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Highlights 

• Novel divalent oseltamivir analogues were synthesized using Click chemistry. 

• Distance between two oseltamivir monomers ~30 Å can enhance antiviral activity. 

• Esterification of oseltamivir carboxylic acid can be further developed for improving efficacy.  
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1. Introduction 

Neuraminidases (NAs) or sialidases, catalyze the hydrolysis of 

α-glycosidic linkages of terminal sialic acid (SA) residues in 

glycoconjugates and are widespread in many tissues of animals, 

pathogens and viruses
1-2

. Several human pathologies are strongly 

associated with abnormal NAs activity
3
, and some bacteria and 

viruses utilize their NAs for host cell infections
4
. Therefore, 

much attention has been paid on the design and synthesis of 

efficient NA inhibitors for the therapeutic applications and 

functional studies
5
. One of the most successful structure-based 

designs of potent NA inhibitor is the discovery of Zanamivir 

(Relenza
TM

, ZA) (Fig. 1.), which mimics the transition state of 

the influenza NA-catalyzed sialoside hydrolysis reaction and has 

been used as the first-line drugs for the treatment of viral flu
6
. 

However, due to the low oral bioavailability and rapid renal 

elimination of ZA, Oseltamivir (Tamiflu
TM

, OS) (Fig. 1.) was 

developed
7
. Compared with ZA, the pyran ring, C-4 guanidino 

group and glycerol side chain are replaced with cyclohexene, 

amine and 3-pentyl ether, respectively. After further 

esterification of the carboxyl group, OS as the orally available 

therapeutic prodrug is usually prescribed in the clinic for combat 

human influenza pandemics
8
. Unfortunately, the frequent 

mutations of NA, which leads to the emergence of new OS-

resistant strains
9
 has stressed the urgent need for the development 

of new antiviral agents in recent years. 

 

 

 

 

 

 

 

Figure 1. Structures of two marketed NA inhibitors, ZA and OS. 

It is now well known that the binding conformation of 3-

pentyl ether side chain in OS affected by NA mutations is the 

main reason for the unbeneficial interactions, which results in 

drug-resistance
10

. In order to compensate this decreased binding 

affinity, many attempts of chemical modifications on C-5 amine
11

, 

moving the location of C–C double bond
12

 or replacing the C-3 

pentyl group
13

 have been applied. Generally speaking, this 

strategy more or less enhances the binding to NA in vitro, but 

does not lead to better inhibitors in vivo. Recently, L-amino acid 

ester linked Oseltamivir Carboxylate (OC) esters, which are 
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A panel of divalent oseltamivir and guanidino oseltamivir analogues with esterification on the 

carboxyl acid group as potent inhibitors of influenza virus neuraminidase was prepared via click 

reaction. The primary structure activity relationship study demonstrated that appropriate distance 

between two oseltamivir monomers around 30 Å can crosslink two adjacent neuraminidase 

tetramers on the virion surface and result in highly effective NA inhibitors against three strains 

of influenza virus and H7N9 virus like particle. This strategy also provides a basis for the 

multivalent modification on oseltamivir.   
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prodrugs show improved oral absorption and systemic 

availability
14

. In another example, OC hydroxamate and acyl 

sulfonamide derivatives
15

 were also prepared and have been 

shown to have anti-influenza activity against wild-type H1N1 

and OS-resistant virus. Building on these reports, we proposed 

that the esterification of the carboxyl group may be a target for 

the chemical structure modification and lead to obtain better NA 

inhibition activity.  

A different approach for the design of potent NA-inhibitors 

is to introduce “cluster effects”
16-18

, which has been validated by 

the success of synthesizing multivalent ZA conjugates
19-29

. As 

four NA monomers form a mushroom-like tetramere anchored on 

viral surface
30

, various ZA with appropriate distance attached on 

the multivalent backbones can simultaneously bind to more than 

one NA monomer within a single or different tetramers on the 

same or even separated virions. Structurally, these strategies use 

C-7 hydroxyl group of ZA, which has no direct interaction to the 

active site of NA for the linker attachment
31

 and then assemble 

ZA on the multivalent scaffolds. However, due to the lack of 

hydroxyl group in the glycerol side chain of OS, multivalent OS 

conjugates have not been pursued.  

Herein, we want to combine with “cluster effect”
32-34

 and ester 

prodrug masked strategy together for increasing the binding 

affinity of OS to NA. As the initial investigation, a panel of 

different lengths of the linker carrying two OC or guanidino OC 

monomers was designed and synthesized. Furthermore, a primary 

relationship between the distance of two monomers in the 

divalent analogues and the NA inhibition activity is discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Results and discussion 

2.1. Chemical synthesis 

The synthesis of divalent oseltamivir and guanidino 

oseltamivir analogues with different linker lengths were 

illustrated in Scheme 1. At first, OS was treated with di-tert-butyl 

dicarbonate (Boc)2O and further hydrolyzed to obtain the 

corresponding Boc protected carboxylic acid
35

 (OC). Different 

lengths of hydrophobic or hydrophilic azidoalcohols were reacted 

with the acid under typical esterification condition to afford the 

azide moiety 2-9 in reasonable yields for the next Click 

chemistry
36-39

. Meanwhile, the alkyne part was prepared from 

ethylene glycol reacted with propargyl bromide under basic 

condition. With the two desired components in hand,  1, 3 dipolar 

Huisgen cycloaddition (Click reaction) was applied for the dimer 

synthesis. Typically, catalytic quantity of CuSO4·5H2O was 

added to the solution of bis-alkyne scaffold and different azide 

ester in tetrahydrofuran (THF) and water followed by sodium 

ascorbate. After purification by chromatography, the Boc group 

was removed with trifluoroacetic acid (TFA) to afford the final 

divalent OC analogues 10-17. A Boc protected guanidino group 

was introduced by reaction with N, N'-bis-(tert-butoxycarbonyl)-

S-methylisothiourea in the presence of HgCl2 and Et3N to provide 

divalent Boc-guanidino OC derivatives
40

. Treatment with TFA 

afforded free 18-25 in good yield. All intermediates and final 

products were characterized by spectroscopic properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1. Synthesis of divalent OC analogues. Reagents and conditions: (a) (i) (Boc)2O, trimethylamine (Et3N), 98%; (ii) NaOH, 

tetrahydrofuran (THF)/H2O 95%; (b) 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI), 4-dimethylaminopyridine 

(DMAP), N, N-diisopropylethylamine (DIPEA), 85-89%; (c) CuSO4·5H2O, sodium ascorbate (VcNa), THF/H2O; (d) trifluoroacetic acid  

(TFA)/CH2Cl2 1:1; (e) MeSC(=NBoc)NHBoc, HgCl2, Et3N, CH2Cl2, rt, 12 h. 
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2.2. Biological Assays 

With the divalent OC and guanidino OC analogues in hand, 

we evaluated NA inhibition activity using a typical fluorogenic 

substrate 2-(4-methylumbelliferyl)-α-D-N-acetyl neuraminic acid 

(MUNANA) against three viral strains [A/Hecheng, Hunan 

Province/SWL1331/2014(H1N1); A/Puerto Rico/8/1934 (H1N1); 

A/Chicken/Beijing/AT609/2014 (H9N2)] and H7N9 virus like 

particles (VLP)
41

. To compare the inhibition activity 

enhancement, OS and guanidino OS were selected as positive 

control, respectively. The IC50 values of each divalent analogues 

and potency per one corresponding OS monomer (γ)
29

 are 

summarized in Table 1. 

