

Available online at www.sciencedirect.com

Steroids 68 (2003) 603-611

www.elsevier.com/locate/steroids

Steroids

Novel P450_{17 α} inhibitors: 17-(2'-oxazolyl)- and 17-(2'-thiazolyl)-androstene derivatives

Na Zhu^a, Yangzhi Ling^a, Xiaoping Lei^a, Venkatesh Handratta^b, Angela M.H. Brodie^{b,*}

^a Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Center, Peking 100083, PR China ^b Department of Pharmacology & Experimental Therapeutics, School of Medicine, University of Maryland,

685 West Baltimore Street, Room 580G Baltimore, MD 21201, USA

Received 15 November 2002; received in revised form 27 May 2003; accepted 30 May 2003

Abstract

Twelve 17-(2'-oxazolyl)- and 17-(2'-thiazolyl)-androsta-5,16-diene derivatives were designed and synthesized from 3β-acetoxy-pregna-5,16-dien-20-one (**1b**) as inhibitors of 17α -hydroxylase- $C_{17,20}$ -lyase (P450_{17 α}). Potent inhibitors of this enzyme could be of value as treatment of prostate cancer. Two substituents (methyl and phenyl) were introduced either at their 4'- or 5'-position in order to investigate their structure–activity relationship. Due to the 16,17-double bond, 17-thiazoles were generally obtained in low yield. The pharmacological results showed that the compounds containing 17-(2'-oxazolyl) (**14c**) and 17-(2'-thiazolyl) (**8c**) (41.5%) demonstrated reasonable inhibition against P450_{17 α}. Their 3-acetate (**13c** and **7c**) were less potent than their 3-OH counterparts. The introduction of a phenyl or methyl group generally decreased inhibitory activity. Surprisingly, 17-(5'-methyl-2'-thiazolyl) (**12a**) was the most potent compound in this series and was almost as potent as **L-39**, which has good antitumor activity.

© 2003 Elsevier Inc. All rights reserved.

Keywords: P45017a inhibitors; 17-(2'-Oxazolyl)-androstenes; 17-(2'-Thiazolyl)-androstenes; Prostatic cancer

1. Introduction

17α-Hydroxylase-C_{17,20}-lyase (P450_{17α}) is a key regulatory enzyme of the androgen biosynthetic pathway that catalyzes both the 17α-hydroxylation and the cleavage of the C₁₇–C₂₀ side chain of 21-carbon steroids in both testes and adrenals. It is known that androgens play an important role in the development and progression of several prostatic diseases, most notably, benign prostatic hypertrophy (BPH) and prostatic cancer. Inhibitors of this enzyme can block androgen synthesis in its early step, and thereby may be useful in the treatment of prostatic cancer [1]. To date, only ketoconazole [2,3], an imidazole antifungal agent, has been used for this purpose to treat patients with advanced prostatic cancer. However, this agent is neither selective nor very potent and has a number of significant side effects. This highlights the need to design potent and specific inhibitors of P450_{17α}.

Recently, we have described a number of inhibitors of P450_{17 α}, of which 17-imidazolyl, pyrazolyl, and isoxazolyl androstene are very potent [4,5] and 17-(5'-isoxazolyl)-pregna-4,16-diene-3,20-dione (**L**-39) will soon enter Phase

0039-128X/\$ – see front matter © 2003 Elsevier Inc. All rights reserved. doi:10.1016/S0039-128X(03)00082-5

I clinical trial [1]. Jarman et al. also reported that 17-(3'-pyridyl)-androsta-5,16-dien-3-ol is a potent inhibitor [6]. These compounds were much more active than ketoconazole. Although the detailed mechanisms of these inhibitors are not very clear, the coordination of 17-heterocycles of steroids to the heme-iron at the active site of the enzyme is thought to be an important factor related to inhibition [1,4,5]. In addition, the 16,17-double bond is also important for potent inhibitory activity against P450_{17 α} [6]. We reasoned that 17-thiazole and -oxazole, which are other azoles and the bioisosterism of imidazole, pyrazole, and isoxazole, would also create potent inhibitors. Here we report the synthesis of twelve 17-(2'-thiazolyl)- and 17-(2'-oxazolyl)-androsta-5,16-dien-3-ol derivatives, with either a methyl or phenyl group at their 4'- or 5'-position. Their synthetic routes are shown in the Schemes 1 and 2 and their inhibition activities for $P450_{17\alpha}$ are also reported here.

2. Experimental

2.1. Synthetic methods

Melting points were determined on a XT₄ melting point microscope and are uncorrected. IR spectra were deter-

^{*} Corresponding author. Tel.: +1-410-706-3137; fax: +1-410-706-0032. *E-mail address:* abrodie@umaryland.edu (A.M.H. Brodie).

Scheme 1. Regent: (i) I₂/pyridine; (ii) NaOH, 50% aqueous EtOH; (iii) I₂, NaOH; (iv) Br₂, NaOH. a: R₁ = R₂ = H; b: R₁, R₂ = double bond.

mined in a Perkin-Elmer 983 spectrometer (wave numbers in cm⁻¹). ¹H NMR data (300 MHz) (internal standard Me₄Si, $\delta = 0$) were recorded in a VARIAN VAN-300, with samples dissolved in CDCl₃ unless otherwise stated. Reactions were monitored by TLC on silica gel plates (GF254) and visualized by dipping in 4% sulfuric acid in ethanol followed by heating at ca. 120-150 °C. Flash column chromatography was carried out on silica gel (230–400 mesh) in the solvent systems indicated. PE refers to light petroleum ether, bp 60–90 °C.

 $R: a = CH_3$, b = Ph, c = H

Scheme 2. Regent: (i) SOCl₂; (ii) NH₄OH; (iii) P_2S_5 ; (iv) RCOCH₂NH₂·HCl/Et₃N; (v) RCOCH₂Br or ClCH₂CHClOEt; (vi) KOH/CH₃OH; (vii) PPh₃/I₂/NEt₃. R: a = CH₃; b = Ph; c = H.

