

Article

Palladium-Catalyzed Enantioselective Intramolecular Dearomative Heck Reaction

Xiang Li, Bo Zhou, Run-Ze Yang, Fu-Ming Yang, Ren-Xiao Liang, Ren-Rong Liu, and Yi-Xia Jia

J. Am. Chem. Soc., Just Accepted Manuscript • Publication Date (Web): 26 Sep 2018

Downloaded from http://pubs.acs.org on September 26, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Palladium-Catalyzed Enantioselective Intramolecular Dearomative Heck Reaction

Xiang Li,[‡] Bo Zhou,[‡] Run-Ze Yang,[‡] Fu-Ming Yang, Ren-Xiao Liang, Ren-Rong Liu, and Yi-Xia Jia*

College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road 18[#], Hangzhou 310014, China

ABSTRACT: Enantioselective intramolecular dearomative Heck reactions have been developed by Pd-catalyzed crosscoupling of aryl halides or aryl triflates with the internal C=C bond of indoles, benzofurans, pyrroles, and furans. A variety of structurally unique spiroheterocycles and benzofused heterocycles having N/O-substituted quaternary carbon stereocenters and exocyclic olefin moieties were afforded in moderate to excellent yields with good to excellent enantioselectivities, showing a broad scope of the present protocol. A series of new BINOL- and H8-BINOL-based phosphoramidite ligands were synthesized and proved to be efficient chiral ligands in the reactions of C2-tethered substrates to form spiroheterocycles. (*S*)-SEGPHOS turned out to be a good ligand for the reaction delivering benzofused indolines and pyrrolines. Synthetic applications based on transformations of the exocyclic double bonds were realized without loss of enantiopurities, including hydrogenation, hydroborylation, and stereospecific ring-expanding rearrangement.

Introduction

Heck reaction, the cross-coupling of organohalides and olefins to form new alkene derivatives, represents one of the most important carbon-carbon forming reactions, which has been extensively applied in organic synthesis.^{1,2} The asymmetric intramolecular Heck reaction, pioneered by Shibasaki and Overman in 1989,3 has been intensely studied in the past few decades and shows an important role in the synthesis of natural products (Scheme 1a).⁴ Considerable advances have also been achieved for enantioselective intermolecular Heck reactions since Havashi and co-workers reported the first example of arylation of cyclic olefin in 1991.⁵ From then on, a range of Heck reactions of cyclic olefins have been realized based on the development of new chiral ligands.^{4,6} More recently, by employing a redox-relay strategy Sigman and co-workers have developed a series of highly enantioselective intermolecular Heck reactions of acyclic olefins with aryldiazonium salts or arylboronic acids as coupling partners.⁷

Catalytic asymmetric dearomatization reaction has been extensively developed in the past few years, which constitutes a straightforward access to optically active alicyclic molecules as key moieties of bioactive natural products and pharmaceuticals.⁸ Many of current enantioselective dearomatization reactions relied on the transformations of aromatic substrates containing free N-H or O-H bonds, such as anilines, indoles, pyrroles, and phenols, where dearomatization was facilitated via keto-enol tautomerism under basic condition.^{8,9} Dearomative Heck reaction, the arylation of internal C=C bonds of aromatic compounds, would provide another avenue for dearomatization reaction. However, due to the challenging in

achieving enantiocontrol and breaking the aromaticity, enantioselective dearomative Heck reaction has remained underdeveloped. So far, a few enantioselective dearomative Heck arylation and related domino sequences have been reported. In 2012, Yao and Wu reported a racemic dearomative Heck reaction of N-2-halobenzovl 2,3disubstituted indoles.10a The asymmetric variant was then established in 2016 by Kitamura, Fukuyama, and coworkers and applied as a key step in the total synthesis of (+)-hinckdentine A, but only two single substrates were tested in their report and the ee was up to 86% (Scheme 1b).^{10b} In 2015, our group disclosed a reductive Heck reaction of 2-substituted N-2-halobenzoyl indoles, which afforded chiral indolines bearing C2-quaternary carbocenters in excellent enantioselectivities."a Zhou and coworkers showed a chiral nickel catalyst was also efficient for the same reaction with zinc powder as a reducing agent.12 Moreover, dearomative difunctionalization reactions of indoles and furans have been developed by Lautens, Yin, and our groups via domino Heck/anioniccapture sequences employing a range of nucleophiles to terminate the alkyl-Pd species.¹³ Despite of the above progress, most of the examples furnished in their racemic versions and the dearomative Heck reaction to form heterocyclic alkylidene prodcuts has remained much less developed.

As part of our ongoing work on enantioselective Heck reactions, we report herein a protocol of asymmetric intramolecular dearomative Heck reaction of indoles, benzofurans, pyrroles, and furans, which serves as a straightforward synthetic approach to chiral spiroheterocyclic and benzofused heterocyclic scaffolds (Scheme 1c). Through the Pd-catalyzed Heck arylation of internal C=C bonds of the abovementioned heteroaromatics, a range of structurally unique spiro- or benzofused heterocycles bearing N/O-substituted quaternary carbon stereocenters and exocyclic olefin moieties were afforded in moderate to good yields with excellent enantioselectivities. New BINOL- and H8-BINOL-based phosphoramidite ligands were developed and showed good asymmetric induction ability in achieving spiroheterocycles, while ligand (*S*)-SEGPHOS proved to be efficient in the formation of benzofused indolines and pyrrolines. Synthetic transformations of the products were realized based on the conversion of the exocyclic C=C bonds, including hydrogenation, hydroboration, and stereospecific ring-expanding rearrangement followed by nucleophilic additions.