It is gratifying to note that the esterification on the carboxylate 

has little effect on NA inhibition activity, as all of the divalent 

analogues had comparable IC50 to their corresponding monomers. 

Additionally, introduction of the guanidino group increased the 

inhibition activities of   18-25; decreased IC50 values in 

submicromolar than corresponding animo divalent analogues 10-

17 were observed. This is due to the more basic gaunidino group, 

which has strong electrostatic interactions with the acidic peptide 

residues in the active site of NA
42

.  

We were very interested in whether these divalent OC 

analogues exhibit a bidentate binding effect similar to the 

reported dimeric ZA
26, 43-44

 with ten to hundred times decreased 

EC50 or S-sialoside
40

 clusters with ten times decreased IC50 

compared to their corresponding monomers. Based on the X-ray 

crystal structure of influenza NA, it has been demonstrated that 

the distance of two NA active sites in a tetramer or two different 

neighboring tetramers on the same virion is approximately ~50 Å 

and ~30 Å, respectively (Fig. 2.)
19, 26

. Only the dimension of the 

two monomers in the divalent analogues, which matches the NA 

tetramer distribution can improve the binding affinity. To 

measure the distance between the two OC monomers in our 

synthetic dimers, the low-energy conformations of 10-17 and 18-

25 were simulated using Discovery Studio 3.1 and the primary 

relationship between the lengths of the linker and the antiviral 

activity was determined (Table 1.).  

 

a A/Hecheng, Hunan Province/SWL1331/2014(H1N1);  
b A/Puerto Rico/8/1934 (H1N1); 
c A/Chicken/Beijing/AT609/2014 (H9N2);  
d γ=IC50 corresponding monomer/ (2×IC50 divalent analogue). 

 

                               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematic representation of distance between two NA 

monomer active sites on a same virion and the low-energy extended 

conformation of 17. 

 

 

 

 

 

 
Compound 

number 

Distance between 
two OC ananlogs 

monomer (Å) 

IC50 (µM) 

H1N1a (γd) H1N1 b (γ) H7N9 VLP (γ) H9N2 c (γ) 

10 

11 

12 

13 

14 

15 

16 

17 

OS 

 

18 

19 

20 

21 

22 

23 

24 

25 

Guanidino OS  

19.30 
24.60 
25.90 
28.86 
27.48 
32.80 
25.30 
32.28 

 
 

19.70 
24.60 
26.06 
28.98 
27.27 
32.98 
25.50 
31.32 

 

1.10   (1) 
3.63   (0.4) 
0.52   (2) 
3.79   (0.3) 
0.84   (1) 
0.22   (6) 
0.93   (1) 
0.24   (5) 
2.56   (1) 

 
0.24   (4) 
0.13   (8) 
0.59   (2) 
0.10   (10) 
0.21   (5) 
0.32   (3) 
0.10   (10) 
0.08   (12) 
2.01   (1) 

1.30   (2) 
5.41   (0.6) 
0.73   (4) 
4.76   (0.7) 
1.21   (3) 
0.37   (9) 
1.48   (2) 
0.048  (68) 
6.49   (1) 
 
0.31   (9) 
0.17   (17) 
0.71   (4) 
0.13   (22) 
0.27   (11) 
0.51   (6) 
0.16   (18) 
0.13   (22) 
5.87   (1) 

0.73   (1) 
2.10   (0.5) 
0.35   (3) 
1.80   (1) 
0.45   (2) 
0.11   (9) 
0.55   (2) 
0.10   (10) 
2.06   (1) 
 
0.26   (2) 
0.16   (3) 
0.50   (1) 
0.08   (6) 
0.19   (2) 
0.26   (2) 
0.13   (4) 
0.08   (6) 
0.95   (1) 

0.18   (2) 
0.59   (0.6) 
0.11   (3) 
0.71   (0.5) 
0.13   (3) 
0.03   (11) 
0.14   (2) 
0.034  (10) 
0.69   (1) 
 
0.26   (7) 
0.14   (13) 
0.62   (3) 
0.30   (6) 
0.24   (8) 
0.23   (8) 
0.11   (17) 
0.08   (23) 
3.74   (1) 

Table 1. Neuraminidase inhibition activity of divalent OC and guanidino OC analogues 
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OC monomers in the prepared divalent analogues are ranging 

from 20 Å to 33 Å.  In 15, 17 and 25, the intermolecular space of 

the two OC monomeric analogues is ~32 Å, which can bind two 

neighboring NA resulting in bidentate binding effect and have 

stronger inhibition activity against all of the four strains, leading 

to decreased IC50 values. In contrast, the other divalent analogues 

with two OC monomer spacing less than 30 Å is not sufficient to 

achieve the bivalent binding requirement leading to less effective 

NA inhibition activity, which is in agreement with other 

published results
19, 26, 40

. To clearly compare the activity 

enhancement, a γ factor indicates the potency per OC monomer 

was used with OS and guanidino OS as positive control, 

respectively (Table 1). The most potent NA inhibitor 17 exhibits 

approximately 68-fold increase in inhibition against H1N1 strain 

compared with its OS monomer, which further stresses the 

importance of the linker for the dimer attachment. 

3. Conclusions 

We have introduced “cluster effect” principle to prepare a 

panel of divalent OC and guanidino OC ester analogues 
45

 with 

different linker lengths. A primary relationship between the 

length of the linker and NA inhibition activity was identified. 

The appropriate distance between two OS monomers to achieve 

divalent NA active site binding is ~32 Å, which is essential for 

the divalent NA inhibitor design. With these encouraging results, 

we are currently choosing new scaffolds to obtain multi or 

polyvalent OC or guanidino OC conjugates as more potent NA 

inhibitors. Furthermore, the inhibition activities of these synthetic 

dimers on cell or animal level are also under investigation in our 

lab. We believe that this research will provide a basis for 

investigating multivalent OC conjugates not only as therapeutics 

agents for wide strains of influenza virus, but also against drug-

resistant strains. 