2.2. 3β-Hydroxy-androsta-5,16-dien-17-carboxylic acid (1a)

2.2.1. Method 1: the hydrolysis of 21-pyridinium iodide salt (**2b**)

3β-Acetoxy-pregna-5,16-dien-20-one (DPA, **1b**) (0.213 g, 0.6 mmol) was dissolved in 0.5 ml of pyridine and heated under reflux, iodine (0.163 g, 0.64 mmol) was then added within 0.5 h and the solution was heated under reflux for 2 h. After cooling naturally, water was added and the precipitate was filtered, washed with water, and dried. Crude product was recrystallized from CH₂Cl₂/ethyl acetate to give pure pyridinium iodide **2b** (0.31 g, 91.7%), mp 200–202 °C. ¹H NMR: δ 8.92 (d, J = 5.4, 2H, 2',6'-H of Py), 8.69 (t, 1H, 4'-H of Py), 8.23 (t, 2H, 3',5'-H of Py), 7.26 (ws, 1H, 16-H), 6.10 (q, 2H, 17-CH₂), 5.39 (d, J = 4.8, 1H, 6-H), 4.46 (m, 1H, 3α-H), 1.99 (s, 3H, AcO), 1.02 (s, 3H, 19-CH₃), 0.90 (s, 3H, 18-CH₃). Anal. C₂₈H₃₆O₃NI·1/2(H₂O), C 58.94%, H 6.53%, N 2.45%; found C 59.23%, H 6.54%, N 1.83%.

Sodium hydroxide (175 mg, 4.375 mmol) was added to a suspension of the above pyridinium iodide **2b** (190 mg, 0.34 mmol) in 50% aqueous ethanol. The mixture was heated under reflux for 2 h and acidified with 3N HCl to pH 3. The acidic fraction was collected by filtration. The crude product (60 mg, 26%) was crystallized from methanol to give a dark yellow product **3b** (48 mg, 18%) with mp 249–257 °C (lit. [8]: 255–257 °C).

2.2.2. Method 2: bromoform reaction

A solution of sodium hydroxide (1.46 g, 36.5 mmol) in 12.5 ml water was cooled to -5 °C in an ice-salt bath at a rate that maintained the reaction temperature below 0 °C. While stirring, bromine (1.5 g, 9 mmol, 0.48 ml) was added from a separatory funnel at a rate that maintained the reaction temperature below 0 °C. The ice-cold solution was diluted with 8.3 ml cold dioxane. This solution was kept at 0 °C until required.

A solution of DPA 1b (1 g, 2.8 mmol) in dioxane (38.2 ml) and water (11 ml) was cooled in an ice bath. When the internal temperature had fallen to 8 °C, the above cold hypobromite solution was added. The temperature of the mixture was maintained at 8-10 °C throughout the reaction. After the solution became colorless, the mixture was stirred for an additional 2 h. The excess sodium hypobromite was destroyed by the addition of 10% aqueous sodium sulfite. The mixture was refluxed for 15 min, and the solution, while still hot (90 °C), was acidified to pH 6. The solution was kept in water for 24 h. The precipitate was collected by suction filtration, washed with water, and dried. The white product was crystallized from ethanol to give pure 3b, mp 255-257 °C (0.91 g, 81%, lit. [8]: 255–257 °C). IR (cm⁻¹): 3173, 1710 (COOH, OH). ¹H NMR: δ 12.03 (s, 1H, COOH), 6.66 (ws, 1H, 16-H), 5.28 (d, J = 4.2, 1H, 6-H), 4.62 (s, 1H, OH), 3.26 (m, 1H, 3a-H), 0.98 (s, 3H, 19-CH₃), 0.87 (s, 3H, 18-CH₃).

2.3. 3β-Acetoxy-androsta-5,16-dien-17-carboxylic acid (**3***c*)

17-Acid **3b** (0.75 g, 2.37 mmol) was dissolved by warming in 3 ml of pyridine. After the solution had cooled to room temperature, 1 ml of acetic anhydride was added and the mixture was allowed to stand overnight. It was then treated with 4 ml of water and heated to a boil until the precipitate had dissolved. Another 10 ml of water was added and the mixture was cooled. The crystalline product was collected and recrystalized from glacial acetic acid to give 3β-acetate **3c** 0.78 g (91%) as white crystals, mp 240–244 °C (lit. [9]: 255 °C). IR (cm⁻¹): 1726 (AcO).

2.3.1. 3β -Acetoxy-androsta-5,16-dien-17-carboxylic acid chloride (**3d**) and 17-carboxamide (**4**)

Compound **3c** (2.5 g, 6.98 mmol) was mixed with SOCl₂ (10 ml) at 0 °C, and then stirred for 6 h at room temperature. The solvent was evaporated under reduced pressure after addition of C₆H₆ to the mixture in order to get rid of any remaining SOCl₂. This gave the acid chloride **3d**. This compound was stirred vigorously with concentrated aqueous NH₄OH (10 ml), the precipitate was collected and dried, and yielded the amide **4** (2.345 g, 94.1%), mp 217–220 °C (from ethanol). IR (cm⁻¹): 3465, 3326 (NH₂), 1668 (CONH₂), 1726 (AcO). ¹H NMR: δ 6.49 (ws, 1H, 16-H), 5.70 (ws, 2H, NH₂), 5.39 (d, J = 5.1, 1H, 6-H), 4.60 (m, 1H, 3 α -H), 2.04 (s, 3H, AcO), 1.07 (s, 3H, 19-CH₃), 1.02 (s, 3H, 18-CH₃). Anal. C₂₂H₃₇O₃N, C 73.92%, H 8.74%, N 3.92%; found C 74.20%, H 8.39%, N 3.64%.

2.4. 3β -Acetoxy-androsta-5,16-dien-17-thiocarboxamide (**5**)

Phosphorus pentasulfide (62 mg, 0.28 mmol) was stirred vigorously in anhydrous dioxane (4 ml) to become a powdered solid, to which the amide 4 (100 mg, 0.28 mmol) was added. The mixture was stirred at 14°C for 2h and then filtered. The solution was adjusted to neutral by adding 50% aqueous KOH. Then the solvent was evaporated under reduced pressure and the residue purified by flash chromatography. Elution with acetone/PE (1:4) yielded thiocarboxamide 5 (50 mg, 48.3%), mp $173-175 \degree C$ (from acetone/PE). IR (cm⁻¹): 3314, 3191 (NH₂), 1382 (CSNH₂), 1707 (AcO). ¹H NMR: δ 7.46 and 6.59 (s, each 1H, $-CSNH_2 \leftrightarrow -HS-C=NH-$, exchangeable with D_2O), 5.38 (d, J = 5.1, 1H, 6-H), 4.62 (m, 1H, 3 α -H), 4.15 (m, 1H, 16-H), 2.04 (s, 3H, AcO), 1.02 (s, 3H, 19-CH₃), 0.79 (s, 3H, 18-CH₃). Anal. C₂₂H₃₁ONS·2(H₂O), C 64.51%, H 8.61%, N 3.42%; found C 64.56%, H 8.24%, N 3.10%.