Scheme 1. Enantioselective intramolecular Heck reaction.

a) previous work: asymmetric intramolecular Heck reaction (widely explored) ref3.4

c) this work: enantioselective dearomative Heck reactions (wide scope of heteroaromatics)

Results and Discussions

Reaction of Indoles and Benzofurans. At the beginning, the model reaction of 2-aminocarbonyl indole 1a was studied (Table 1). In the presence of Pd(OAc)₂ (5 mol %), phosphoramidite L1 (10 mol %), and Cs₂CO₃ (1.0 equiv), the desired product 2a was isolated in 83% yield with 28% ee in toluene at 100 °C (entry 1). Higher enantioselectivities were observed when the reaction carried out in THF or 1,4-dioxane (entries 3 and 4), whereas the yield was poor in methyl tert-butyl ether (entry 2). Interestingly, adding HCO₂H to the reaction mixture improved the ee value to 52%, while no reductive Heck product was detected (entry 5). Comparable enantioselectivities were achieved in the presence of PhCO₂H (50% ee) or AcOH (51% ee). The use of Pd(dba)₂ led to **2a** in 90% yield with 53% ee (entry 6). Various chiral phosphoramidite ligands were then examined. Ligands L2-L5 bearing different substituents on the nitrogen atom did not improve the enantioselectivities (entries 7-10). Although the ee was poor for iminodibenzyl ligand L6 (entry 11), its analogous ligand, H8-BINOL-based L7, gave a higher ee than did ligand L1 (comparing entries 12 and 6). Ligands L8-L10, which are arylsubstituted derivatives of L7, markedly improved the enantioselectivity, to 77% for L8, 79% for L9, and 82% for L10 (entries 13–15). We were pleased to find that the enantioselectivity could be further improved to 89% or 92% by lowering the temperature to 60 °C or 40 °C, respectively (entries 16 and 17). In the end, 2a could be obtained in 92% yield with 93% ee by increasing the amounts of Cs_2CO_3 and HCO_2H (entry 18).

Table 1. Condition optimization of the reaction of 1a.^a

Entry	L*	Additive	Solvent	Yield (%)	ee (%)
1	Lı		Toluene	83	28
2	Lı		MTBE	44	24
3	Lı		THF	87	32
4	Lı		1,4-dioxane	85	35
5	Lı	HCO₂H	1,4-dioxane	87	52
6	Lı	HCO₂H	1,4-dioxane	90	53
7	L2	HCO₂H	1,4-dioxane	93	39
8	L3	HCO₂H	1,4-dioxane	89	20
9	L4	HCO₂H	1,4-dioxane	79	29
10	L5	HCO₂H	1,4-dioxane	83	42
11	L6	HCO₂H	1,4-dioxane	70	30
12	L7	HCO₂H	1,4-dioxane	76	58
13	L8	HCO₂H	1,4-dioxane	87	77
14	L9	HCO₂H	1,4-dioxane	94	79
15	L10	HCO₂H	1,4-dioxane	90	82
16 ^b	L10	HCO₂H	1,4-dioxane	92	89
17 ^{c,d}	L10	HCO₂H	1,4-dioxane	86	92
18 ^{c,e}	L10	HCO₂H	1,4-dioxane	92	93

^{*a*}Reaction conditions: **1a** (0.2 mmol), [Pd] (5 mol%; Pd(OAc)₂ for entries 1–5; Pd(dba)₂ for entries 6–18.), L* (10 mol%), Cs_2CO_3 (1 equiv), additive (1 equiv), and solvent (2 mL) at 100 °C for 24 h; MTBE = methyl *tert*-butyl ether; Isolated yield; ee was determined by chiral HPLC. ^{*b*}At 60 °C. ^{*c*}At 40 °C. ^{*d*}For 3d. ^{*e*}Cs₂CO₃ (1.5 equiv) and HCO₂H (1.5 equiv).

With the optimal conditions in hand, we investigated the scope of the reaction with various substrates **1** (Scheme 2). The yield and ee of spiro product **2a** were slightly lower for an iodinated substrate (X = I) than for the corresponding brominated substrate (X = Br). The

1

2

3

4

5

6

7

8

9

10

11

12

13 14

15

16

17 18

19 20

21

22

23

24

25

30

31

32

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46 47

48

49

50

51

52

53

54

55

56

57

58 59

60

absolute configuration of 2a was determined to be R based on X-ray crystallographic analysis of its derivative 15 (Scheme 9).¹⁴ We also explored the effect of substituents on the indole ring. Various groups at C5 and C7, such as Me, F, and Cl, were compatible with the reaction conditions, furnishing spiro products **2b-2f** in moderate to excellent yields with 90-96% ee values. The protecting group on the indole nitrogen was also investigated. Product 2g, which bears an N-benzyl group, was obtained in 92% yield with 95% ee, whereas the ee observed for 2h, a product with an N-Boc group, was considerably lower (69%). The presence of an *n*-propyl group or a benzyl group at C₃ led to a sluggish reaction, but the corresponding products (2i and 2j) were obtained with good enantioselectivities, albeit with lower E/Z isomer ratios. Next, various substituents on the aniline ring were screened. Substrates with either an electron-donating or electronwithdrawing group were well-tolerated, furnishing desired products **2l-2s** in good yields with excellent enantioselectivities (up to 99%). Notably, we obtained a poor yield of product **2t**, which bears a naphthalene ring, even after a prolonged reaction time (5 d), although the ee was excellent (95%).