4. Experimental 

4.1. General methods 

All the materials and solvents were obtained from commercial 

suppliers and used without further purification. Oseltamivir 

phosphate was purchased from Hangzhou Rongda Pharm & 

Chem Co, Ltd. China. Thin-layer chromatography (TLC) was 

purchased from EMD Co. Ltd. (German). All compounds were 

stained with iodine vapor. Flash column chromatography was 

performed on silica gel 200-300 mesh. All of the final 

compounds were purified using Sephadex
TM

 LH-20 (GE 

Healthcare). NMR spectra were recorded on Bruker AVANCE 

III (400 MHz) instrument. Chemical shifts (δ) were reported in 

parts per million downfield from TMS, the internal standard; J 

values were given in Hertz. The molecular weights of the 

compounds were confirmed by electrospray ionization mass 

spectra (ESI-MS) on a hybrid IT-TOF mass spectrometer 

(Shimadzu LCMS-IT-TOF, Kyoto, Japan). Fluorescence 

intensity was measured using the Synergy
TM

 H1/H1MF 

microplate reader (BioTek Instruments, Inc. USA). 

The influenza viruses were obtained from National Institute for 

Viral Disease Control and Prevention, China CDC and 

propagated in 9 days old embryonated chicken eggs. The 

allantoic fluid was collected, then centrifuged at 3000 rpm/min
 

for 10 min and the supernatant was stored at -80 ℃ before use. 

4.2. Chemistry 

4.2.1. General procedure for the linker attachment  

To a solution of the Boc protected oseltamivir acid
35

 (78 mg, 

0.2 mmol) in CH2Cl2 (2 mL) were added alcohol (0.24 mmol), 

EDCI (91 mg, 0.24 mmol), DIPEA (0.1 mL, 0.6 mmol) and 

DMAP (7.4 mg, 0.02 mmol). The mixture was stirred at room 

temperature for 10 h, diluted with CH2Cl2 and then washed with 

1 M HCl, saturated NaHCO3 and brine. The organic layer was 

dried over Na2SO4, filtered and concentrated under reduced 

pressure. The residue was purified by flash silica gel column 

chromatography to give Boc protected OC monomers with 

different length linkers as pale yellow oil. 

4.2.1.1. 2-azidoethyl (3R, 4R, 5S)-4-acetamido-5-((tert-

butoxycarbonyl) amino)-3-(1-ethylpropoxy)-1-cyclohexene-1-

carboxylate (2) 

According to the general procedure, 2 was synthesized in 

85% yield. 
1
H NMR (400 MHz, CDCl3) δ 6.82 (s, 1H), 6.06 (s, 

1H), 5.22 (s, 1H), 4.31 (t, J = 4.1 Hz, 2H), 4.09–3.95 (m, 2H), 

3.79 (dd, J = 10.2, 5.1 Hz, 1H), 3.55–3.46 (m, 2H), 3.37–3.27 (m, 

1H), 2.77 (dd, J = 6.4, 18.7 Hz, 1H), 2.30 (dd, J = 17.7, 10.0 Hz, 

1H), 1.97 (s, 3H), 1.52–1.44 (m, 4H), 1.41 (s, 9H), 0.87 (q, J = 

7.6 Hz, 6H). 
13

C NMR (100 MHz, CDCl3) δ 170.87, 165.54, 

156.36, 139.10, 128.53, 82.26, 79.67, 75.85, 63.69, 54.46, 49.80, 

49.10, 30.91, 28.33, 26.10, 25.58, 23.34, 9.50, 9.14.  

4.2.1.2. 3-azidopropyl (3R, 4R, 5S)-4-acetamido-5-((tert-

butoxycarbonyl) amino)-3-(1-ethylpropoxy)-1-cyclohexene-1-

carboxylate (3) 

According to the general procedure, 3 was synthesized in 

87% yield. 
1
H NMR (400 MHz, CDCl3) δ 6.72 (s, 1H), 6.40 (br, 

1H), 5.36 (br, 1H), 4.23–4.16 (m, 2H), 4.08–3.94 (m, 2H), 3.81–

3.71 (m, 1H), 3.37 (t, J = 6.6 Hz, 2H), 3.34–3.27 (m, 1H), 2.68 

(d, J = 17.6 Hz, 1H), 2.27 (dd, J = 17.6, 10.1 Hz, 1H), 1.95 (s, 

3H), 1.93–1.88 (m, 2H), 1.48–1.43 (m, 4H), 1.39 (s, 9H), 0.88–

0.81 (m, 6H). 
13

C NMR (100 MHz, CDCl3) δ 170.89, 165.72, 

156.36, 138.33, 128.94, 82.31, 79.65, 75.90, 61.86, 54.51, 49.14, 

48.19, 30.92, 28.35, 28.13, 26.13, 25.72, 23.33, 9.57, 9.21. 

HRMS (ESI): m/z calcd for C22H37N5O6Na [M+Na]
+
: 490.2636, 

found: 490.2624. 

4.2.1.3. 6-azidohexyl (3R, 4R, 5S)-4-acetamido-5-((tert-

butoxycarbonyl) amino)-3-(1-ethylpropoxy)-1-cyclohexene-1-

carboxylate (4) 

According to the general procedure, 4 was synthesized in 

86% yield. 
1
H NMR (400 MHz, CDCl3) δ 6.69 (s, 1H), 6.47 (br, 

1H), 5.38 (br, 1H), 4.09–3.97 (m, 4H), 3.72 (br, 1H), 3.30–3.22 

(m, 3H), 2.65 (d, J = 17.4 Hz, 1H), 2.25 (dd, J = 17.4, 10.2 Hz, 

1H), 1.93 (s, 3H), 1.62–1.37 (m, 21H), 0.90–0.73 (m, 6H). 
13

C 

NMR (100 MHz, CDCl3) δ 170.87, 165.90, 156.33, 137.89, 

129.16, 82.24, 79.44, 75.83, 64.72, 54.55, 51.29, 49.31, 30.84, 

28.71, 28.43, 28.32, 26.35, 26.13, 25.71, 25.54, 23.24, 9.54, 9.21. 

HRMS (ESI): m/z calcd for C25H43N5O6Na [M+Na]
+
: 532.3106, 

found: 532.3091. 