2.5. 3β-Acetoxy-17-cyano- (6) and -17-(4'-methyl-2'-thiazolyl)-androsta-5,16-diene (7a)

A suspension of powdered P_2S_5 (23.2 mg, 0.10 mmol) and the amide 4 (200 mg, 0.5 mmol) in anhydrous diox-

ane (10 ml) was stirred at 14 °C for 2 h. The bromoacetone (43.2 mg, 0.32 mmol, bp 68–75 °C, prepared from the bromination of acetone in acetic acid [10]) was added and the mixture was refluxed for 2 h, 50% KOH was added to neutralize the solution. Solvent was removed under reduced pressure and the residue was flash chromatographed. Elution with PE/ethyl acetate (20:1) yielded a white product (**7a**) (20 mg, 8.8%), mp 199–200 °C (from acetone). IR (cm⁻¹): 1717, 1243, 1034 (AcO), 1406 (thiazolyl). ¹H NMR: δ 6.75 (s, 1H, 5'-H), 6.50 (ws, 1H, 16-H), 5.40 (d, J = 5.1, 1H, 6-H), 4.63 (m, 1H, 3 α -H), 2.45 (s, 3H, 4'-CH₃), 2.04 (s, 3H, AcO), 1.08 (s, 3H, 19-CH₃), 1.07 (s, 3H, 18-CH₃). Anal. C₂₅H₃₃O₂NS, C 72.95%, H 8.08%, N 3.40%; found C 72.74%, H 8.32%, N 3.11%.

Further elution with PE/ethyl acetate (9:1) yielded 17-cyanide **6** (20 mg, 14%), mp 200–202 °C (from acetone). IR (cm⁻¹): 2209 (CN), 1720 (AcO). ¹H NMR: δ 6.64 (m, 1H, 16-H), 5.38 (d, J = 4.8, 1H, 6-H), 4.60 (m, 3H, 3 α -H), 2.04 (s, 3H, AcO), 1.06 (s, 3H, 19-CH₃), 0.95 (s, 3H, 18-CH₃). Anal. C₂₂H₂₉O₂N, C 77.55%, H 8.85%, N 4.14%; found C 77.84%, H 8.61%, N 4.13%.

2.5.1. *3β*-Acetoxy-17-(4'-phenyl-2'-thiazolyl)-androsta-5,16-diene (**7b**)

A suspension of powdered P₂S₅ (100 mg, 0.45 mmol) and the amide 4 (200 mg, 0.5 mmol) in anhydrous dioxane (6 ml) was stirred at 14 °C for 2 h. The P₂O₅ and other precipitates were removed by filtration and then 2-bromoacetophenone (100 mg, 0.53 mmol) was added into the filtrate, and then refluxed for 0.5 h. The solution was concentrated under reduced pressure and the residue was diluted with CH₂Cl₂, then 50% KOH was added to make the solution neutral. The whole mixture was washed with water to remove the residual dioxane. The water layer was extracted with CH₂Cl₂ and the combined organic layer was dried over sodium sulfate. After evaporation, the residue was purified by flash chromatography. Elution with PE/ethyl acetate yielded 7b (30 mg, 10%), mp 173–174 °C (from acetone). ¹H NMR: δ 7.92 (d, J = 7.5, 2H, Ph–H), 7.24–7.43 (m, 4H, Ph–H and 5'-H), 6.54 (ws, 1H, 16-H), 5.39 (d, J = 5.1, 1H, 6-H), 4.58 (m, 1H, 3α -H), 2.03 (s, 3H, AcO), 1.08 (s, 3H, 19-CH₃), 1.05 (s, 3H, 18-CH₃).

2.5.2. 3β -Acetoxy-17-(2'-thiazolyl)-androsta-5,16-diene (**7c**)

The 17-thiamide **5** (60 mg, 0.14 mmol) was dissolved in warm anhydrous DMF, α , β -dichloroether (20 ul, 0.14 mmol) added and the mixture heated under reflux for 0.5 h. The solution was concentrated under reduced pressure and the residue was diluted with CH₂Cl₂ and washed with water to remove the residual DMF. The water layer was extracted with CH₂Cl₂, the combined organic layer was dried over sodium sulfate. The solvent was removed and the residue was purified by chromatography. Elution with PE/ethyl acetate (15:1) yielded 17-thiazole **7c** (10 mg, 15.75%), mp 160–162 °C (from acetone). ¹H NMR: δ 7.77 (d, J = 3.3,

1H, 4'-H), 7.20 (d, J = 3.3, 1H, 5'-H), 6.54 (ws, 1H, 16-H), 5.36 (d, J = 5.1, 1H, 6-H), 4.58 (m, 1H, 3 α -H), 2.09 (s, 3H, AcO), 1.07 (s, 3H, 19-CH₃), 1.04 (s, 3H, 18-CH₃).

2.6. 3β-Hydroxy-17-(4'-methyl-2'-thiazolyl)-(8a), -17-(4'-phenyl-2'-thiazolyl)- (8b), and -17-(2'-thiazolyl)-androsta-5,16-diene (8c)

Compound **7a** (45 mg, 0.11 mmol) was dissolved by warming in methanol (10 ml), 0.86N KOH–CH₃OH (2 ml) was added, and the reaction solution was heated under reflux for 0.5 h. The solvent was removed under reduced pressure and the residue was chromatographed. Elution with PE/ethyl acetate (4:1) yielded **8a** (28 mg, 70%), mp 236–237 °C (from acetone). ¹H NMR: δ 6.74 (s, 1H, 5'-H), 6.48 (ws, 1H, 16-H), 5.38 (d, J = 4.8, 1H, 6-H), 3.52 (m, 1H, 3 α -H), 2.44 (s, 3H, 4'-CH₃), 1.07 (s, 6H, 18,19-CH₃). Anal. C₂₃H₃₁ONS, C 74.75%, H 8.45%, N 3.79%; found C 74.95%, H 8.70%, N 3.54%.

Following the same procedure described above for **8a**, compound **7b** (20 mg, 0.04 mmol) gave 3β-ol **8b** (18 mg, 99%), mp 205–207 °C (from acetone). IR (cm⁻¹): 3344 (OH), 1437, 1372 (thiazolyl). ¹H NMR: δ 7.87 (d, J = 7.2, 2H, Ph–H), 7.24–7.43 (m, 4H, Ph–H and 5'-H), 6.45 (ws, 1H, 16-H), 5.32 (d, J = 5.1, 1H, 6-H), 3.50 (m, 1H, 3α-H), 1.08 (s, 3H, 19-CH₃), 1.05 (s, 3H, 18-CH₃). Anal. C₂₈H₃₃ONS, C 77.91%, H 7.71%, N 3.24%; found C 77.64%, H 7.88%, N 3.18%.

