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ABSTRACT: An axially chiral bisphosphine, Fc-Segphos (1), which possesses Q
diferrocenylphosphino-donor moieties, was prepared as a racemate, and its optical < O @
resolution was achieved by the use of chiral HPLC. Ligand 1 coordinated to a palladium(II) ‘o P

cation in a bidentate fashion to construct a unique chiral environment at the palladium
center due to the sterically demanding ferrocenyl groups. Ligand (R)-1 was applied in the

enantioselectivity of up to 92% ee. In general, (R)-1 displayed better enantioselectivity

o P..
lladium-catalyzed tri thesis of axially chiral all howi d( %
palladium-catalyzed asymmetric synthesis of axially chiral allenes showing goo 5
) (R)-Fc-Segphos (1)

than the parent Segphos in the palladium-catalyzed reaction, and the Pd/(R)-1 species
showed up to 18% ee enhancement over the (R)-Segphos-derived palladium catalyst.

any conventional chiral bisphosphine ligands, such as

Diop," Binap,” and Segphos,” possess diphenylphosphi-
no groups as their donor moieties.” Upon their chelate
coordination to a transition-metal atom/cation, the conforma-
tions of the four phosphorus-bound phenyl groups are
regulated by a chiral backbone to create an effective chiral
environment around the metal center (Figure 1). In other

.
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)
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Figure 1. Structure of (S)-Segphos and its 3D representation in a
metal complex.

words, the phosphorus-bound phenyl groups are primal
components constructing the chiral pockets in the chiral
metal complexes. Consequently, steric and electronic mod-
ifications of the phenyl groups have been common strategies to
modify the properties of the chiral phosphine ligands. Some
representative aryl groups frequently used for these purposes
include 4-methylphenyl (p-tolyl; Tol), 3,5-dimethylphenyl
(3,5-xylyl; Xyl), 3,5-di-tert-butyl-4-methoxyphenyl (DTBM),
3,5-bis(trifluoromethyl)phenyl, etc.

Ferrocene is an 18-electron organometallic compound with
an aromatic character.” While classical benzenoid aromatics are
flat-shaped molecules, ferrocene is a cylinder-shaped three-
dimensional compound. Ferrocene is also known to be a very
electron rich molecule showing the high activity in electro-
philic aromatic substitution reactions. Ferrocene derivatives
have played important roles in organophosphine chemistry as
frameworks in chelating bisphosphine ligands. For example,
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1,1"-bis(diphenylphosphino)ferrocene (dppf)° has been uti-
lized as a useful ancillary ligand in the palladium-catalyzed
cross-coupling reaction” as well as in the palladium-catalyzed
amination.” Unsymmetrically substituted (1,2-ferrocenylene)-
phosphine derivatives, such as PPFA’ and Josiphos,'® are
planar-chiral, and they are one of the most successful classes of
chiral phosphine ligands to date.'' On the other hand,
applications of a monovalent ferrocenyl group in organo-
phosphine chemistry have received little attention.'” Since the
ferrocenyl (Fc) group possesses peculiar electronic/steric
properties,l‘ which are significantly different from those of
benzenoid aryl groups, we are interested in introducing
diferrocenylphosphino groups in a chiral bisphosphine ligand
in place of the diphenylphosphino groups.

In this communication, the synthesis and applications of a
Segphos derivative having diferrocenylphosphino moieties (Fc-
Segphos 1) are reported in detail.

The designed Fc-Segphos 1 was prepared as outlined in
Scheme 1. Commercially available 5-bromo-1,3-benzodioxole
was converted to the corresponding Grignard reagent, and a
subsequent reaction with chlorodiferrocenylphosphine fol-
lowed by oxidative workup with hydrogen peroxide gave
phosphine oxide 2 in 63% yield. Deprotonation of 2 with
lithium 2,2,6,6-tetramethylpiperidide (LTMP) took place
highly regioselectively at the 4-position of the benzodioxole
moiety, and a subsequent oxidative homocoupling using
iron(IIl) chloride afforded axially chiral rac-3 in 50% yield.
The enantiomeric resolution of rac-3 was achieved by HPLC
on a chiral stationary phase column (Daicel Chiralpak IA), and
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Scheme 1. Preparation of (S)- and (R)-Fc-Segphos
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(+)- and (—)-3 were obtained in enantiomerically pure forms.
Reduction of the respective enantiomers of 3 using
trichlorosilane/triethylamine furnished (S)- and (R)-Fec-
Segphos 1 quantitatively. Bisphosphine 1 is reasonably air
stable in the solid state, and the crystalline sample of 1 stored
under air for a few months showed oxidation of less than the
detection limit by the *'P NMR analysis.

The dextrorotatory enantiomer of 3 was recrystallized by
slow diffusion of diethyl ether into its concentrated dichloro-
methane solution, yielding red-orange prisms. Single-crystal X-
ray crystallography revealed that the compound was a single
enantiomer. The unit cell contains two independent molecules,
having slightly different conformations. The Flack parameter
was determined to be —0.009(18), and the absolute
configuration of (+)-3 was unambiguously assigned to be S
(see the Supporting Information for details). Interestingly, all
the ferrocenyl substituents take eclipsed conformations with
slightly distorted dihedral angles between the two Cp planes
ranging from 2.20 to 4.29°.