4.2.1.4. 12-azidododecyl (3R, 4R, 5S)-4-acetamido-5-((tert-

butoxycarbonyl) amino)-3-(1-ethylpropoxy)-1-cyclohexene-1-

carboxylate (5) 

According to the general procedure, 5 was synthesized in 

86% yield. 
1
H NMR (400 MHz, CDCl3) δ 6.73 (s, 1H), 6.22 (br, 

1H), 5.25 (s, 1H), 4.12–3.95 (m, 4H), 3.80–3.71 (m, 1H), 3.36–

3.28 (m, 1H), 3.23 (t, J = 6.9 Hz, 2H), 2.69 (dd, J = 17.7, 4.1 Hz, 

1H), 2.26 (dd, J = 19.5, 11.8 Hz, 1H), 1.95 (s, 3H), 1.66–1.52 (m, 

4H), 1.51–1.43 (m, 4H), 1.39 (s, 9H), 1.31–1.27 (m, 16H), 0.88–

0.82 (m, 6H). 
13

C NMR (100 MHz, CDCl3) δ 170.85, 165.98, 

156.34, 137.69, 129.29, 82.20, 79.54, 77.39, 77.07, 76.75, 75.94, 

65.07, 54.50, 51.47, 49.21, 30.94, 29.51, 29.48, 29.44, 29.24, 

29.13, 28.82, 28.58, 28.32, 26.69, 26.14, 25.95, 25.73, 23.30, 

9.54, 9.21. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT4.2.1.5. 2-(2-azidoethoxy)-ethyl (3R, 4R, 5S)-4-acetamido-5-

((tert-butoxycarbonyl) amino)-3-(1-ethylpropoxy)-1-cyclohexene-

1-carboxylate (6) 

According to the general procedure, 6 was synthesized in 

89% yield. 
1
H NMR (400 MHz, CDCl3) δ 6.81 (s, 1H), 5.95 (br, 

1H), 5.18 (br, 1H), 4.31 (br, 2H), 4.09–3.94 (m, 2H), 3.79–3.65 

(m, 6H), 3.40–3.33 (m, 3H), 2.73 (d, J = 17.6 Hz, 1H), 2.30 (dd, 

J = 17.6, 9.6 Hz, 1H), 1.96 (s, 3H), 1.49–1.41 (m, 14H), 0.87 (q, 

J = 7.5 Hz, 6H). 
13

C NMR (100 MHz, CDCl3) δ 170.75, 165.83, 

156.27, 138.18, 128.92, 82.13, 79.60, 75.77, 70.07, 69.02, 63.87, 

54.22, 50.60, 48.89, 30.79, 28.29, 26.04, 25.62, 23.31, 9.47, 9.14. 

HRMS (ESI): m/z calcd for C23H39N5O7Na [M+Na]
+
: 520.2742, 

found: 520.2726. 

4.2.1.6. 2-(2-(2-azidoethoxy)ethoxy)ethyl (3R, 4R, 5S)-4-

acetamido-5-((tert-butoxycarbonyl) amino)-3-(1-ethylpropoxy)-

1-cyclohexene-1-carboxylate (7) 

According to the general procedure, 7 was synthesized in 

86% yield. 
1
H NMR (400 MHz, CDCl3) δ 6.82 (s, 1H), 5.87 (d, J 

= 9.1 Hz, 1H), 5.16 (d, J = 9.1 Hz, 1H), 4.30 (br, 2H), 4.07 (dd, J 

= 18.2, 9.1 Hz, 1H), 3.96–3.94 (m, 1H), 3.83–3.73 (m, 3H), 

3.68– 3.65 (m, 6H), 3.45–3.26 (m, 3H), 2.74 (dd, J = 17.7, 4.4 

Hz, 1H), 2.31 (dd, J = 17.3, 9.5 Hz, 1H), 1.98 (s, 3H), 1.52–1.41 

(m, 13H), 0.89 (q, J = 7.6 Hz, 6H). 
13

C NMR (100 MHz, CDCl3) 

δ 170.82, 165.89, 156.33, 138.15, 129.04, 82.19, 79.70, 75.89, 

70.71, 70.70, 70.14, 69.16, 64.11, 54.34, 50.68, 48.91, 30.91, 

28.33, 26.09, 25.69, 23.36, 9.53, 9.19. HRMS (ESI): m/z calcd 

for C25H43N5O8Na [M+Na]
+
: 564.3004, found: 564.2997. 

4.2.1.7. 14-azido-3,6,9,12-tetraoxatetradecyl (3R, 4R, 5S)-4-

acetamido-5-((tert-butoxycarbonyl) amino)-3-(1-ethylpropoxy)-

1-cyclohexene-1-carboxylate (8)  

According to the general procedure, 8 was synthesized in 

87% yield. 
1
H NMR (400 MHz, CDCl3) δ 6.81 (s, 1H), 5.80 (d, J 

= 9.1 Hz, 1H), 5.14 (d, J = 9.1 Hz, 1H), 4.29 (t, J = 4.6 Hz, 2H), 

4.06 (dd, J = 18.3, 9.3 Hz, 1H), 3.95 (br, 1H), 3.83–3.75 (m, 1H), 

3.72 (t, J = 4.68 Hz, 2H), 3.68–3.64 (m, 14H), 3.39–3.33 (m, 

3H), 2.73 (dd, J = 17.7, 4.9 Hz, 1H), 2.30 (dd, J = 17.7, 9.8 Hz, 

1H), 1.97 (s, 3H), 1.55–1.44 (m, 4H), 1.41 (s, 9H), 0.88 (q, J = 

7.4 Hz, 6H). 
13

C NMR (100 MHz, CDCl3) δ 170.78, 165.90, 

156.32, 138.12, 129.06, 82.17, 79.69, 77.24, 75.90, 70.70, 70.67, 

70.63, 70.60, 70.03, 69.06, 64.13, 54.32, 50.70, 48.86, 30.89, 

28.33, 26.09, 25.68, 23.38, 9.53, 9.19. 

4.2.1.8. 17-azido-3,6,9,12,15-pentaoxaheptadecyl (3R, 4R, 5S)-4-

acetamido-5-((tert-butoxycarbonyl) amino)-3-(1-ethylpropoxy)-

1-cyclohexene-1-carboxylate (9)  

According to the general procedure, 9 was synthesized in 

85% yield. 
1
H NMR (400 MHz, CDCl3) δ 6.80 (s, 1H), 5.87 (d, J 

= 8.9 Hz, 1H), 5.18 (d, J = 9.1 Hz, 1H), 4.28 (t, J = 4.64 Hz, 2H), 

4.05 (dd, J = 18.2, 9.2 Hz, 1H), 3.95 (br, 1H), 3.82–3.74 (m, 1H), 

3.71 (t, J = 4.64 Hz, 2H), 3.67–3.63 (m, 18H), 3.38–3.33 (m, 

3H), 2.72 (dd, J = 17.8, 4.7 Hz, 1H), 2.29 (dd, J = 17.8, 9.5 Hz, 

1H), 1.96 (s, 3H), 1.53–1.44 (m, 4H), 1.40 (s, 9H), 0.87 (q, J = 

7.3 Hz, 6H). 
13

C NMR (100 MHz, CDCl3) δ 170.76, 165.89, 

156.29, 138.09, 129.05, 82.16, 79.63, 77.25, 75.84, 70.69, 70.66, 

70.63, 70.62, 70.60, 70.58, 70.56, 70.02, 69.05, 64.12, 54.28, 

50.69, 48.88, 30.83, 28.33, 26.08, 25.69, 23.36, 9.52, 9.20. 

