
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2.4.17. Synthesis of 17˛-[4-(4-tert-butylphenyl)-1H-1,2,3-
triazol-1-yl]-5˛-androst-2-ene
(11g)

Compound 8 and 4-tert-butylphenylacetylene (9g,  0.18 mL)
were used for the synthesis as described in Section 2.4.  After purifi-
cation, 11g was obtained as a white solid (384 mg). Mp 215–217 ◦C;
Rf = 0.35 (ss D). Anal. Calcd. for C31H43N3: C, 81.35; H, 9.47. Found:
C, 81.44; H, 9.63. 1H NMR  (500 MHz, CDCl3): ı = 0.26 (m,  1H),
0.58 (m,  1H), 0.73 (s, 3H, 19-H3), 0.96 (s, 3H, 18-H3), 1.03 (m,
1H), 1.19 (m,  1H), 1.26–1.46 (overlapping m,  7H), 1.34 (s, 9H,
3 × tBu-CH3), 1.51–1.70 (overlapping m,  3H), 1.74–1.87 (overlap-
ping m,  3H), 2.08 (m,  1H), 2.29 (m,  1H), 2.52 (m,  1H), 4.63 (dd, 1H,
J = 8.4 Hz, J = 1.2 Hz, 17-H), 5.54 (m,  2H, 2-H and 3-H), 7.45 (d, 2H,
J = 8.3 Hz, 3′′-H and 5′′-H), 7.65 (s, 1H, 5′-H), 7.79 (d, 2H, J = 8.3 Hz,
2′′-H and 6′′-H) ppm. 13C NMR  (125 MHz, CDCl3): ı = 11.6 (C-19),
18.6 (C-18), 20.2 (CH2), 25.2 (CH2), 28.6 (2C, 2 × CH2), 30.2 (CH2),
31.3 (3C, 3 × tBu-CH3), 31.9 (CH2), 32.6 (CH2), 34.6 (2C, 4′′-tBu-
C and C-10), 35.9 (CH), 39.5 (CH2), 41.2 (CH), 46.3 (C-13), 49.8
(CH), 53.2 (CH), 70.3 (C-17), 119.4 (C-5′), 125.3 (2C) and 125.7
(2C): C-2′′, C-3′′, C-5′′ and C-6′′, 125.8 (2C, C-2 and C-3), 128.0
(C-1′′), 146.7 (C-4′), 151.1 (C-4′′) ppm. EI-MS (70 eV) m/z (%):457
[M+] (99), 429 (100), 414 (75), 201 (56), 91 (42), 79 (39), 67
(27).

2.4.18. Synthesis
of17˛-[4-cyclopropyl-1H-1,2,3-triazol-1-yl]-5˛-androst-2-ene
(11h)

Compound 8 and cyclopropylacetylene (9h,  0.09 mL)  were used
for the synthesis as described in Section 2.4. After purification, 11h
was obtained as a white solid (285 mg). Mp  122–124 ◦C; Rf = 0.31
(ss E). Anal. Calcd. for C24H35N3: C, 78.85; H, 9.65. Found: C, 78.76;
H, 9.80. 1H NMR  (500 MHz, CDCl3): ı = 0.20 (m, 1H), 0.60 (m,  1H),
0.72 (s, 3H, 19-H3), 0.85 (m,  3H), 0.91 (s, 3H, 18-H3), 0.93 (m,
2H), 1.02 (m,  1H), 1.18 (m,  1H), 1.26–1.51 (overlapping m,  7H),
1.59–1.78 (overlapping m,  3H), 1.84 (m,  2H), 1.94 (m,  1H), 2.00 (m,
1H), 2.19 (m,  1H), 2.45 (m,  1H), 4.50 (dd, 1H, J = 8.5 Hz, J = 1.5 Hz,
17-H), 5.55 (m,  2H, 2-H and 3-H), 7.13 (s, 1H, 5′-H) ppm. 13C NMR
(125 MHz, CDCl3): ı = 6.7 (C-1′′), 7.7 (2C, C-2′′ and C-3′′), 11.6 (C-
19), 18.5 (C-18), 20.2 (CH2), 25.1 (CH2), 28.5 (CH2), 28.6 (CH2), 30.2
(CH2), 31.9 (CH2), 32.5 (CH2), 34.6 (C-10), 35.9 (CH), 39.6 (CH2),
41.3 (CH), 46.1 (C-13), 49.8 (CH), 53.1 (CH), 70.1 (C-17), 119.9
(C-5′), 125.7 (2C, C-2 and C-3), 149.2 (C-4′) ppm. EI-MS (70 eV)
m/z (%): 365 [M+] (25), 322 (83), 108 (100), 91 (42), 79 (46), 67
(37).