Scheme 2. Scope of indole 1.^a

^aReaction conditions: 1 (0.2 mmol), Pd(dba)₂ (5 mol%), **L10** (10 mol%), Cs₂CO₃ (1.5 equiv), and HCO₂H (1.5 equiv) in 1,4-dioxane (2 mL) at 40 °C for 20-36 h. ^bfor 60 h. ^cfor 6 d. ^dfor 5 d.

A dearomative intramolecular Heck reaction of 2aminocarbonyl benzofurans **3** was also established. The effect of chiral ligands was shown in scheme **3**.¹⁵ A new H8-BINOLbased phosphoramidite ligand **L15**, bearing a 8-methyl tetrahydroquinoline moiety, led to product **4a** in 72% yields and 77% ee in the reaction of bromo-substrate **3a**' with Pd(dba)₂ as a catalyst and NEt₃ as a base in 1,4-dioxane at 100 °C. Other ligands **L11-L14** gave inferior results, while **L10**, the best ligand for the reaction of **1**, led to **4a** in 79% yield and 73% ee. The ee value was improved to 84% for iodo-substrate **3a** and further to 92% by lowering the temperature to 40 °C and prolonging the reaction time. The absolute configuration of 4a was determined to be *R* by the X-ray crystallographic analysis.¹⁴

Scheme 3. Ligand effect for the reaction of 3a or 3a'.^a

^aReaction conditions: **3a** or **3a**' (0.2 mmol), $Pd(dba)_2$ (5 mol%), L* (10 mol%), and NEt₃ (3 equiv) in 1,4-dioxane (2 mL) at 100 °C for 12 h; ^bAt 40 °C for 3 d.

To investigate the scope, we tested a variety of benzofurans under the above conditions (Scheme 4). Methyl, Cl, and methoxy substituents bearing at C5 or C6 of the benzofuran ring were well tolerated. Products 4b-4e were afforded in excellent enantioselectivities, although the yield of chlorinated product 4d was relatively low. Reaction of a 3ethylbenzofuran afforded product 4f in 63% yield as a 1:1 mixture of *E* and *Z* isomers with 92% ee and 93% ee, respectively. Moreover, N-benzyl product 4g was obtained in 90% yield with 79% ee. Gratifyingly, product 4h containing a pyridine moiety was obtained in 91% yield and 96% ee. We also examined the effect of substituents on the aniline ring. The reaction was impeded by the presence of substituents (such as Me, F, Cl, and CF₃) para to the amide nitrogen atom; products 4i-4l were obtained in moderate to good yields and ee values after 4 d at 60 °C. We were pleased to find that substrates bearing a substituent para to the iodine atom afforded products 4m-4q in moderate to good yields with excellent enantioselectivities (90-96%). Note that the bromine atom of 4p survived the reaction conditions.

Scheme 4. Scope of benzofuran 3.^{*a*}

^aReaction conditions: 3 (0.2 mmol), Pd(dba)₂ (5 mol%), L15 (10 mol%), and Et₃N (3 equiv) in 1,4-dioxane (2 mL) at 40 °C for 2-3 d. ^{*b*}At 60 °C, for 4 d.

Dearomative Heck reaction of a modified indole 5 was also realized, which led to chiral spiro-[5.6]-heterocycles. BINOLbased chiral phosphoramidite L14 was found to be the best ligand, furnishing product 6a in 91% yield with 94% ee using TMEDA as a base and HCO₂H as an additive.¹⁵ The absolute configuration of **6a** was determined to be *S* according to the X-ray crystallographic analysis of a single crystal of iminium salt 18, which derived through a stereospecific rearrangement (Scheme 9). The scope of substrate 5 was then investigated (Scheme 5). N-Benzyl product 6b was obtained in 93% yield with 91% ee. Substrates bearing substituents on either the indole ring or the benzene ring of the bromobenzoyl moiety were examined. Reactions of 5c-5f having substituents para to the bromine atom furnished **6c–6f** with 92–94% ee values. Cl, F, and Me substituents at C5-C7 of the indole ring were well tolerated and their reactions furnished 6g-6l in modest to excellent yields with excellent enantioselectivities. In addition, an N-phenylethyl substrate was also suitable for this reaction, furnishing 6m in 90% yield with 93% ee.