Similarly, compound **7c** (14 mg, 0.03 mmol) gave 3β -ol **8c** (10 mg, 80%), mp 185–187 °C (from acetone). IR (cm⁻¹): 3267 (OH), 1595, 1497 (thiazolyl). ¹H NMR: δ 7.80 (d, J = 3.3, 1H, 4'-H), 7.22 (d, J = 3.3, 1H, 5'-H), 6.61 (ws, 1H, 16-H), 5.38 (d, J = 5.1, 1H, 6-H), 3.53 (m, 1H, 3α -H), 1.09 (s, 3H, 19-CH₃), 1.08 (s, 3H, 18-CH₃). Anal. C₂₂H₂₉ONS·1/2(H₂O), calculated C 72.48%, H 8.29%, N 3.84%; found C 72.26%, H 8.06%, N 3.63%; MS (EI): 355 (M⁺).

2.7. N-Acetylmethyl-3β-acetoxy-androsta-5,16-diene-17-carboxamide (**9a**)

Aminoacetone hydrochloride (16.4 mg, 0.15 mmol, prepared from glycine and acetic anhydride [11]) and triethylamine (35 ul, 0.25 mmol) were added to a solution of 17-acid chloride **3** (50 mg, 0.12 mmol) in dry dichloromethane at 0 °C. The mixture was stirred at room temperature for 0.5 h. Then, it was washed successively with 5% hydrochloric acid, 5% sodium hydrogen carbonate, water, and then dried over sodium sulfate. The solvent was evaporated and the residue was chromatographed. Elution with PE/acetone (4:1) gave β-methylketo amide **9a** (50 mg, 92%), bp 190–192 °C (from acetone). IR (cm⁻¹): 1726, 1246, 1037 (AcO), 3375, 3326, 1649 (CONH). ¹H NMR: δ 6.45 (ws, 2H, 16-H and NH), 5.39 (d, J = 5.1, 1H, 16-H), 4.60 (m, 1H, 3 α -H), 4.27 (s, 2H, NH<u>CH₂CO),</u> 2.23 (s, 3H, CH₂COCH₃), 2.04 (s, 3H, AcO), 1.06 (s, 3H, 19-CH₃), 1.02 (s, 3H, 18-CH₃). Anal. C₂₅H₃₅O₄N, C 72.61%, H 8.53%, N 3.39%; found C 72.51%, H 8.56%, N 3.30%.

2.7.1. *N*-Benzoylmethyl-3β-acetoxy-androsta-5,16-diene-17-carboxamide (**9b**)

Following the same procedure described above, acylation of 2-aminoacetophenone hydrochloride (25 mg, 0.14 mmol) with 17-acid chloride **3** yielded **9b** (50 mg, 78%), mp 163–165 °C (from acetone). IR (cm⁻¹): 3327 (NH), 1686 (CONH), 1727 (AcO). ¹H NMR: δ 7.5–8.0 (m, 5H, Ph–H), 6.80 (s, 1H, NH), 6.55 (ws, 1H, 16-H), 5.41 (d, J = 5.1, 1H, 6-H), 4.84 (s, 2H, NH<u>CH₂</u>CO), 4.61 (m, 1H, 3α-H), 2.04 (s, 3H, AcO), 1.09 (s, 3H/₃H, 19-CH₃), 1.08 (s, 3H, 18-CH₃). Anal. C₃₀H₃₇O₄N, C 75.76%, H 7.84%, N 2.94%; found C 75.35%, H 7.88%, N 2.88%.

2.8. 3β-Acetoxy-17-(5'-methyl-2'-thiazolyl)-androsta-5,16-diene (**10a**)

Compound **9a** (50 mg, 0.11 mmol) and phosphorus pentasulfide (33.3 mg, 0.15 mmol) in dioxane (3 ml) was stirred at room temperature for 3.5 h, and then refluxed for 1 h. The solution was concentrated and washed with water. The water layer was extracted with CH₂Cl₂ and the combined CH₂Cl₂ layer was dried over sodium sulfate. The solvent was evaporated and the residue was chromatographed. Elution with PE/ethyl acetate (15:1) yielded product **9a** (14 mg, 28%), mp 162–163 °C (from acetone). ¹H NMR: δ 7.38 (s, 1H, 4'-H), 6.38 (ws, 1H, 16-H), 5.38 (d, J = 4.8, 1H, 6-H), 4.60 (m, 1H, 3 α -H), 2.42 (s, 3H, 5'-CH₃), 2.05 (s, 3H, AcO), 1.06 (s, 3H, 19-CH₃), 1.05 (s, 3H, 18-CH₃).

2.8.1. 3β -Acetoxy-17-(5'-phenyl-2'-thiazolyl)- (**10b**) and 3β -acetoxy-16 α -thiol-17-(5'-phenyl-2'-thiazolyl)androsta-5,16-diene (**11**)

Compound **9a** (100 mg, 0.2 mmol) and phosphorus pentasulfide (67 mg, 0.3 mmol) in toluene (2 ml) were heated at 80 °C for 2 h. The solvent was removed under reduced pressure and the residue was purified by flash chromatography. Elution with PE/ethyl acetate (15:1) yielded product **10b** (20 mg, 21.1%), mp 155–158 °C (from acetone). IR (cm⁻¹): 1717 (AcO), 1457 (aromatic rings). ¹H NMR: δ 7.94 (s, 1H, 4'-H), 7.20–7.59 (m, 5H, Ph–H), 6.65 (ws, 1H, 16-H), 5.39 (d, J = 4.8, 1H, 6-H), 4.60 (m, 1H, 3 α -H), 2.02 (s, 3H, AcO), 1.09 (s, 3H, 19-CH₃), 1.08 (s, 3H, 18-CH₃).