2.4.19. Synthesis of
17˛-[4-cyclopentyl-1H-1,2,3-triazol-1-yl]-5˛-androst-2-ene
(11i)

Compound 8 and cyclopentylacetylene (9i,  0.12 mL)  were used
for the synthesis as described in Section 2.4. After purification, 11i
was obtained as a white solid (295 mg). Mp  145–147 ◦C; Rf = 0.24 (ss
E). Anal. Calcd. for C26H39N3: C, 79.34; H, 9.99. Found: C, 79.46; H,
10.11. 1H NMR  (500 MHz, CDCl3): ı = 0.20 (m,  1H), 0.60 (m,  1H),
0.73 (s, 3H, 19-H3), 0.91 (s, 3H, 18-H3), 1.03 (m,  1H), 1.19 (m,
1H), 1.25–1.87 (overlapping m,  19H), 2.01 (m,  1H), 2.10 (m,  2H),
2.22 (m,  1H), 2.45 (m,  1H), 3.18 (m, 1H), 4.51 (dd, 1H, J = 8.5 Hz,
J = 1.5 Hz, 17-H), 5.53 (m,  2H, 2-H and 3-H), 7.14 (s, 1H, 5′-H) ppm.
13C NMR  (125 MHz, CDCl3): ı = 11.6 (C-19), 18.6 (C-18), 20.2 (CH2),
25.1 (CH2), 25.2 (CH2), 28.6 (3C, 3 × CH2), 30.2 (CH2), 31.9 (CH2),
32.5 (CH2), 33.2 (CH2), 33.3 (CH2), 34.6 (C-10), 35.9 (CH), 36.8 (CH),

39.6 (CH2), 41.2 (CH), 46.1 (C-13), 49.8 (CH), 53.1 (CH), 70.1 (C-
17), 119.8 (C-5′), 125.7 (2C, C-2 and C-3), 151.8 (C-4′) ppm. EI-MS
(70 eV) m/z (%): 393 [M+] (56), 350 (93), 241 (53), 136 (92), 79 (100),
67 (79).
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.4.20. Synthesis of
7˛-[4-cyclohexyl-1H-1,2,3-triazol-1-yl]-5˛-androst-2-ene (11j)

Compound 8 and cyclohexylacetylene (9j,  0.13 mL)  were used
or the synthesis as described in Section 2.4.  After purification, 11i
as obtained as a white solid (342 mg). Mp  158–160 ◦C; Rf = 0.45

ss E). Anal. Calcd. for C27H41N3: C, 79.55; H, 10.14. Found: C,
9.68; H, 10.24. 1H NMR  (500 MHz, CDCl3): ı = 0.17 (m,  1H), 0.58
m,  1H), 0.72 (s, 3H, 19-H3), 0.91 (s, 3H, 18-H3), 1.02 (m,  1H),
.14–1.53 (overlapping m,  13H), 1.59–1.88 (overlapping m,  8H),
.94 (m,  1H), 1.99–2.10 (m,  3H), 2.20 (m,  1H), 2.46 (m,  1H),
.74 (m,  1H), 4.52 (dd, 1H, J = 8.5 Hz, J = 1.6 Hz, 17-H), 5.52 (m,
H, 2-H and 3-H), 7.12 (s, 1H, 5′-H) ppm. 13C NMR  (125 MHz,
DCl3): ı = 11.6 (C-19), 18.6 (C-18), 20.2 (CH2), 25.2 (CH2), 26.0
CH2), 26.2 (2C, 2 × CH2), 28.5 (CH2), 28.6 (CH2), 30.2 (CH2), 31.9
CH2), 32.5 (CH2), 33.0 (CH2), 33.1 (CH2), 34.6 (C-10), 34.6 (C-
′′), 35.9 (CH), 39.6 (CH2), 41.2 (CH), 46.1 (C-13), 49.8 (CH), 53.1
CH), 70.1 (C-17), 119.5 (C-5′), 125.7 (2C, C-2 and C-3), 152.8
C-4′) ppm. EI-MS (70 eV) m/z (%): 407 [M+] (97), 364 (87), 241
82), 150 (76), 107 (88), 95 (92), 81 (100), 79 (98), 67 (76), 55
52).