4.2.2. General procedure for the preparation of divalent 

Oseltamivir derivatives  

To a stirring solution of azide (2.5 eq.) and 1, 2-bis (prop-2-

yn-1-yloxy) ethane (1eq) in THF/ water (1:1), CuSO4 (cat.) was 

added along with sodium L-ascorbate (cat.). The reaction was 

stirred at r.t. for 12 h. Solvent was removed in vacuum and the 

residue was purified using flash column chromatography. The 

copper complex in 13 and 17 were further absorbed by 

CupriSorb
®
. After the purification step, TFA (5 ml) was added to 

a solution of click reaction product in CH2Cl2 (5 ml). The 

reaction mixture was stirred at 0 
o
C for 10 mins and another 1 h 

at room temperature, and then the solvent was evaporated. The 

resulting syrup was dissolved in distilled water and purified by 

Sephadex
®
 LH-20 then lyophilisation to afford divalent 

Oseltamivir derivatives as foam and stored at 4 °C until use. No 

[M+Cu] ion peak of the final product in the mass spectrum was 

detected, and the potential content of Cu was not analyzed. 

4.2.2.1. 1, 2-Bis-[[(((3R, 4R, 5S)-4-acetamido-5- amino-3-(1-

ethylpropoxy)-1-cyclohexene-1-carboxyl)oxy)ethyl]-1H-1,2,3-

triazol-4-yl-methoxyl]ethane (10) 

According to the general procedure, 10 was synthesized in 

61% yield. 
1
H NMR (400 MHz, D2O): δ 7.98 (s, 2H), 6.59 (s, 

2H), 4.54–4.51 (m, 5H), 4.17 (d, J = 8.8 Hz, 2H), 3.93–3.88 (m, 

2H), 3.59 (s, 4H), 3.48–3.36 (m, 4H), 2.76 (dd, J = 17.2, 5.5 Hz, 

2H), 2.37–2.29 (m, 2H), 1.97 (s, 6H), 1.45–1.29 (m, 8H), 0.71 (t, 

J = 7.3 Hz, 12H). 
13

C NMR (100 MHz, D2O): δ 175.26, 166.13, 

144.22, 138.77, 126.75, 125.23, 84.16, 75.01, 68.84, 63.28, 

63.02, 52.55, 49.26, 49.03, 28.05, 25.47, 25.16, 22.37, 8.65, 8.58, 

8.47, 8.41. HRMS (ESI): m/z calcd for C40H66N10O10 [M+2H]
2+

: 

423.2476, found: 423.2467. 

4.2.2.2. 1, 2-Bis-[[(((3R, 4R, 5S)-4-acetamido-5- amino-3-(1-

ethylpropoxy)-1-cyclohexene-1-carboxyl)oxy)propyl]-1H-1,2,3-

triazol-4-yl-methoxyl]ethane (11) 

According to the general procedure, 11 was synthesized in 

51% yield. 
1
H NMR (400 MHz, D2O): δ 7.97 (s, 2H), 6.64 (s, 

2H), 4.56 (s, 2H), 4.48 (t, J = 6.52 Hz, 3H), 4.21–4.12 (m, 6H), 

3.93 (dd, J = 9.2, 11.9 Hz, 2H), 3.62 (s, 4H), 3.51–3.41 (m, 4H), 

2.79 (dd, J = 17.3, 5.5 Hz, 2H), 2.39–2.32 (m, 2H), 2.28–2.22 (m, 

4H), 1.98 (s, 6H), 1.48–1.34 (m, 8H), 0.80–0.72 (m, 12H). 
13

C 

NMR (100 MHz, D2O): δ 175.30, 166.71, 162.99, 162.63, 

138.37, 127.08, 117.79, 114.89, 84.13, 75.01, 69.02, 62.99, 

62.85, 52.61, 49.08, 47.95, 28.19, 28.07, 25.51, 25.18, 22.40, 

8.65, 8.48. HRMS (ESI) m/z calcd for C42H70N10O10 [M+2H]
2+

 

437.2633, found 437.2624. 

4.2.2.3. 1, 2-Bis-[[(((3R, 4R, 5S)-4-acetamido-5- amino-3-(1-

ethylpropoxy)-1-cyclohexene-1-carboxyl)oxy)hexyl]-1H-1,2,3-

triazol-4-yl-methoxyl]ethane (12) 

According to the general procedure, 12 was synthesized in 

55% yield. 
1
H NMR (400 MHz, D2O): δ 7.93 (s, 2H), 6.75 (s, 

2H), 4.56 (s, 2H), 4.36–4.24 (m, 6H), 4.08–3.94 (m, 6H), 3.62–

3.44 (m, 10H), 2.87 (d, J = 16.9 Hz, 2H), 2.43 (br, 2H), 2.02 (s, 

6H), 1.82 (br, 4H), 1.57–1.21 (m, 22H), 0.77 (s, 12H). 
13

C NMR 

(100 MHz, D2O): δ 175.27, 167.24, 138.07, 127.49, 84.08, 75.13, 

68.69, 65.87, 63.01, 52.77, 50.32, 49.14, 29.25, 25.50, 25.21, 

25.10, 24.64, 22.37, 8.66, 8.46. HRMS (ESI) m/z calcd for 

C48H82N10O10 [M+2H]
2+

 479.3102, found 479.3098. 

4.2.2.4. 1, 2-Bis-[[(((3R, 4R, 5S)-4-acetamido-5- amino-3-(1-

ethylpropoxy)-1-cyclohexene-1-carboxyl)oxy) dodecyl]-1H-1,2,3-

triazol-4-yl-methoxyl]ethane (13) 

According to the general procedure, 13 was synthesized in 

52% yield. 
1
H NMR (400 MHz, CDCl3): δ 7.56 (s, 2H), 6.77 (s, 

2H), 6.34 (br, 2H), 4.67 (s, 4H), 4.32 (t, J = 7.2 Hz, 4H), 4.27–

4.04 (m, 5H), 3.70–3.64 (m, 5H), 3.35–3.32 (m, 3H), 2.79 (br, 

2H), 2.21 (br, 2H), 2.03 (s, 6H), 1.90–1.86 (m, 4H), 1.68–1.59 

(m, 4H), 1.54–1.44 (m, 8H), 1.30–1.25 (m, 36H), 0.91–0.85 (m, 

16H). 
13

C NMR (100 MHz, CDCl3): δ 171.44, 166.30, 144.92, 

137.93, 129.21, 122.48, 81.93, 69.69, 65.02, 64.68, 50.38, 30.27, 

29.70, 29.40, 29.37, 29.30, 29.12, 28.94, 28.56, 26.48, 26.23, 

25.90, 25.74, 9.56, 9.33. HRMS (ESI) m/z calcd for 

C60H106N10O10 [M+2H]
2+

 563.4041, found 563.4038 
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ACCEPTED MANUSCRIPT4.2.2.5. 1, 2-Bis-[[(((3R, 4R, 5S)-4-acetamido-5- amino-3-(1-

ethylpropoxy)-1-cyclohexene-1-carboxyl)oxy) -2-(2-ethoxy)-

ethyl]-1H-1,2,3-triazol-4-yl-methoxyl]ethane (14) 