Following the same procedure described above except dioxane was used to replace toluene, 16α -thiol **11** (13 mg, 12.7%) was obtained, mp 173–175 °C (from acetone). ¹H NMR: δ 7.89 (s, 1H, 4'-H), 7.27–7.54 (m, 5H, Ph–H), 5.37 (d, J = 5.1, 1H, 6-H), 4.60 (m, 1H, 3-H), 4.07 (m, 1H, 16-H), 3.04 (d, 1H, 17-H), 2.02 (s, 3H, AcO), 1.08 (s, 3H, 19-CH₃), 0.63 (s, 3H, 18-CH₃). ¹³C NMR: δ 170 (CO), 167 (2'-C), 139 (Ph–C linked with thiazole), 138 (5-C), 137 (4'-C), 131 (5'-C), 129 (*m*-Ph–C), 128 (*p*-Ph–C), 126

(o-Ph–C), 122 (6-C), 73 (3-C), 67 (16-C), 54 (17-C), 49 (9-C), 46 (13-C), 38 (14-C), 31 (8-C), 21 (AcO–C), 19 (19-C), 13 (18-C); MS (EI): 507 (M⁺), 474 (M⁺–SH), 414 (M⁺–SH–AcOH) NOESY: 17-H has no NOE with both 18-CH₃ and 16-H. This suggests the configuration was 17α -H, 16β-H.

2.8.2. 3β -Hydroxy-17-(5'-methyl-2'-thiazolyl)- (**12a**) and -17-(5'-phenyl-2'-thiazolyl)-androsta-5,16-diene (**12b**)

Following the same procedure described above for the preparation of **8a**, 3β-acetate **10a** (20 mg, 0.044 mmol) was hydrolyzed in KOH/methanol to give 3β-ol **12a** (17 mg, 94%), mp 163–167 °C (from acetone/PE). IR (cm⁻¹): 3370 (OH), 1458 (thiazole). ¹H NMR: δ 7.39 (s, 1H, 4'-H), 6.41 (ws, 1H, 16-H), 5.37 (d, J = 5.1, 1H, 6-H), 3.50 (m, 1H, 3α-H), 2.43 (s, 3H, 5'-CH₃), 1.08 (s, 3H, 19-CH₃), 1.05 (s, 3H, 18-CH₃). Anal. C₂₃H₃₁ONS, C 74.75%, H 8.45%, N 3.79%; found C 74.84%, H 8.32%, N 3.62%.

And from 3 β -acetate **10b** (20 mg, 0.042 mmol) gave **12b** (18 mg, 99%), mp 218–218.8 °C (from acetone). IR (cm⁻¹): 3314 (OH), 1591, 1478 (aromatic ring). ¹H NMR: δ 7.90 (s, 1H, 4'-H), 7.30–7.54 (m, 5H, Ph–H), 6.48 (ws, 1H, 16-H), 5.37 (d, J = 5.1, 1H, 6-H), 3.56 (m, 1H, 3 α -H), 1.10 (s, 3H, 19-CH₃), 1.07 (s, 3H, 18-CH₃). Anal. C₂₈H₃₃ONS·(H₂O), C 74.79%, H 7.85%, N 3.11%; found C 75.17%, H 7.53%, N 2.91%.

2.9. 3β-Acetoxy-17-(4'-methyl-2'-oxazolyl)-androsta-5,16-diene (**13a**)

The 17-carboxamide **4** (100 mg, 0.25 mmol) and bromoacetone (34 mg, 0.25 mmol, prepared from the bromination of acetone [10]) in DMF (2 ml) was refluxed for 0.5 h, the solution was concentrated under reduced pressure. Water (10 ml) was added and extracted with CH₂Cl₂ (3 × 10 ml), the combined CH₂Cl₂ was evaporated, and the residue was purified by chromatography. Elution with PE/ethyl acetate (9:1) gave 4'-methyloxazole **13a** (44 mg, 40.2%), mp 196–198 °C (from acetone). IR (cm⁻¹): 1728, 1242, 1035 (AcO), 1615, 1507, 1370 (oxazolyl). ¹H NMR: δ 7.28 (s, 1H, 5'-H), 6.56 (ws, 1H, 16-H), 5.40 (d, J = 4.8, 1H, 6-H), 4.60 (m, 1H, 3 α -H), 2.19 (s, 3H, 4'-CH₃), 2.04 (s, 3H, AcO), 1.08 (s, 3H, 19-CH₃), 1.02 (s, 3H, 18-CH₃).

2.9.1. 3β-Acetoxy-17-(4'-phenyl-2'-oxazolyl)-androsta-5,16-diene (**13b**)

The same procedure described above for **13a**, was followed except 2-bromoacetophenone (50 mg, 0.27 mmol) replaced bromoacetone, to obtain 4'-phenyloxazole **13b** (68 mg, 67.9%), mp 196–197.8 °C (from acetone). IR (cm⁻¹): 1720, 1253 (AcO), 1618, 1564, 1482, 1372 (oxazolyl). ¹H NMR: δ 7.83 (s, 1H, 5'-H), 7.26–7.78 (m, 5H, Ph–H), 6.61 (m, 1H, 16-H), 5.41 (d, J = 5.4, 1H, 6-H), 4.62 (m, 1H, 3 α -H), 2.04 (s, 3H, AcO), 1.10 (s, 3H, 19-CH₃), 1.07 (s, 3H, 18-CH₃). Anal. C₃₀H₃₅O₃N, C 78.74%, H 7.71%, N 3.06%; found C 78.80%, H 7.70%, N 2.97%.

2.9.2. *3β-Acetoxyl-17-(2'-oxazolyl)-androsta-5,16-diene* (**13***c*)

The same procedure described above for **13a** was followed but using α,β -dichloroether (30 ul, 0.21 mmol) instead of bromoacetone. The mixture was refluxed for 1 h and gave oxazole **13c** (16 mg, 15.1%), mp 178–179.5 °C (from acetone/PE). IR (cm⁻¹): 1726, 1238, 1031 (AcO), 1615, 1529, 1370 (oxazolyl). ¹H NMR: δ 7.60 (d, 1H, 5'-H), 7.10 (d, 1H, 4'-H), 6.60 (ws, 1H, 16-H), 5.40 (d, J = 4.8, 1H, 6-H), 4.60 (m, 1H, 3 α -H), 2.04 (s, 3H, AcO), 1.09 (s, 3H, 19-CH₃), 1.03 (s, 3H, 18-CH₃). Anal. C₂₄H₃₁O₃N, C 75.56%, H 8.19%, N 3.67%; found C 75.37%, H 8.22%, N 3.43%.