.5. Determination of antiproliferative activities

Cytotoxic effects were measured in vitro on three human
ell lines (ECACC; Salisbury, UK): HeLa (cervix adenocarci-
oma), MCF7 (breast adenocarcinoma) and A431 (skin epidermoid
arcinoma). The cells were cultivated in minimal essential
edium (Sigma–Aldrich, Budapest, Hungary) supplemented with

0% fetal bovine serum, 1% non-essential amino acids and an
ntibiotic–antimycotic mixture. Near-confluent cells were seeded
nto a 96-well plate (5000 cells/well) and, after overnight stand-
ng, the medium (200 �L) containing the tested compound (at 10
r 30 �M)  was added. Following a 72-h incubation in a humidi-
ed atmosphere of 5% CO2 at 37 ◦C the living cells were assayed
y the addition of 20 �L of 5 mg/mL  MTT  [3-(4,5-dimethylthiazol-
-yl)-2,5-diphenyltetrazolium bromide] solution [24]. MTT  was

onverted by intact mitochondrial reductase and precipitated
s blue crystals during a 4-h contact period. The medium was
hen removed, the precipitated formazan crystals were solubi-
ized in DMSO (100 �L) during a 60-min period of shaking at

H

H

BnO

O

H

H H

H H

O

H

BnO

H 

H 

1

2

3 

5 

i

ii

4  

6 
ii

i

Scheme 1. Reagents and conditions: (i) KBH4, MeOH/CH2Cl2, rt, 8
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25 ◦C, and the absorbance was  read at 545 nm with a microplate
reader. Wells with untreated cells were utilized as controls.
All in vitro experiments were carried out on two microplates
with at least five parallel wells. Stock solutions of the tested
substances (10 mM)  were prepared with DMSO. The DMSO con-
centration (0.3%) of the medium did not have any significant
effect on cell proliferation. Cisplatin was  used as reference com-
pound.

3. Results and discussion

For the preparation of novel triazole derivatives, two  kinds of
steroidal 17�-azides (7 and 8), readily available from estrone-3-
benzyl ether (1) or 5�-androst-2-en-17-one (2) in a three-step
pathway, were used as starting materials (Scheme 1). Stereoselec-
tive reduction of the 17-keto group leading to 3 and 4 was followed
by tosylation to give 5 and 6, which then underwent facile SN2 sub-
stitution with sodium azide in N,N-dimethylformamide to furnish
the corresponding 17�-azido compounds 7 and 8 [25].

CuAAC of 7 with phenylacetylene (9a) was carried out in reflux-
ing dichloromethane with CuI as catalyst (Table 1). The application
of Cu(I) salts in such reactions is known to require high temperature
or at least an amine base additive (DIPEA or Et3N) for adequate for-
mation of the Cu-acetylide complex. Moreover, certain complexing
ligands (mostly TBTA or bathophenanthroline) are often employed
in order to enhance the activity of the catalyst and to protect the
Cu(I) from oxidation. However, complete conversion of 7 with 9a
was found to occur after 24 h in the presence of triphenylphos-
phine (20 mol%) instead of an amine base, and the corresponding
1,4-disubstituted triazole (10a) was  obtained in high yield. Triph-
enylphosphine is assumed to accelerate the rate of the reaction
and to improve the solubility of the catalyst by complexing to Cu(I),
since no appreciable transformation was  noted without its addition
to the reaction mixture. After optimization of the reaction condi-
tions, similar cycloadditions of 7 with different terminal acetylenes
(9b–j) were performed to furnish 17�-triazolyl derivatives (10b–j)

in good yields (Table 1). Analogously, a series of novel steroidal tri-
azoles were also synthesized by reaction of 8 with alkynes (9a–j),
and the products (11a–j) were isolated in yields of ∼80% after purifi-
cation by column chromatography.
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 h; (ii) TsCl, pyridine, rt, 72 h; (iii) NaN3, DMF, 100 ◦C, 48 h.
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Table  1
Synthesis of steroidal 1,2,3-triazoles by CuAAC.

H

N3

H

H H

N

7
8

HC C R
9

N
N

R

10
11

AB AB

AB

BnO

H

7, 10

8, 11CH2Cl2, 40 oC

CuI (10 mol%)
Ph3P (20 mol%)

.

Substrate Acetylene R Product Yielda (%)

7
9a

10a 85

8 11a 82
7

9b OMe
10b 84

8  11b 80
7

9c F
10c 85

8  11c 82
7

9d
10d 85

8  11d 83
7

9e
10e 83

8 11e 86
7

9f
10f 87

8 11f 86
7

9g
10g 84

8  11g 84
7

9h
10h 88

8  11h 78
7

9i
10i 80

8 11i 75
7

9j
10j 79

8  11j 84

a After purification by column chromatography.

Table 2
Antiproliferative effects of the synthetized compounds.