According to the general procedure, 14 was synthesized in 

55% yield. 
1
H NMR (400 MHz, D2O): δ 7.93 (s, 2H), 6.69 (s, 

2H), 4.69–4.36 (m, 4H), 4.21–4.12 (m, 6H), 3.94–3.88 (m, 7H), 

3.65– 3.40 (m, 14H), 2.80 (dd, J = 17.1, 4.8 Hz, 2H), 2.39 (d, J = 

10.8 Hz, 2H), 1.98 (s, 6H), 1.46–1.34 (m, 9H), 0.78–0.70 (m, 

12H).
 13

C NMR(100 MHz, D2O): δ 175.22, 166.62, 138.45, 

126.98, 125.25, 84.10, 74.96, 68.78, 68.28, 64.44, 63.04, 52.50, 

50.05, 49.04, 28.05, 25.41, 25.05, 22.31, 8.55, 8.39. HRMS (ESI) 

m/z calcd for C44H74N10O12 [M+2H]
2+

 467.2738, found 467.2740. 

4.2.2.6. 1, 2-Bis-[[(((3R, 4R, 5S)-4-acetamido-5- amino-3-(1-

ethylpropoxy)-1-cyclohexene-1-carboxyl)oxy) 2-(2-(2-

ethoxy)ethoxy)ethyl]-1H-1,2,3-triazol-4-yl-methoxyl]ethane, (15)  

According to the general procedure, 15 was synthesized in 

50% yield. 
1
H NMR (400 MHz, D2O): δ 7.96 (s, 2H), 6.75 (s, 

2H), 4.64–4.44 (m, 6H), 4.28–4.10 (m, 6H), 3.94 (dd, J = 11.7, 

9.0 Hz, 2H), 3.88–3.80 (m, 4H), 3.61–3.39 (m, 22H), 2.84 (dd, J 

= 17.2, 5.4 Hz, 2H), 2.41 (dd, J = 10.3, 6.9 Hz, 2H), 1.97 (s, 6H), 

1.45–1.32 (m, 9H), 0.73 (q, J = 7.3 Hz, 12H). 
13

C NMR (100 

MHz, D2O): δ 175.27, 166.86, 143.94, 138.49, 127.19, 125.42, 

84.16, 75.05, 69.75, 69.66, 68.91, 68.75, 68.47, 64.67, 63.11, 

52.65, 50.10, 49.11, 28.19, 25.47, 25.09, 22.38, 8.60, 8.45. 

HRMS (ESI) m/e calcd for C48H82N10O14 [M+2H]
2+ 

511.3001, 

found 511.2987. 

4.2.2.7. 1, 2-Bis-[[3-(((3R, 4R, 5S)-4-acetamido-5- amino-3-(1-

ethylpropoxy)-1-cyclohexene-1-carboxyl)oxy)-3,6,9,12-

tetraoxatetradecyl]-1H-1,2,3-triazol-4-yl-methoxyl ]ethane (16) 

According to the general procedure, 16 was synthesized in 

54% yield. 
1
H NMR (400 MHz, D2O): δ 7.97 (s, 1H), 6.78 (s, 

1H), 4.58–4.50 (m, 5H), 4.25–4.21 (m, 6H), 3.94 (dd, J = 11.6, 

9.1 Hz, 2H), 3.85 (t, J = 4.96 Hz, 4H), 3.72–3.70 (m, 5H), 3.61–

3.41 (m, 35H), 2.86 (dd, J = 17.2, 5.4 Hz, 2H), 2.45–2.38 (m, 

2H), 1.98 (s, 6H), 1.48–1.31 (m, 8H), 0.78–0.71 (m, 12H).
 13

C 

NMR (100 MHz, D2O): δ 175.20, 166.87, 143.82, 138.43, 

127.16, 125.44, 84.14, 75.03, 69.74, 69.61, 69.56, 69.54, 69.43, 

68.84, 68.70, 68.47, 64.60, 63.03, 52.63, 49.99, 49.05, 28.19, 

25.42, 25.03, 22.32, 8.57, 8.40. HRMS (ESI) m/z calcd for 

C56H98N10O18 [M+2H]
2+

 599.3525, found 599.3520. 

4.2.2.8. 1, 2-Bis-[[(((3R, 4R, 5S)-4-acetamido-5- amino-3-(1-

ethylpropoxy)-1-cyclohexene-1-carboxyl)oxy)-3,6,9,12,15-

pentaoxaheptadecyl]-1H-1,2,3-triazol-4-yl-methoxyl]ethane (17) 

According to the general procedure, 17 was synthesized in 

50% yield. 
1
H NMR (400 MHz, D2O): δ 7.97 (s, 2H), 6.79 (s, 

2H), 4.58–4.51 (m, 5H), 4.27–4.22 (m, 6H), 3.96 (dd, J = 11.6, 

9.0 Hz, 2H), 3.92–3.79 (m, 6H), 3.78–3.66 (m, 6H), 3.61–3.42 

(m, 52H), 2.87 (dd, J = 17.1, 5.1 Hz, 2H), 2.44 (dd, J = 10.1, 7.0 

Hz, 2H), 1.98 (s, 6H), 1.48–1.31 (m, 8H), 0.84–0.64 (m, 12H).
 

13
C NMR(100 MHz, D2O): δ 175.26, 166.92, 143.93, 138.49, 

127.17, 125.48, 84.17, 75.06, 69.79, 69.68, 69.61, 69.50, 68.90, 

68.76, 68.53, 64.67, 63.10, 52.59, 50.05, 49.12, 28.13, 25.49, 

25.11, 22.38, 8.63, 8.46. HRMS (ESI) m/z calcd for 

C60H106N10O20 [M+2H]
2+

 643.3787, found 643.3774. 

4.2.3. General procedure for the preparation of divalent 

guanidino oseltamivir derivatives  

Divalent Oseltamivir analogs were dissolved in CH2Cl2. 

TFA/CH2Cl2 (1:1) was added dropwise under 0 ℃, the reaction 

mixture was stirred at room temperature for 3 h. The solvent was 

evaporated to dryness and the crude products were dissolved in 

CH2Cl2 (5 ml), Et3N (1 mL) was added and the solution was 

stirred at rt for 30 mins. HgCl2 (0.6 eq.) and 1, 3-Bis (tert-

butoxycarbonyl)-2-methyl-2-thiopseudourea (3 eq.) was added. 