2.9.3. 3β-Hydroxy-17-(4'-methyl-2'-oxazolyl)-(14a), -17-(4'-phenyl-2'-oxazolyl)- (14b), and

-17-(2'-oxazolyl)-androsta-5,16-diene (14c)

Following the same procedure described above for **8a**, 3β-acetate **13a** (40 mg) gave product **14a** (10 mg, 56%), mp 249–250 °C (from acetone). IR (cm⁻¹): 3280 (OH), 1601, 1529 (oxazolyl). ¹H NMR: δ 7.24 (s, 1H, 5'-H), 6.52 (ws, 1H, 16-H), 5.33 (d, J = 5.4, 1H, 6-H), 3.50 (m, 1H, 3α-H), 2.14 (s, 3H, 4'-CH₃), 1.10 (s, 3H, 19-CH₃), 1.07 (s, 3H, 18-CH₃). Anal. C₂₃H₃₁O₂N, C 78.15%, H 8.84%, N 3.96%; found C 78.40%, H 8.87%, N 3.77%.

Acetate **13b** (30 mg, 0.065 mmol) yielded **14b** (20 mg, 73.5%), mp 142–144 °C (from acetone). ¹H NMR: δ 7.75–7.83 (m, 2H, 5'-H, Ph–H), 7.30–7.48 (m, 3H, Ph–H), 6.65 (ws, 1H, 16-H), 5.38 (d, J = 5.1, 1H, 6-H), 3.55 (m, 1H, 3 α -H), 1.09 (s, 3H, 19-CH₃), 1.08 (s, 3H, 18-CH₃). Anal. C₂₈H₃₃O₂N, calculated C 80.93%, H 8%, N 3.37%; found C 80.90%, H 8.20%, N 3.09%; MS (EI): 415 (M⁺).

The acetate **13c** (30 mg, 0.078 mmol) gave the product **14c** (20 mg, 77%), mp 193.8–195 °C (from acetone). IR (cm⁻¹): 3422 (OH), 1616, 1530 (oxazole). ¹H NMR: δ 7.56 (ws, 1H, 5'-H), 7.13 (ws, 1H, 4'-H), 6.58 (ws, 1H, 16-H), 5.37 (d, J = 4.8, 1H, 6-H), 3.52 (m, 1H, 3 α -H), 1.08 (s, 3H, 19-CH₃), 1.04 (s, 3H, 18-CH₃). Anal. C₂₄H₃₁O₃N, calculated C 77.84%, H 8.61%, N 4.12%; found C 77.45%, H 8.61%, N 3.90%; MS (EI): 355 (M⁺).

2.9.4. 3β-Acetoxy-17-(5'-methyl-2'-oxazolyl)-androsta-5,16-diene (**15**)

The β -keto amide **9a** (100 mg, 0.23 mmol) was added into a flask containing a freshly prepared solution of triphenylphosphine (118 mg, 0.46 mmol), iodine (117 mg, 0.46 mmol) and triethylamine (130 ul) in CH₂Cl₂ (5 ml). The mixture was stirred at room temperature for 2 days. The solution was diluted with CH₂Cl₂ (10 ml). The organic layer was washed with saturated aqueous NaHCO₃ and dried over anhydrous Na₂SO₄. The solvent was evaporated and the residue was chromatographed. Elution with PE/ethyl acetate (9:1) yielded 5'-methyloxazole **15** (20 mg, 21%), mp 183–184 °C (from ethyl acetate/PE). ¹H NMR: δ 6.70 (s, 1H, 4'-H), 6.50 (t, 1H, 16-H), 5.40 (d, *J* = 4.8, 1H, 6-H), 4.60 (m, 1H, 3 α -H), 2.31 (s, 3H, 5'-CH₃), 2.04 (s, 3H, AcO), 1.08 (s, 3H, 19-CH₃), 1.02 (s, 3H, 18-CH₃).

2.9.5. *3β-Hydroxy-17-(5'-methyl-2'-oxazolyl)-androsta-*5,16-diene (**16**)

Following the same procedure described above for **8a**, acetate **15** (20 mg, 0.046 mmol) gave the 3 β -ol **16** (10 mg, 50%), mp 200–202 °C (from acetone). ¹H NMR: δ 6.72 (s, 1H, 4'-H), 6.47 (ws, 1H, 16-H), 5.37 (d, J = 4.8, 1H, 6-H), 3.54 (m, 1H, 3 α -H), 2.31 (s, 3H, 5'-CH₃), 1.07 (s, 3H, 19-CH₃), 1.02 (s, 3H, 18-CH₃); MS (EI): 353 (M⁺).

3. P450_{17 α} (lyase) assay [17]

Abbreviations used: IPTG, isopropyl β -D-thiogalactopyranoside; ALA, δ -aminolevulenic acid; LBAG, LB medium with ampicillin and glucose; TBA, terrific broth containing ampicillin; DTT, dithiothretiol; MOPS, 3-(*N*-morpholino)propanesulfonic acid; ACN, acetonitrile.

3.1. Materials

The vector pCWH17modHis was a generous gift of Dr. M.R. Waterman (University of Texas, Southern Medical Center, Dallas, TX). JM109 bacterial strain was from Gibco-BRL (Grand Island, NY). Terrific Broth, LB Agar, IPTG, Ampicillin were from Gibco-BRL. ALA and EDTA were from Sigma (St. Louis, MO). Protease Inhibitor Cocktail was from Boehringer-Mannheim (Mannheim, Germany). [21-³H]Hydroxypregnenolone (specific activity 13.61 mCi/mmol) was prepared in our laboratory as described previously [5]. HPLC grade acetonitrile was purchased from Sigma-Aldrich. The reference standards for the inhibitors of androgen synthesis were ketoconazole, and L-39 (1).

3.2. Bacterial stock preparation

JM109/H mod17His was incubated overnight in LBAG medium (containing 20 mM glucose and 1 mg/ml of ampicillin) and grown overnight at 37 °C with agitation at 250 rpm. Overnight cultures were diluted 1:100 in terrific broth containing 100 mg/ml ampicillin (TBA) and allowed to grow to $OD_{600} = 0.8-0.9$ at 37 °C for 4–5 h. Cytochrome P450_{17α} synthesis was stimulated by adding 1 mM of IPTG, and heme precursor ALA. After incubation for 16–18 h at 27 °C with agitation at 150 rpm, bacteria were collected by centrifugation at 2000 × *g* for 20 min at 4 °C. The pellet was resuspended and washed with 10 volumes of buffer A (20 mM glucose, 2 mM DTT, 1 mM EDTA, and 100 mM MOPS). After centrifugation at 2000 × *g* for 20 min at 4 °C, the pellet was resuspended in buffer B (buffer A and protease inhibitor cocktail) to 2 × 10⁹ cells in 1 ml (OD₆₀₀ = 0.6).