Triazole Growth inhibition % ±(SEM)

HeLa MCF7 A431

10 �M 30 �M 10 �M 30 �M 10 �M 30 �M

10a <25a <25 <25 <25 35 (1.0) 30 (1.0)
11a  46 (0.8) 72 (0.5) 34 (1.3) 47 (0.7) 37 (0.9) 58 (0.9)
10b  28 (2.4) 41 (1.8) <25 33 (1.3) 44 (1.80) 48 (2.0)
11b  52 (1.2) 54 (1.4) 42 (1.7) 53 (1.6) 53 (1.3) 62 (1.6)
10c  <25 28 (1.9) <25 <25 <25 27 (0.9)
11c  44 (0.3) 63 (1.1) 55 (1.4) 79 (0.5) 55 (1.7) 75 (0.7)
10d  <25 36 (1.4) <25 28 (0.1) <25 35 (1.7)
11d  33 (1.8) 53 (1.7) <25 39 (1.9) 31 (1.4) 49 (1.0)
10e  <25 <25 <25 <25 <25 34 (2.2)
11e  30 (0.7) 67 (0.7) <25 47 (1.6) <25 51 (1.5)
10f  <25 27 (1.8) <25 <25 <25 27 (1.9)
11f  60 (1.0) 79 (0.4) 35 (1.6) 53 (0.5) 69 (0.8) 81 (0.1)
10g  <25 <25 <25 <25 35 (1.9) 30 (1.7)
11g  27 (0.7) 46 (0.9) <25 30 (1.7) 30 (1.4) 48 (0.6)
10h  47 (1.8) 43 (2.0) 35 (1.5) 42 (1.0) 48 (1.9) 50 (2.0)
11h  52 (1.4) 98 (0.1) 30 (1.9) 92 (0.7) <25 82 (0.8)
10i  46 (1.5) 52 (2.0) 26 (1.5) 39 (1.1) 32 (1.2) 39 (1.9)
11i 40  (1.7) 67 (1.3) <25 63 (2.1) 39 (1.4) 56 (1.8)
10j 35  (1.5) 38 (1.6) <25 26 (2.1) <25 28 (1.0)
11j  52 (1.7) 71 (0.4) 24 (1.6) 55 (1.0) 29 (2.2) 71 (1.4)

Cisplatin 43  (2.3) 100 (0.3) 53 (2.3) 87 (1.2) 89 (0.5) 90 (1.8)

a Compounds eliciting less than 25% inhibition of proliferation were considered ineffective and the exact results are not given, for simplicity.
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In the 1H NMR  spectra of compounds 10a–g and 11a–g, the
ignals of the protons on the Ph ring appeared at 6.5–8.0 ppm.
he 5-H singlet of the newly formed hetero ring was observed
t 7.6–7.7 ppm for the aryl-substituted derivatives (10a–g and
1a–g), and at 7.1–7.2 ppm for those containing a cycloalkyl sub-
tituent (10h–j and 11h–j).

The novel triazolyl derivatives (10a–j and 11a–j) were applied
n in vitro pharmacological studies in order to investigate their
ntiproliferative effects on three human adherent malignant cell
ines (Table 2). The cell-growth-inhibitory potencies of the benzyl
ther derivatives (10a–j) were generally found to be lower than
hose of their counterparts (11a–j) from the androst-2-ene series.
ompounds 10a–g may  be considered to be practically ineffective,
hile the introduction of a smaller cycloalkyl ring instead of an aro-
atic moiety into the triazole ring (10h, 10i) resulted in a relative

ncrease in activity on all three cell lines. However, the moder-
te effect was again lower for the triazole containing a cyclohexyl
roup on the hetero ring (10j). Derivatives with an unsaturated
ing A proved to possess higher activity. Para-substitution of the
henyl ring with an F or OMe  group (11b, 11c) enhanced the

nhibition of the growth of at least the MCF7 and A431 cells at
oth applied concentrations, while extension of the carbon chain
n the Ph ring also resulted in increased activity at 30 �M (in
he sequence Me  < Et < Pr). Furthermore, compound 11g, with a
ert-butyl group on the Ph ring, exhibited limited efficacy, not
ttaining 50% proliferation inhibition even at 30 �M.  Compound
1h was the most potent of the tested derivatives, causing 82–98%
rowth inhibition on all malignant cell lines at 30 �M,  and there-
ore comparable to the reference compound cisplatin. Since most
f the other compounds displayed substantially lower activity,
yclopropyl-substituted triazole is considered to be a favorable
tructural moiety in the development of more potent steroidal
ntiproliferative agents.

. Conclusions

In view of the lack of structural characteristics of estrogenic
nd androgenic steroids contributing to their binding to the cor-
esponding hormone receptors, the major aim of the present work
as to synthetize novel steroidal heterocycles in order to inves-

igate their cytostatic activities. The syntheses were carried out
fficiently from the corresponding azides with terminal acetylenes
y CuAAC, triphenylphosphine being applied as additive. All com-
ounds were tested in vitro as concerns their antiproliferative
ctivities on three malignant cell lines, and the cyclopropyl-
ubstituted triazole in the 5�-androst-2-ene series proved to exert

 promising cell-growth-inhibitory effect at 30 �M. Although the
ntiproliferative activities of the tested compounds are moderate,
he results suggest that steroidal triazoles may  induce a disturbance
n the cell division by a mode other than hormone receptor-based
ction, motivating the search for further derivatives and optimiza-
ion for better activities.
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