Scheme 5. Scope of indole 5.^a

5 mol% Pd(OAc)₂ 10 mol% L14 2.0 equiv TMEDA 2.0 equiv HCO₂H Ö THF, 100°C Me Βn Ъr Ъr 6a R = Me 91%, 94% ee 6c 92%, 93% ee 6d 83%, 92% ee **6e** 63%, 92% ee 6b R = Bn 93%, 91% ee OMe 'n Β'n . Bn Β'n 6i 59% 93% ee 6f 91%. 94% ee 6q 87%, 92% ee 6h 88% 94% ee Me Βn Br в'n Ме Bn[/] 6m 90%, 93% ee 6k 92%, 93% ee 6j 95%, 93% ee 6l 85%, 94% ee

^aReaction conditions: 5 (0.2 mmol), Pd(OAc)₂ (5 mol%), L14 (10 mol%), TMEDA (2 equiv), and HCO₂H (2 equiv) in THF (2 mL) at 100 °C for 2-3 d.

Reaction of C2-Tethered Pyrroles and Furans. Having conducted the Heck reactions of indoles and benzofurans, we further moved our attention to more challenging heteroaromatic substrates, such as pyrroles and furans. Thus, the reaction of *N*-(2-bromophenyl)-pyrrole-2-carboxamide bearing a C₃-methyl group was tested. It was found that the *N*-protecting group of pyrrole was crucial to the reactivity. Only N-Ts-pyrrole 7a could give the spiro-product 8a in a poor yield but with excellent ee with L15 as a chiral ligand and NEt₃ as a base at 100 °C in 1,4-dioxane (Table 2, entry 3). No target products were detected for N-Me-pyrrole and N-Bz-pyrrole (entries 1 and 2). The yield of 8a was improved when the reaction carried out in MeCN and NMP (entries 6 and 7). Product 8a was isolated in 66% yield and 94% ee in DMF solvent (entry 8). As a comparison, a BINOL-based analogous ligand L14 led to 8a in inferior yield and ee (entry 9). The scope of N-Ts-pyrrole was subsequently examined (Scheme 6). Substituent effect on the benzene ring of aniline was investigated in the reactions of substrates bearing MeO, CF₃, F, Cl, and Me groups. Products 8a-8h were isolated in moderate yields with good to excellent enantioselectivities. Substituents *para* to amide nitrogen atom resulted in slightly lower yields and ees (8f-8h vs 8a-8e). To our delight, the reaction of C2-substituted furans could also proceed smoothly to give **8i-8m** in excellent enantioselectivities by lowering the temperature and adding 4Å molecular sieves to the reaction, but the yields for these products were still lower. Substrate bearing a Cl para to amide nitro atom failed to furnish product 8n and no desired product 80 was detected in the reaction of a thiophene substrate.

Table	2.	Condition	optimization	of	the	reaction	of
7a.ª							

	\square	∣ Br N ↓	5 mol% Pd(dba) ₂ 10 mol% L *	- 4.0	
	N R	0	3.0 equiv Et₃N Solvent, 100 °C	Ň Ń Ř O	
	R=Me	e, Bz, Ts (7a)		8a (R = Ts)	
Entry	R	L*	Solvent	Yield (%)	Ee (%)
1	Me	L15	1,4-dioxane	nd	
2	Bz	L15	1,4-dioxane	nd	
3	Ts	L15	1,4-dioxane	<10	92
4	Ts	L15	Toluene	nd	
5	Ts	L15	THF	<10	93
6	Ts	L15	MeCN	34	92
7	Ts	L15	NMP	49	93
8	Ts	L15	DMF	66	94
9	Ts	L14	DMF	35	79

^aReaction conditions: 7a (0.2 mmol), Pd(dba)₂ (5 mol%), L* (10 mol%), and NEt₃ (3 equiv) in solvent (2 mL) at 100 °C for 24 h; nd = not detected.

Scheme 6. Scope of C2-tethered pyrrole and furan.^a

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

^{*a*}Reaction conditions: 7 (0.2 mmol), Pd(dba)₂ (5 mol%), L15 (10 mol%), NEt₃ (3 equiv) in DMF (2 mL) at 100 °C for 24-60 h. ^{*b*}100 mg 4Å molecular sieves, at 80 °C for 48 h.

Reaction of N-tethered Pyrroles and Indoles. Encouraged by the results achieving in the reaction of N-Ts-pyrroles 7, we further tested the reaction of N-2-halobenzyol 2,5dimethylpyrrole 9 to access chiral benzofused pyrrolines.¹⁶ Pyrrole 9a was used as a model substrate for condition optimization. As shown in Table 3, phosphoramidite ligands L14 and L15 resulted in the desired product 10a in moderate yields and enantioselectivities in DMF at 100 °C for 16 h (entries 1 and 2), while better results (76% yield and 84% ee) were obtained when chiral diphosphine (S)-BINAP L16 was used as a ligand (entry 3). Changing the solvent to 1,4dioxane, toluene, and THF did not improve either yield or ee (entries 4-6), however, 10a was isolated in an increased yield (82%) in NMP solvent (entry 7). (S)-Xyl-BINAP L17 could further improve the ee to 90% but the yield was poor (entry 8). (S)-SEGPHOS L18 led to 10a in 78% yield and 93% ee (entry 9). In this case, the yield was further improved to 81% in a mixed solvent of DMF/NMP (1:1) and the excellent ee was kept (entry 11).