3.3. Measuring $P450_{17\alpha}$ activity in cultured bacteria

Substrate ([21-³H]hydroxypregnenolone (specific activity 13.61 mCi/mmol)) and different concentrations of inhibitors were mixed in the sample tube $(13 \text{ mm} \times 100 \text{ mm} \text{ polystyrene} \text{ tubes}$, Becton Dickinson, Lincoln Park, NJ) and the solvent (ethanol) was evaporated under airflow. The control used in this experiment was the substrate and bacteria without the presence of inhibitor.

The reaction was started by adding 1 ml of prepared bacterial culture to each tube. Tubes were sealed and mixed in a Dynal Sample Mixer (Dynal, Inc., Long Island, NY) at 40 rpm for 5–6 h at room temperature. The reaction was stopped by adding 1 ml of ACN, which precipitated bacterial and medium proteins. After centrifugation at 2000 rpm for 15 min at 4 °C, the supernatant was collected (~1.9 ml), transferred into borosilicate glass tubes, and the steroids were extracted with 2 ml of chloroform at 4 °C for 30 min. After 30 min, the tubes were centrifuged at 2000 rpm for 15 min at 4°C. The aqueous phase which contains the $[^{3}H]$ acetic acid, was collected (~0.9 ml), and this was mixed with 300 µl of 8.5% charcoal suspension for 30 min at 4 °C. After centrifugation at 2000 rpm for 15 min at 4 °C, the supernatant, which contained [³H]acetic acid, was removed and radioactivity measured in a Liquid Scintillation Analyzer (Packard Instrument Co., Meriden, CT).

4. Results and discussion

4.1. Chemistry

The key starting material Δ^{16} -17-carboxylic acid **3b** could be obtained by three synthetic routes shown in the Scheme 1, as reported in the literature. The first route was the nucleophilic addition of cyano anion to the 17-keto group of epiandrostene, followed by dehydration and hydrolysis [9,12]. This was not tried due to the difficulty of handling toxic cyanide in the lab. The second route was the hydrolysis of 21-pyridinium iodide (2a) [13]. Practically, 17-acid **3a**, which was the starting material for finasteride, was prepared in kg quantities by this route. We tried this procedure and Δ^{16} -21-pyridinium **2b** was obtained in 90% yield, but the hydrolysis of **2b** to **3b** only gave Δ^{16} -17-acid **3b** in poor (20%) yield. The third method was the iodoform reaction: the DPA 1b was treated with I2 in strong base and gave 17-acid 3b directly, but the yield was less than 10% [8]. When we used bromine to replace iodine to prepare hypobromide instead of hypoiodide, the yield was increased to 80%. This important improvement enabled us to obtain a sufficient supply of 1a for the following steps. After 3-OH was protected with the acetate group to give 3c, this was further converted to key intermediates 17-acid chloride 3 and 17-amide 4.

Although the syntheses of 17β -(2'-thiazolyl) derivatives have been reported by Urbansky and Drasar [7], the synthesis of their Δ^{16} counterpart was achieved with difficulty.

The 5'-methyl **10a** and the 5'-phenylthiazole **10b** were synthesized by the Gabriel method. In the presence of triethylamine, the hydrochlorides of aminoace-tone, 2-aminoacetophenone were acylated, respectively,

by 17-acid chloride 3c affording the β -keto amide 9aand 9b. Refluxing 9a with P₂S₅ in dioxane furnished the 5'-methylthiazole **10a** in 30% vield. However, the same procedure only afforded a small amount of 5'-phenylthiazole 10b, and mainly resulted in the side-product 11. Its 1 H NMR showed a five-proton signal of 5'-phenyl around 7-8 ppm, the disappearance of the 16-ethylenic proton signal at 6-7 ppm as well as the carbon signal peak of Δ^{16} double bond in ¹³C NMR suggesting that the Δ^{16} double bond had been saturated. Mass spectrometry showed the molecular-ion peak 507 and a fragment 474 (M^+ -SH), confirming that the structure was the 16-thiol-17-(5'-phenyl-2'-thiazolyl)-androstene derivative. NOESY spectrometry showed that there were no NOE between 17-H and 13B-CH₃, 16-H separately, confirming the configuration of 16α -SH 11. The Michael addition of the SH⁻ group at C-16 occurred preferentially at the less steric crowded α face owing to the hindrance of 13β-methyl. When toluene was used to replace dioxane, 5'-phenylthiazole **10b** was obtained albeit in lower (21%) yield. This is probably because the SH anion barely exists in the aprotic solvent toluene.

For the preparation of 4'-substituted thiazoles, the convenient one step procedure of Hantzsch [14] was employed, i.e. 17-thiamide **5** was prepared in situ without separation. Reaction of 17-amide **4** with P_2S_5 and then condensed with α -bromoacetophenone in dioxane gave 4'-methylthiazole **7a** (9% yield), together with the dehydrated product 17-cyanide **6**. However, the same procedure did not give 4'-phenyl **7b** and thiazole **7c**. We finally found that the solution of 17-thiamide **5** formed in situ had to be filtered first to remove P_2O_5 and other precipitates, and then condensed with 2-bromoacetophenone. In this way, 4'-phenylthiazole **7b** was obtained in 10% yield.

Owing to the instability of α -bromoacetaldehyde which always exists in polymer form, its more stable derivative α,β -dichloroether [14] was used as reactant for the preparation of thiazole **7c**. However, using the procedure for **7a** or **7b** gave a very poor yield. Here, pure 17-thiamide **5** was separated and then refluxed with α,β -dichlorether in DMF, to give the thiazole **7c** (16% yield). It should be pointed out that the preparation of **7a** and **7b** with pure thiamide **5** did not increase the yield.

In summary, because of the existence of 16,17-double bond, the activity of the conjugated 17-carbonyl group decreased, and the Michael addition reaction took place. This made the reaction for synthesis of 17-thiazole more complicated and the yield was generally low.