Dissolving an equimolar mixture of Fc-Segphos 1 and
PdCl,(cod) in chloroform showed quantitative conversion to
PdCl,(Fc-Segphos) (4) in the time of mixing. The *'P NMR
signal of free 1, detected at 6, —38.5, shifted downfield to Jp
11.6 upon the coordination to the Pd(II) center. The racemic
complex showed better crystallinity, and single crystals of rac-4
were grown as deep red prisms by recrystallization from
chloroform/dichloromethane/pentane. X-ray crystallography
disclosed that the unit cell contained the pair (R)-4 and (S)-4,
which were nearly isostructural with each other, and the
structure of (S)-4 is shown in Figure 2 with selected bond
lengths and angles (see the Supporting Information for space-
filling drawings of the X-ray structure of rac-4). The seven-
membered chelate is highly skewed. The four ferrocenyl
substituents are located in an alternating “face and edge”
manner. In complex 4, all the FeCp fragments are located away
from Pdl, minimizing the steric congestion around the
palladium atom. The two ferrocenyl substituents, Fcl and
Fc3, show nonbonding interactions with H6 and HI13,
respectively, leading to the distortion of the ferrocenyl units.
The dihedral angles between the two cyclopentadienyl planes
are 7.32° in Fcl and 8.85° in Fc3. Due to the steric hindrance
between Cl1 and Fcl as well as between CI2 and Fc3, the Cl1
and CI2 atoms are situated above and below the P1-Pd1—P2
plane, respectively. The dihedral angle between the P1Pd1P2
plane and the Cl1Pd1CI2 plane is 17.95°. The geometry

Figure 2. Ball-and-stick drawing of the X-ray structure of rac-
PdCl,(Fc-Segphos) with selected atom numbering. Cocrystallized
solvent molecules are omitted for clarity. Selected bond lengths (A)
and angles (deg): Pd1—P1 = 2.246(1), Pd1-P2 = 2.296(1), Pd1-Cl1
=2.330(1), Pd1—-CI2 = 2.358(1), C2—C9 = 1.484(9); P1-Pd1-P2 =
94.07(5), Cl1—Pd1—P1 = 92.33(6), Cl1—Pd1—CI2 = 87.96(6), Cl2—
Pd1-P2 = 87.77(6), dihedral angles between the two Cp planes in a
Fc substituent 7.32 (in Fcl), 3.88 (in Fc2), 8.85 (in Fc3), and 2.26
(in Fc4); nonbonding distances H6—H23 = 2.394, H6—H24 = 2.361,
H13—-H40 = 2.493, and H13—H44 = 2.369.

around Pd1 is distorted square planar, the sum of four angles at
Pdl1 involving Cl1, CI2, P1, and P2 being 362.13°. The bite
angle, P1-Pd1—P2, in 4 is 94.07°, which is considerably larger
than those in PdCL,(Segphos) (90 95°)'* and PdCl,(Binap)
(92.63°)."° This can be attributed to the bulkiness of the
ferrocenyl substituents. In accordance with this, the biarylic
dihedral angle between the two 1,3-benzodioxole planes in 4
(66.00°) is much larger than that in PdCL,(Segphos) (59.30°).

While the two faces of the each phenyl substituent in
Segphos are homotopic, the two faces of each phosphorus-
bound C;H, moiety in Fc-Segphos are heterotopic due to the
1° coordination of the FeCp fragment onto one side of the
planar CsH,. The ferrocenyl groups are fairly bulky, and the
four Fc groups in 4 protrude in different directions to avoid
steric congestion, which breaks the symmetry of the complex.
Hence, the overall geometry of 4 in the solid state is C;
symmetric and significantly different from that in
PdCl,(Segphos), which is roughly C, symmetric (Figure
3a)."* The side view of the X-ray structure of 4 clearly

Figure 3. Side views of the X-ray structures of (a) PdCl,(Segphos)
and (b) PdCl,(Fc-Segphos) (4).
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displays the bulkiness of the ferrocenyl substituents; the two
ferrocenyl groups, Fcl and Fc3, stick out over the Pd—Cl
bonds and are shielding certain spaces of the potential reaction
sites in the d* complex (Figure 3b).