Table 3. Condition optimization of the reaction of 9a.^{*a*}

	N O Br 9a	5 mol% Pd(dba) ₂ 12 mol% or 6 mol% L* 3.0 equiv NEt ₃ Solvent, 100 °C	N N 10a	
	PAr PAr	r_2 r_2 r_2 r_2 r_2 r_2 r_2 r_2		h ₂ h ₂
	L16 Ar = C ₆ H ₅ L17 Ar = 3,5-diM	L18 Ie-C ₆ H ₃	L19	
Entry	L*	Solvent	Yield (%)	Ee (%)
1	L14	DMF	43	65
2	L15	DMF	48	57
3	L16	DMF	76	84
4	L16	1,4-dioxane	53	60
5	L16	Toluene	30	67
6	L16	THF	54	60
7	L16	NMP	82	8 0
8	L17	DMF	20	90
9	L18	DMF	75	93
10	L19	DMF	79	90
11	L18	DMF/NMP ^b	81	93

^{*a*}Reaction conditions: **9a** (0.2 mmol), Pd(dba)₂ (5 mol%), L* (12 mol% for **L14** and **L15**; 6 mol% for **L16-L19**), and NEt₃ (3 equiv) in solvent (2 mL) at 100 °C for 16 h. ${}^{b}V_{DMF}/V_{NMP}$ = 1:1.

A range of *N*-substituted 2,5-dimethylpyrroles were then investigated (Scheme 7). In comparison to bromo-substrate **9a**, the reaction of iodo-substrate **9a**' gave product **10a** in a relatively lower yield (70%) but a slightly improved ee (94%). Substituents bearing on the benzene ring were tested and the reactions afforded products **10b-10j** in excellent enantioselectivities (88-94%). Markedly lower yields for products **10e** and **10f** were observed for the substrates having electrondonating substituents *para* to bromide atom. Substituents (F, Me, and MeO) *para* to amide tether also impeded the reactions, resulting in lower yields for products **10g-10i**.

Scheme 7. Scope of N-tethered pyrrole 9.^a

^aReaction conditions: **9** (0.2 mmol), $Pd(dba)_2$ (5 mol%), (*S*)-SEGPHOS (6 mol%), and NEt_3 (3 equiv) in a mixed solvent of DMF/NMP (2 mL, 1:1) at 100 °C for 16-48 h.

(X=	OTf 11a; X = E	5 mol% Pd(OAc 8 mol% L* 1.0 equiv Na ₂ HF Solvent, 100 °C, 8r 11a'	$\frac{\partial^2}{\partial 4}$	
Entry	L*	Solvent	Yield (%)	Ee (%)
1	L16	MeOH	8 0	45
2	L16	MeOH	75	75
3	L16	EtOH	76	79
4	L18	EtOH	76	85
5	L19	EtOH	73	82
6^b	L18	EtOH	72	88
7^{c}	L18	EtOH	30	89
8^{b}	L18	THF	76	89
9^{b}	L18	1,4-dioxane	75	96
10 ^{b,d}	L18	1,4-dioxane	95	95

^{*a*}Reaction conditions: **11a** (0.2 mmol), $Pd(OAc)_2$ (5 mol%), L* (8 mol%), and Na₂HPO₄ (1 equiv) in solvent (2 mL) at 100 °C for 24 h; for entries 2-10, HCO₂H (0.8 equiv) was added. ^{*b*}At 80 °C. ^{*c*}At 60 °C. ^{*d*}100 mg 4Å molecular sieves was added.

The successful application of chiral diphosphine ligand in the Heck reaction of *N*-tethered pyrroles to approach benzofused products promoted us to examine the reaction of *N*-2-halobenzoyl 2,3-disubstituted indoles. Although it has been reported by Kitamura, Fukuyama, and co-workers, only two substrates were tested in their report and the highest ee was 86% by using excess amount of chiral MonoPhos-PE ligand.^{10b} Herein, the reaction of a bromo substrate **11a**' was first tested with $Pd(OAc)_2$ as a catalyst and (*S*)-BINAP **L16** as a

ligand. Target product 12a could be isolated, while the reaction was in poor reproducibility with ee ranging from 15% to 78%. A triflate substrate 11a was then synthesized and applied as a substrate. As shown in Table 4, by using Pd(OAc), as a catalyst and Na₂HPO₄ as a base, the reaction of 11a in MeOH proceeded smoothly to afford 12a in 80% yield and 45% ee (entry 1). The enantioselectivity was remarkably improved to 75% by adding HCO₂H to the reaction mixture, and further to 79% in EtOH solvent (entries 2 and 3). Ligand (S)-SEGPHOS (L18) gave a better ee (85%) (entry 4). Lowering the temperature to 80 °C further improved the ee to 88%, and further to 89% albeit with a poor yield at 60 °C (entries 6 and 7). Comparable results were observed in THF solvent (entry 8), while the enantioselectivity was sharply improved to 96% when the reaction carried out in 1,4-dioxane (entry 9). Finally, an excellent yield (95%) was obtained by adding 4Å molecular sieves to the reaction mixture and the ee was 95% ee (entry 10).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36 37