On the other hand, the synthesis of 17-oxazole derivatives were much easier. 4'-Methyloxazole **13a** was obtained in 40% yield by the direct cyclization of 17-amide **4** with bromoacetone in boiling DMF. In the same manner, 2-bromoacetophenone gave 4'-phenyloxazole **13b** in 68% yield, and oxazole **13c** was obtained with α , β -dichloroether. For the preparation of 5'-methyloxazole **15**, the classic Robinson–Gabriel cyclodehydration of β -keto amide **9a** was Table 1 Percent inhibition of recombinant human P450_{17 α}-expressed in *E. coli* by the steroids (μ M)

Compound	Inhibition %
	27.6
8a	13.2
7b	<2
8b	26.7
7c	<10
8c	41.5
10a	67.0
10b	0
12a	72.1
12b	<10
13a	<10
14a	19.4
13b	28.6
14b	26.2
13c	25.8
14c	56.0
15	19.9
16	45.0
Ketoconazole	100.0
L-39	116.7

The assay was performed in triplicate as described in Section 2 and was repeated on two occasions. Results are expressed as percent of inhibition relative to ketoconazole. Ketoconazole was used as an assay control and all values for the test compounds expressed relative to the activity of ketoconazole.

employed. However, all the dehydrating agents including concentrated sulfuric acid, PCl₅, P₂O₅, polyphosphoric acid and acetic acid anhydride [15] failed to give **9a**. A newer method [16] with mild conditions, i.e. the use of triphenylphorphine and iodine in triethylamine as dehydrating reagent was tried resulting in 21% yield of 5'-methyloxazole **15**. The freshly distilled triethylamine was crucial for the success of this reaction. However, the same method failed to give 5'-phenyloxazole.

All of the above 3β -acetate compounds were hydrolyzed in methanolic potassium hydroxide affording their 3β -ol counterparts. These were more potent inhibitors of P450_{17 α}.

4.2. Structure–activity relationship

The percentage inhibition of P450_{17 α} by the different compounds synthesized relative to ketoconazole is shown in Table 1. Since the latter is currently the only compound used clinically to inhibit this enzyme, we have compared the activities of our compounds to that of ketoconazole. The activity of the compounds as inhibitors of P450_{17 α} was determined using recombinant human P450_{17 α} expressed in *E. coli* [17]. The results showed that, the compounds containing 17-(2'-oxazolyl) (**14c**, 56.0% inhibition) and 17-(2'-thiazolyl) (**8c**, 23.7%) demonstrated inhibition against P450_{17 α}, although they were less potent than ketoconazole. They were also less potent than **L-39** which had greater activity than ketoconazole in the assay. The 3-acetate derivatives (e.g. **13c**, 25.8% and **7c**, <10%) were also less potent than the 3-OH counterparts, as P450_{17 α} preferred 3-OH derivatives as substrate. The introduction of a phenyl group at either the 4'-ring position (**8b**, 26.7% and **14b**, 26.2%) or 5'-ring position (**12b**, <10%) decreased inhibition substantially. Surprisingly, although the introduction of a methyl group at the 4'-ring position decreased inhibition (**8a**, 13.2% and **14a**, 19.4%), 17-(5'-methyl-2'-oxazolyl) (**16**, 45.0%) still retained the activity to its parent compound 17-(2'-oxazolyl) (**14c**, 56.0%). The 17-(5'-methyl-2'-thiazolyl) (**12a**, 72.1%) had similar activity to ketoconazole and was the most potent inhibitor among this series. Compound **12a** was almost as potent as **L-39**, which has good antitumor activity in preclinical models and is scheduled for Phase I clinical trials.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 30171110) and NIH Grant CA 2774.

References

- Njar VCO, Brodie AMH. Inhibitors of 17α-hydroxylase/17,20-lyase (CYP17): potential agents for the treatment of prostate cancer. Curr Pharm Des 1999;5:163–80.
- [2] Trachtenberg J. Ketoconazole therapy in advanced prostatic cancer. J Urol 1984;132:61–3.
- [3] Williams G, Kerle DJ, Doble A, Dunlop H, Smith C, Allen J, et al. Objective responses to ketoconazole therapy in patients with relapsed progressive prostatic cancer. Br J Urol 1986;58:45–51.
- [4] Ling YZ, Li JS, Liu Y, Kato K, Klus GT, Brodie AMH. 17-Imidazolyl, pyrazolyl, and isoxazolyl androstene derivatives. Novel steroidal inhibitors of human cytochrome $C_{17,20}$ -lyase (P450_{17 α}). J Med Chem 1997;40:3297–304.
- [5] Njar VCO, Kato K, Nnane IP, Grigoryev DM, Long BJ, Brodie AMH. Novel 17-azolyl steroids, potent inhibitors of human cytochrome 17α -hydroxylase- $C_{17,20}$ -lyase (P450_{17 α}): potential agents for the treatment of prostate cancer. J Med Chem 1998;41:902–12.
- [6] Jarman M, Barrie SE, Llera JM. The 16,17-double bond is needed for irreversible inhibition of human cytochrome $p450_{17\alpha}$ by abiraterone (17-(3-pyridyl)androsta-5,16-diene-3 β -ol) and related steroidal inhibitors. J Med Chem 1998;41:5375–81.
- [7] Urbansky M, Drasar P. Simple syntheses of steroidal 17β-(2'-thiazolyl) derivatives. Syn Commun 1993;23:829–45.
- [8] Marker RE, Wagner RB. The hypoiodite oxidation of pregnanolones and pregnenolones. J Am Chem Soc 1942;64:1842–3.
- [9] Ruzicka L, Hardegger E, Kauter C. Uber die Δ^{5,16}-3β-oxyätiocholadiensäure und einige ihrer umwandlungsprodukte. Helv Chim Acta 1944;27:1164.
- [10] Preparation of bromoacetone. Org Syn Coll 2:88.
- [11] Hepworth JD. Aminoacetone semicarbazone hydrochloride. Org Synth Ol 45:1–3.
- [12] Butenandt A, Schmidt-Thomé J. Überführung von dehydroandrosteron in 3-aceoxy-Δ⁵-aetiocholensäure: ein Beitrag zur verknüpfung der Androsteron mit der corticosteron-Gruppe. Ber 1938;71:1487–9.
- [13] Carroll L. Preparation of 21-pyridinium-3-β-hydroxy-5-pregnene-20one halides and 3-β-hydroxy-5-androstene-17-carboxylic acid. J Am Chem Soc 1944;66:1612.

- [14] Vernin G. General synthetic methods for thiazole and thiazolium salts. In: Metzger JV, editor. Thiazole and its derivatives. New York: Interscience Publication; 1979. p. 169–209.
- [15] Turchi IJ. Synthesis and reactions of functionalized oxazoles. In: Metzger JV, editor. Oxazole and its derivatives. New York: Interscience Publication; 1979. p. 3.
- [16] Wipf P, Miller CP. A new synthesis of highly functionalized oxazoles. J Org Chem 1993;58:3604–6.
- [17] Grigoryev DN, Kato K, Njar VCO, Long BJ, Ling YZ, Wang X, et al. Cytochrome P450c 17-expressing *Escherichia coli* as a first-step screening system for 17α-hydroxylase-C_{17,20}-lyase inhibitors. Anal Biochem 1999;267:319–30.