The potential of Fc-Segphos 1 was examined in the Pd-
catalyzed asymmetric synthesis of axially chiral allenes.'® For a
direct comparison between Segphos and 1, two reactions, one
with (R)-Segphos and the other with (R)-1, were set up
simultaneously and carried out side by side under identical
conditions. The results are summarized in Table 1. While the

Table 1. Palladium-Catalyzed Asymmetric Synthesis of
Axially Chiral Allenes”

Pd/(R)-L" N
R/\(\ (5 mol %) e u
+ Nu-H —
Br THF, base R -
5 6 40°C,12h 7
R =Ph (5a) Nu = CPh(COLE), (6w)

CgHq-4-OMe (5b) CMe(CO,Me), (6x)

nOct (5¢) C(NHAC)(CO,E), (6y)

Bu (5d) He-S02

SiMe; (5e) . (62)

0,8
entry S 6 base Arin L*  yield (%)” % ee™

1 Sa 6w CsO'Bu Ph 95 (7aw) 73 (R)
2 DTBM 84 (7aw) 74 (R)
3 Fc 86 (7aw) 86 (R)
4 Sb 6x NaH Ph 98 (7bx) 66 (R)
5 Fc 95 (7bx) 84 (R)
6 Sc 6x NaH Ph 95 (7cx) 68 (R)
7 Fc 92 (7cx) 74 (R)
8 sd 6y CsO'Bu Ph 91 (7dy) 90 (R)
9 Fc 90 (7dy) 92 (R)
10 Se 6z NaH Ph 96 (7ez) 76 (R)
11 Fc 82 (7ez) 87 (R)

“All reactions were carried out with 5 (0.20 mmol), 6 (0.23 mmol),
and base (0.25 mmol) in THF (2.0 mL) for 12 h in the presence of a
Pd catalyst (S mol %) generated from Pd(dba), and the chiral
phosphine. “Isolated yield by chromatography on alumina.
“Determined by chiral HPLC (Chiralpak AS-H (7aw), Chiralpak
AD-H (7bx), Chiralpak IB (7cx and 7ez)), or Chiralpak 1A (7dy).
dThe]37absolute configurations were deduced by the Lowe—Brewster
rule.

Pd/(R)-Segphos and the Pd/(R)-DTBM-Segphos catalysts
gave the axially chiral allene (R)-7aw in 73% ee and 74% ee,
respectively, for the reaction of Sa with 6w (entries 1 and 2),
the Pd/(R)-1 catalyst afforded (R)-7aw in 86% ee under
otherwise identical conditions except for the ligand (entry 3).
In the same way, (R)-1 exhibited better enantioselectivity than
the parent (R)-Segphos for the reaction of Sb and 6x to give
(R)-7bx (66% ee vs 84% ee; entries 4 and S), Sc and 6x to give
(R)-7cx (68% ee vs 74% ee; entries 6 and 7), and 5d and 6y to
give (R)-7dy (90% ee vs 92% ee; entries 8 and 9). The
reaction with a nucleophile derived from bis-sulfone 6z and
NaH also showed the advantage of (R)-1 over (R)-Segphos.
The axially chiral allene 7ez in 76% ee was obtained in 96%
yield using Segphos (entry 10). In comparison, the Pd/Fc-
Segphos system afforded 7ez with 87% ee in 82% yield under
the same conditions (entry 11).

In contrast, Fc-Segphos 1 was not effective in rhodium-
catalyzed asymmetric conjugate addition.'® For the reaction of
cyclohexenone with phenylboronic acid, the Rh/(R)-Segphos
catalyst gave (R)-3-phenylcyclohexanone in 99% ee and 94%

yield. On the other hand, Rh/(R)-1 was catalytically nearly
inert, and the addition product was obtained in less than 3%
yield. The stereodetermining intermediates in the two
reactions, shown in Table 1 and Scheme 2, are quite different

Scheme 2. Rhodium-Catalyzed Asymmetric 1,4-Addition of
Phenylboronic Acid to 2-Cyclohexenone

@) gn(aﬁc)(o%—u%gs(s.o Imol %) 0
i i . °/0
+ PhB(OH), |ra. |gan/|j mo/ )
(G0equv)  §oregTiER 1 o

with (R)-Segphos: 99% ee (94%)
with (R)-Fc-Segphos: (<8%)

from each other. While the palladium-catalyzed reaction
roceeds via a (1,2,3-7°-butadien-3-yl)palladium intermedia-
te,'*>'” the key intermediate of the rhodium-catalyzed reaction
was suggested to be Rh(Ph)(n*-cyclohexenone)-
(bisphosphine).'® Apparently, the Rh/Fc-Segphos species
could not accommodate the phenyl group and #*-cyclo-
hexenone simultaneously due to the sterically demanding
ferrocenyl substituents in the bisphosphine ligand. Accord-
ingly, the Rh/Fc-Segphos species was inactive for the 1,4-
addition reaction.

In summary, a novel axially chiral bisphosphine ligand, Fc-
Segphos 1, was prepared. Upon its chelate coordination to a
transition metal, 1 creates a unique chiral environment in the
complex due to the diferrocenylphosphino-donor moieties.
Ligand 1 was used in the palladium-catalyzed asymmetric
synthesis of axially chiral allenes, showing up to 18% ee
enhancement over a palladium catalyst derived from parent
Segphos. Although the superiority of 1 is not universal, we
believe that 1 should prove useful for other transition-metal-
catalyzed asymmetric reactions.
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