38

39

40

41

42

43

44 45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

Scheme 8 disclosed the scope of the reaction 11→12 under the optimal conditions. All of the reactions afforded products 12a-120 in moderate to good yields and good to excellent enantioselectivities. Substituents bearing at C5 or C7 of the indole ring, including Me, CF₃O, and halides, were well tolerated to afford products 12b-12g. C5-Br in product 12f could survive albeit with a lower product yield. Lower yield was also observed for product 12g having a C7-Cl group. Other than methyl group, ethyl and aryl substituents at C₂ of the indole were also investigated; all these substrates reacted smoothly to give products 12h-12l in good to excellent ees. Lower yield was observed for 12j having a 3-chlorophenyl group, indicating a possible influence of steric hindrance on the reactivity. Moreover, substrates having chloro substituent at the benzene ring of 2-bromobenzoyl moiety were also tested, which afforded 12m and 12n in good yields and excellent enantioselectivities. It's worth to note that product 120, which has been used as a key starting material for the total synthesis of (+)-hinckdentine A, was obtained in 76% yield and 91% ee, and its absolute configuration was determined to be *R* by comparison to the reported value.^{10b}

Scheme 8. Scope of the reaction with respect to 11.^a

^aReaction conditions: **11** (0.2 mmol), Pd(OAc)₂ (5 mol%), (S)-SEGPHOS (8 mol%), Na₂HPO₄ (1 equiv), HCO₂H (0.8 equiv),

Synthetic Transformations. We further carried out the synthetic transformations of two typical products 2a and 6a based on the conversion of their exocyclic C=C bonds (Scheme 9). A Pd/C-catalyzed hydrogenation of the exocyclic olefin of 2a under H₂ (50 atm) at room temperature afforded compound 13 in 75% yield. Subsequent reduction of the carbonyl group with LiAlH₄ in refluxing THF converted 13 to amine 14 in 62% yield. Hydroboration of 2a with 9-BBN followed by an oxidation with H₂O₂ furnished alcohol 15 in 70% yield. The absolute configuration of 15 was determined to be $(2^{\prime}R, 3^{\prime}R)$ by its X-ray crystallographic analysis.¹⁴ Compounds 13-15 were all isolated as single isomer and without any loss of ee. Moreover, a stereospecific ring-expanding rearrangement of 2a promoted by Me₃OBF₄ took place to give iminium salt 16, which was treated with NaBH₄ without further purification to deliver dihydroguinolinone-fused indoline 17 in 61% yield (for two steps) with 92% ee. Product 6a was also readily converted to iminium salt 1814 having a seven-membered lactam moiety by treating with Me₃OBF₄. In fact, aqueous HBF₄ could also promote this rearrangement reaction of 2a and 6a at 80 °C albeit with a lower yield. Reduction of the unpurified 18 by NaBH₄ gave amine 19 in 77% yield (for two steps) and 96% ee. Hemiaminal 20 was obtained in 80% yield and 94% ee by treating 18 with H₂O. Indolines 21 and 22 having vicinal quaternary stereocenters were obtained in excellent enantioseletivities as single isomers by the addition of Grignard reagents to 18. The relative configuration of compound 19 and 21 was determined by 2D-NOSEY spectrum.

Scheme 9. Synthetic transformations of 2a and 6a.^a

^{*a*}Reaction conditions: (a) Pd/C (10 mol%), H₂ (50 atm) in ethyl acetate at r.t. for 60 h; (b) LiAlH₄ (10 equiv) in refluxing THF for 55 h; (c) 9-BBN (2 equiv) in THF at 40 °C for 2 h, then 3 M NaOH and 30% H₂O₂ at r.t. for 15 h; (d) Me₃OBF₄ (2 equiv) in CH₂Cl₂ at r.t. for 8 h; (e) NaBH₄ (3 equiv) in

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

CH₂Cl₂/MeOH (4:1) at 0 °C for 30 min; (f) NaBH₄ (3 equiv) in MeOH at 0 °C for 30 min; (g) H₂O (2 equiv) in CH₂Cl₂ at r.t. for 12 h; (h) RMgBr (2 equiv) in CH₂Cl₂/THF at r.t. for 12 h.

Conclusions

We have developed a protocol for Pd-catalyzed enantioselective intramolecular dearomative Heck reactions of indoles, benzofurans, pyrroles, and furans. This protocol offers a straightforward access to a range of chiral spiro- and benzofused heterocycles bearing nitrogen-/oxygen-substituted quaternary carbon stereocenters. By the help of new BINOLor H8-BINOL-based chiral phosphoramidite ligands and chiral diphosphine ligand, the reactions were accomplished in moderate to excellent yields with good to excellent enantioselectivities. Synthetic transformations of the typical products were conducted based on the conversion of the exocyclic C=C bonds, which led to structurally unique heterocycles in excellent enantioselectivities.

ASSOCIATED CONTENT

Supporting Information. The Supporting Information is available free of charge on the ACS Publications website.

Full experimental and characterization data, including ¹H and ¹³C NMR for all the new compounds, chiral HPLC spectra for the products (PDF)

Crystallographic data for 4a, 15, and 18 (CIF)

AUTHOR INFORMATION

Corresponding Author

*yxjia@zjut.edu.cn

Author Contributions

‡These authors contributed equally.

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

We are grateful for generous support from the National Natural Science Foundation of China (nos. 21522207, 21702184, and 21772175).

REFERENCES

(1) (a) Mizoroki, T.; Mori, K.; Ozaki, A. *Bull. Chem. Soc. Jap.* **1971**, 44, 581. (b) Heck, R. F.; Nolley, J. P. *J. Org. Chem.* **1972**, 37, 2320.