The reaction was stirred at r.t. for 12 h. The reaction mixture was 

washed with HCl (1M, 25 mL), extracted with CH2Cl2 (3×10 mL) 

and the product was purified by column chromatography to give 

the Boc protected divalent guanidino Oseltamivir derivatives, 

which were further dissolved in CH2Cl2. CH2Cl2/TFA (1:1) 
was added dropwise under 0 ℃, the reaction mixture was 
stirred at room temperature for 3 h. The solvent was 
evaporated to dryness and the crude products were purified by 
Sephendex

TM
 LH-20. No [M+Cu] or [M+Hg] ion peak of the 

final product in the mass spectrum was detected, and the 

potential content of Cu or Hg was not analyzed. 

4.2.3.1. 1, 2-Bis-[[(((3R, 4R, 5S)-4-acetamido-5- guanidino-3-(1-

ethylpropoxy)-1-cyclohexene-1-carboxyl)oxy)ethyl]-1H-1,2,3-

triazol-4-yl-methoxyl]ethane (18) 

According to the general procedure, 18 was synthesized in 

52% yield. 
1
H NMR (400 MHz, D2O): δ 7.98 (s, 2H), 6.57 (s, 

2H), 4.53–4.49 (m, 5H), 4.17 (d, J = 8.6 Hz, 2H), 3.79–3.60 (m, 

5H), 3.57 (s, 4H), 3.39–3.34 (m, 2H), 2.63 (dd, J = 17.5, 4.9 Hz, 

2H), 2.26–2.16 (m, 2H), 1.92 (s, 6H), 1.45–1.25 (m, 9H), 0.71 (q, 

J = 7.1 Hz, 12H). 
13

C NMR (100 MHz, D2O) δ 174.71, 166.41, 

156.75, 138.61, 127.87, 125.24, 84.14, 75.29, 68.71, 63.12, 

62.92, 54.74, 50.44, 49.23, 46.63, 29.73, 25.56, 25.23, 21.93, 

8.59, 8.50, 8.18. HRMS (ESI) m/z calcd for C42H70N14O10 

[M+2H]
2+

: 465.2694, found: 465.2699. 

4.2.3.2. 1, 2-Bis-[[(((3R, 4R, 5S)-4-acetamido-5-guanidino -3-(1-

ethylpropoxy)-1-cyclohexene-1-carboxyl)oxy)propyl]-1H-1,2,3-

triazol-4-yl-methoxyl]ethane (19) 

According to the general procedure, 19 was synthesized in 

51% yield. 
1
H NMR (400 MHz, D2O) δ 7.94 (s, 2H), 6.59 (s, 2H), 

4.48 (s, 2H), 4.46 (t, J = 6.3 Hz, 3H), 4.19 (br, 2H), 4.10 (t, J = 

5.6 Hz, 4H), 3.79–3.65 (m, 5H), 3.61 (s, 4H), 3.41–3.38 (m, 2H), 

2.60 (dd, J = 17.4, 4.9 Hz, 2H), 2.26–2.15 (m, 6H), 1.93 (s, 6H), 

1.47–1.30 (m, 8H), 0.78–0.71 (m, 12H). 
13

C NMR (100 MHz, 

D2O) δ 174.78, 167.12, 156.83, 138.23, 128.30, 84.12, 75.31, 

68.96, 63.11, 62.09, 54.90, 50.53, 47.96, 29.79, 28.18, 25.66, 

25.31, 22.02, 8.65, 8.56. HRMS (ESI) m/z calcd for 

C44H74N14O10 [M+2H]
2+

: 479.2851, found: 479.2861. 

4.2.3.3. 1, 2-Bis-[[(((3R, 4R, 5S)-4-acetamido-5-guanidino -3-(1-

ethylpropoxy)-1-cyclohexene-1-carboxyl)oxy)hexyl]-1H-1,2,3-

triazol-4-yl-methoxyl]ethane (20) 

According to the general procedure, 20 was synthesized in 

54% yield. 
1
H NMR (400 MHz, D2O) δ 6.68 (s, 3H), 4.47 (br, 

2H), 4.34 (br, 4H), 4.22 (d, J = 8.0 Hz, 2H), 4.06– 3.99 (m, 4H), 

3.82–3.69 (m, 9H), 3.42–3.38 (m, 2H), 2.73 (dd, J = 17.5, 4.4 Hz, 

2H), 2.31–2.23 (m, 2H), 1.93 (s, 6H), 1.80 (br, 4H), 1.52–1.14 

(m, 21H), 0.73 (q, J = 7.3 Hz, 12H).
 13

C NMR (100 MHz, D2O): 

δ 174.81, 167.61, 156.89, 138.03, 128.66, 84.05, 75.43, 65.83, 

54.93, 50.64, 29.98, 29.14, 27.50, 25.70, 25.39, 25.17, 24.68, 

22.05, 8.72, 8.58. HRMS (ESI) m/z calcd for C50H86N14O10 

[M+2H]
2+

: 521.3320, found: 521.3338. 

4.2.3.4. 1, 2-Bis-[[(((3R, 4R, 5S)-4-acetamido-5-guanidino -3-(1-

ethylpropoxy)-1-cyclohexene-1-carboxyl)oxy) dodecyl]-1H-1,2,3-

triazol-4-yl-methoxyl]ethane (21) 

According to the general procedure, 21 was synthesized in 

52% yield. 
1
H NMR (400 MHz, MeOD) δ 7.97 (s, 1H), 6.82 (s, 

2H), 4.62 (s, 4H), 4.39 (t, J = 7.1 Hz, 4H), 4.28 (br, 2H), 4.16 (q, 

J = 6.3 Hz, 4H), 3.91 (br, 4H), 3.46–3.40 (m, 2H), 3.31–3.30 (m, 

3H), 2.90–2.78 (m, 2H), 2.40–2.29 (m, 2H), 1.99 (s, 6H), 1.92–

1.85 (m, 4H), 1.70–1.64 (m, 4H), 1.54–1.49 (m, 8H), 1.28 (br, 

34H), 0.94–0.87 (m, 12H). 
13

C NMR (100 MHz, MeOD) δ 

172.75, 165.83, 157.17, 144.51, 137.57, 128.15, 123.61, 82.38, 

74.69, 69.33, 64.85, 63.62, 54.46, 50.31, 49.97, 29.96, 29.87, 

29.21, 29.17, 29.09, 28.64, 28.30, 26.05, 25.88, 25.70, 25.52, 
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[M+2H]
2+

: 605.4259, found: 605.4239. 