(2) For books and reviews, see: (a) Oestreich, M., Ed. *The Mizoroki-Heck Reaction*; Wiley: Chichester, **2009**. (b) Brase, S.; de Meijere, A. *Cross-Coupling of Organyl Halides with Alkenes-The Heck Reaction*. In *Metal-Catalyzed Cross-Coupling Reactions*; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, Germany, **2004**. (c) Heck, R. F. *Acc. Chem. Res.* **1979**, *12*, 146. (d) Ma, S. *Chin. J. Org. Chem.* **1991**, *11*, 561. (e) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. **2000**, *100*, 3009.

(3) (a) Sato, Y.; Sodeoka, M.; Shibasaki, M. J. Org. Chem. 1989, 54, 4738. (b) Carpenter, N. E.; Kucera, D. J.; Overman, L. E. J. Org. Chem. 1989, 54, 5846. (c) Ohrai, K.; Kondo, K.; Sodeoka, M.; Shibasaki, M. J. Am. Chem. Soc. 1994, 116, 11737. (d) Oshima, T.; Kagechika, K.; Adachi, M.; Sodeoka, M.; Shibasaki, M. J. Am. Chem. Soc. 1996, 118, 7108. (e) Ashimori, A.; Bachand, B.; Overman, L. E.; Poon, D. J. J. Am. Chem. Soc. 1998, 120, 6477. (f) Ashimori, A.; Bachand, B.; Calter, M. A.; Govek, S. P.; Overman, L. E.;

Poon, D. J. J. Am. Chem. Soc. **1998**, 120, 6488. (g) Matsuura, T.; Overman, L. E.; Poon, D. J. J. Am. Chem. Soc. **1998**, 120, 6500.

(4) (a) Dounay, A. B.; Overman, L. E. *Chem. Rev.* 2003, 103, 2945. (b) Tietze, L. F.; Ila, H.; Bell, H. P. *Chem. Rev.* 2004, 104, 3453. (c) Shibasaki, M.; Vogl, E. M.; Ohshima, T. *Adv. Synth. Catal.* 2004, 346, 1533. (d) Mc Cartney, D.; Guiry, P. J. *Chem. Soc. Rev.* 2011, 40, 5122. (e) Li, H.; Ding, C.; Xu, B.; Hou, X. *Acta Chim. Sinica* 2014, 72, 765.

(5) Ozawa, F.; Kubo, A.; Hayashi, T. J. Am. Chem. Soc. **1991**, *113*, 1417.

(6) For recent selected examples of asymmetric intermolecular Heck reaction of cyclic olefins: (a) Wu, W.-Q.; Peng, Q.; Dong, D.-X.; Hou, X.-L.; Wu, Y.-D. J. Am. Chem. Soc. **2008**, *1*30, 9717. (b) Yang, Z.; Zhou, J. J. Am. Chem. Soc. **2012**, *134*, *11833*. (c) Hu, J.; Hirao, H.; Li, Y.; Zhou, J. Angew. Chem., Int. Ed. **2013**, *52*, 8676. (d) Wu, C.; Zhou, J. J. Am. Chem. Soc. **2014**, *136*, 650. (e) Patel, H. H.; Sigman, M. S. J. Am. Chem. Soc. **2015**, *137*, 3462. (f) Zhang, Q.-S.; Wan, S.-L.; Chen, D.; Ding, C.-H.; Hou, X.-L. Chem. Commun. **2015**, *51*, 12235. (g) Kong, W.; Wang, Q.; Zhu, J. J. Am. Chem. Soc. **2015**, *137*, 16028. (h) Borrajo-Calleja, G. M.; Bizet, V.; Burgi, T.; Mazet, C. Chem. Sci. **2015**, *6*, 4807. (i) Bao, X.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. **2017**, *56*, 9577. (j) Jiao, Z.; Shi, Q.; Zhou, J. Angew. Chem., Int. Ed. **2017**, *56*, 14567.

(7) (a) Werner, E. W.; Mei, T.-S.; Burckle, A. J.; Sigman, M. S. *Science* **2012**, 338, 1455. (b) Mei, T.-S.; Patel, H. H.; Sigman, M. S. *Nature* **2014**, 508, 340. (c) Zhang, C.; Santiago, C. B.; Kou, L.; Sigman, M. S. *J. Am. Chem. Soc.* **2015**, *137*, 7290. (d) Patel, H. H.; Sigman, M. S. *J. Am. Chem. Soc.* **2016**, *138*, 14226. (e) Avila, C. M.; Patel, J. S.; Reddi, Y.; Saito, M.; Nelson, H. M.; Shunatona, H. P.; Sigman, M. S.; Sunoj, R. B.; Toste, F. D. *Angew. Chem., Int. Ed.* **2017**, 56, 5806.