4.2.3.5. 1, 2-Bis-[[(((3R, 4R, 5S)-4-acetamido-5-guanidino -3-(1-

ethylpropoxy)-1-cyclohexene-1-carboxyl)oxy) -2-(2-ethoxy)-

ethyl]-1H-1,2,3-triazol-4-yl-methoxyl]ethane (22) 

According to the general procedure, 22 was synthesized in 

51% yield. 
1
H NMR (400 MHz, D2O) δ 8.13 (br, 1H), 6.66 (s, 

2H), 4.52 (br, 4H), 4.22 (d, J = 8.4 Hz, 2H), 4.12 (br, 4H), 3.98–

3.53 (m, 17H), 3.44–3.38 (m, 2H), 2.66 (q, J = 4.6 Hz, 2H), 2.65 

(dd, J = 4.8, 17.6 Hz, 2H), 2.27–2.20 (m, 2H), 1.93 (s, 6H), 1.48–

1.30 (m, 8H), 1.17 (t, J = 7.3 Hz, 2H), 0.74 (q, J = 7.5 Hz, 12H). 
13

C NMR (100 MHz, D2O) δ 174.72, 167.01, 156.79, 138.33, 

128.20, 84.11, 75.28, 68.71, 68.28, 64.36, 54.83, 50.50, 46.63, 

29.78, 25.58, 25.21, 21.94, 8.56, 8.50, 8.18. HRMS (ESI) m/z 

calcd for C46H78N14O12 [M+2H]
2+

: 509.2956, found: 509.2955. 

4.2.3.6. 1, 2-Bis-[[(((3R, 4R, 5S)-4-acetamido-5-guanidino -3-(1-

ethylpropoxy)-1-cyclohexene-1-carboxyl)oxy) 2-(2-(2-

ethoxy)ethoxy)ethyl]-1H-1,2,3-triazol-4-yl-methoxyl]ethane (23)  

According to the general procedure, 23 was synthesized in 

50% yield. 
1
H NMR (D2O, 400 MHz) δ 6.71 (br, 3H), 4.77 (br, 

4H), 4.52 (br, 4H), 4.23–4.11 (m, 8H), 3.86–3.53 (m, 20H), 

3.43–3.48 (m, 2H), 2.73 (d, J = 12.9 Hz, 2H), 2.30 (br, 2H), 1.92 

(s, 6H), 1.52–1.29 (m, 13H), 0.83–0.64 (m, 12H).
 13

C NMR 

(D2O, 100 MHz) δ 174.78, 167.25, 156.84, 138.38, 128.38, 

84.16, 75.36, 69.77, 69.66, 68.96, 68.75, 68.47, 64.59, 63.13, 

54.87, 50.58, 50.14, 29.92, 25.64, 25.27, 22.02, 8.63, 8.55. 

HRMS (ESI) m/z calcd for C50H86N14O14 [M+2H]
2+

: 553.3218, 

found: 553.3210. 

4.2.3.7. 1, 2-Bis-[[3-(((3R, 4R, 5S)-4-acetamido-5-guanidino -3-

(1-ethylpropoxy)-1-cyclohexene-1-carboxyl)oxy)-3,6,9,12-

tetraoxatetradecyl]-1H-1,2,3-triazol-4-yl-methoxyl ]ethane (24) 

According to the general procedure, 24 was synthesized in 

48% yield. 
1
H NMR (D2O, 400 MHz) δ 8.02 (br, 2H), 6.75 (s, 

2H), 4.55–4.52 (m, 4H), 4.24 (br, 6H), 3.86–3.42 (m, 44H), 2.77 

(d, J = 17.3 Hz, 2H), 2.35–2.28 (m, 2H), 1.96 (s, 6H), 1.52–1.27 

(m, 9H), 0.78–0.71 (m, 12H).
 13

C NMR (D2O, 100 MHz) δ 

174.77, 167.33, 156.84, 138.37, 128.41, 84.16, 75.38, 69.82, 

69.70, 69.61, 69.52, 68.95, 68.75, 68.53, 64.62, 54.88, 50.58, 

50.12, 29.91, 25.65, 25.28, 22.02, 8.65, 8.57. HRMS (ESI) m/z 

calcd for C58H102N14O18 [M+2H]
2+

: 641.3743, found: 641.3755. 

4.2.3.8. 1, 2-Bis-[[(((3R, 4R, 5S)-4-acetamido-5-guanidino -3-(1-

ethylpropoxy)-1-cyclohexene-1-carboxyl)oxy)-3,6,9,12,15-

pentaoxaheptadecyl]-1H-1,2,3-triazol-4-yl-methoxyl]ethane (25) 

According to the general procedure, 25 was synthesized in 

50% yield. 
1
H NMR (D2O, 400 MHz): δ 7.97 (s, 1H), 6.74 (s, 2H), 

4.58–4.50 (m, 5H), 4.23 (br, 7H), 3.86–3.70 (m, 16H), 3.60–3.05 

(m, 54H), 3.72 (q, J = 7.3 Hz, 6H), 2.76 (dd, J = 17.4, 4.3 Hz, 

2H), 2.39–2.24 (m, 2H), 1.92 (s, 6H), 1.46–1.29 (m, 9H), 1.16 (t, 

J = 7.3 Hz, 9H), 0.78–0.70 (m, 12H);
 13

C NMR (D2O ,100 MHz): 

δ 174.69, 167.23, 163.11, 162.76, 156.76, 138.34, 128.34, 125.46, 

117.80, 114.90, 84.12, 75.33, 69.74, 69.63, 69.57, 69.53, 69.46, 

68.86, 68.71, 68.46, 64.54, 63.05, 54.82, 50.52, 50.00, 46.63, 

29.87, 25.60, 25.22, 21.96, 8.61, 8.19. HRMS (ESI) m/z calcd for 

C62H110N14O20 [M+2H]
2+

: 685.4005, found: 685.4022. 

4.3. Neuraminidase Inhibition Assay  

The virus used as the source of NAs is inactivated by the 

addition of β-propiolactone (β-PL). Enzyme inhibition assays 

were measured using 4-methylumbelliferyl -α-D-N –acetylneura- 

minic acid sodium salt (4-MUNANA) in the enzyme buffer (100 

mM sodium acetate pH 5.5 and 10 mM CaCl2) as the substrate.
 

All compounds were dissolved in buffer and diluted to the 

corresponding concentrations. The enzyme inhibition assay was 

conducted in 384-well plates containing 15 μL diluted virus, 15 

μL compounds in the buffer. The mixture was incubated for 30 

min at 37 
o
C, and then added with 30 μL 4-MUNANA substrate 

per well in the buffer. The enzymatic reactions were carried out 

for 2 hours at 37 
o
C. The fluorescent signal was monitored using 

the kinetics function of Synergy
TM

 H1/H1MF microplate reader 

with excitation and emission wavelengths of 360 and 440 nm, 

respectively. The buffer instead of the inhibitor was used as 

control and the concentration of the virus was determined as the 

hydrolysis reaction was completed in 30 min and the final 

fluorescent unit (FU) is stable at 10000.  The IC50 was calculated 

as the concentration of inhibitor resulting in a 50% reduction in 

FU compared to the control. 
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