(8) (a) Pape, A. R.; Kaliappan, K. P.; Kündig, E. P. Chem. Rev. 2000, 100, 2917. (b) Lopez Ortiz, F.; Iglesias, M. J.; Fernandez, I.; Andujar Sanchez, C. M.; Gomez, G. R. Chem. Rev. 2007, 107, 1580. (c) Roche, S. P.; Porco, Jr., J. A. Angew. Chem., Int. Ed. 2011, 50, 4068. (d) Zhuo, C.-X.; Zhang, W.; You, S.-L. Angew. Chem., Int. Ed. 2012, 51, 12662. (e) Zhuo, C.-X.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2014, 47, 2558. (f) Wu, W.-T.; Zhang, L.; You, S.-L. Chem. Soc. Rev. 2016, 45, 1570. (g) Zheng, C.; You, S.-L. Chem. Soc. Rev. 2016, 45, 1570.

(9) For selected recent examples of Pd(o)-catalyzed dearomative arylation of anilines, indoles, pyrroles, and phenols: (a) García-Fortanet, J.; Kessler, F.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 6676. (b) Bedford, R. B.; Butts, C. P.; Haddow, M. F.; Osborne, R.; Sankey, R. F. Chem. Commun. 2009, 45, 4832. (c) Bedford, R. B.; Fey, N.; Haddow, M. F.; Sankey, R. F. Chem. Commun. 2011, 47, 3649. (d) Rousseaux, S.; García-Fortanet, J.; Del Aguila Sanchez, M. A.; Buchwald, S. L. J. Am. Chem. Soc. 2011, 133, 9282. (e) Wu, K.-J.; Dai, L.-X.; You, S,-L. Org. Lett. 2012, 14, 3772. (f) Wu, K.-J.; Dai, L.-X.; You, S.-L. Chem. Commun. 2013, 49, 8620. (g) Xu, R.-Q.; Gu, Q.; Wu, W.-T.; Zhao, Z.-A.; You, S.-L. J. Am. Chem. Soc. 2014, 136, 15469. (h) Du, K.; Guo, P.; Chen, Y.; Cao, Z.; Wang, Z.; Tang, W.-J. Angew. Chem., Int. Ed. 2015, 54, 3033. (i) Xu, R.-Q.; Yang, P.; Tu, H.-F.; Wang, S.-G.; You, S.-L. Angew. Chem., Int. Ed. 2016, 55, 15137. (j) Xu, R.-Q.; Gu, Q.; You, S.-L. Angew. Chem., Int. Ed. 2017, 56, 7252.

(10) (a) Zhao, L.; Li, Z.; Chang, L.; Xu, J.; Yao, H.; Wu, X. Org. Lett. 2012, 14, 2066. (b) Douki, K.; Ono, H.; Taniguchi, T.; Shimokawa, J.; Kitamura, M.; Fukuyama, T. J. Am. Chem. Soc. 2016, 138, 14578.

(11) (a) Shen, C.; Liu, R.-R.; Fan, R.-J.; Li, Y.-L.; Xu, T.-F.; Gao, J.-R.; Jia, Y.-X. *J. Am. Chem. Soc.* **2015**, *137*, 4936. (b) Wei, F.; Wei, L.; Zhou, L.; Tung, C.-H.; Ma, Y.; Xu, Z. Asian J. Org. Chem. **2016**, 5, 971. (c) Liu, R.-R.; Xu, Y.; Liang, R.-X.; Xiang, B.; Jia, Y.-X. Org. Biomol. Chem. **2017**, *15*, 2711.

(12) Qin, X.; Wen, M.; Lee, Y.; Zhou, J. Angew. Chem., Int. Ed. 2017, 56, 12723.

(13) (a) Petrone, D. A.; Yen, A.; Zeidan, N.; Lautens, M. Org. Lett. 2015, 17, 4838. (b) Petrone, D. A.; Kondo, M.; Zeidan, N.; Lautens, M. Chem. Eur. J. 2016, 22, 5684. (c) Chen, S.; Wu, X.-X.; Wang, J.; Hao, X.-H.; Xia, Y.; Shen, Y.; Jing, H.; Liang, Y.-M. Org. Lett. 2016, 18, 4016. (d) Liu, J.; Peng, H.; Lu, L.; Xu, X.; Jiang, H.; Yin, B. Org. Lett. 2016, 18, 6440. (e) Liu, J.; Xu, X.; Li, J.; Liu, B.; Jiang, H.; Yin, B. Chem. Commun. 2016, 52, 9550. (f) Liu, R.-R.; Xu, T.-F.; Wang, Y.-G.; Xiang, B.; Gao, J.-R.; Jia, Y.-X. Chem. Commun. 2016, 52, 13664. (g) Wang, Y.; Liu, R.; Gao, J.; Jia, Y. Chin. J. Org. Chem. 2017, 37, 691. (h) Liu, R.-R.; Wang, Y.-G.; Li, Y.-L.; Huang, B.-B.; Liang, R.-X.; Jia, Y.-X. Angew. Chem., Int. Ed. 2017, 56, 7475. (i) Xu, X.; Liu, J.; Lu, L.; Wang, F.; Yin, B. Chem. Commun. 2017, 53, 7796. (14) See SI files for the X-ray structures of compounds 4a, 15

(14) See SI files for the X-ray structures of compounds 4a, 15 and 18.

(15) See SI files for the detail of condition optimization.

(16) The racemic reaction of pyrrole **9** has been reported, see: Ren, H.; Li, Z.; Knochel, P. *Chem. Asia J.* **2007**, *2*, 416.

