ChemComm

COMMUNICATION

Check for updates

Cite this: Chem. Commun., 2019, 55, 981

Received 7th December 2018, Accepted 20th December 2018

DOI: 10.1039/c8cc09706b

rsc.li/chemcomm

Enantioselective iridium-catalyzed carbonyl isoprenylation *via* alcohol-mediated hydrogen transfer⁺

Ming Xiang,‡ Guoshun Luo,‡ Yuankai Wang and Michael J. Krische

J

lpc₂B

Highly enantioselective iridium catalyzed carbonyl (2-vinyl)allylation or "isoprenylation" is achieved *via* hydrogen auto-transfer or 2-propanolmediated reductive coupling from primary alcohol or aldehyde reactants, respectively. Using this method, asymmetric total syntheses of the terpenoid natural products (+)-ipsenol and (+)-ipsdienol were achieved.

Under the conditions of hydrogenation, transfer hydrogenation or hydrogen auto-transfer, diverse metal-catalyzed carbonyl reductive couplings may be conducted with high levels of enantioselectivity and atom-efficiency in the absence of premetalated C-nucleophiles or stoichiometric metals.¹ Among reactions of this type, stereo- and site-selective allylative carbonyl additions that directly convert lower alcohols to higher alcohols^{1f,3} have proven especially effective for polyketide and terpenoid construction, enabling remarkably concise total syntheses of diverse natural products.² In the course of designing a synthetic route to amphidinolide V, it became of interest to develop a catalytic enantioselective carbonyl isoprenylation (Fig. 1).^{4,5} Two enantioselective reactions of this type are reported in the literature, which exploit B-(5-isoprenyl) and Sn-(5-isoprenyl) reagents that are derived via potassiation of isoprene under cryogenic conditions using Schloßer's base.⁵ Here, using the tert-butoxy carbonate of isoprenyl alcohol as pronucleophile, we report a catalytic enantioselective method for alcohol-mediated carbonyl isoprenylation, including asymmetric total syntheses of the terpenoid natural products (+)-ipsenol and (+)-ipsdienol and asymmetric isoprenylations of an unprotected glycol and a chiral *a*-stereogenic alcohol.

In an initial series of experiments, 4-bromobenzyl alcohol **1a** (100 mol%) was exposed to a series of chromatographically

‡ These authors contributed equally to this work.

Then HN(CH2CH2OH)2 un to 65% Vield via Potassiation 96% ee (ref. 5a) of Isoprene Using Schloßer's Base (S)-BINOL-TiLn (5 mol%) B B 2-PrSBEt, (120 mol%) Bu_nSn PhCF₃, -20 °C up to 91% Yield 97% ee (ref. 5b) Asymmetric Isoprenylation via Hydrogen Transfer - This Work (S)-IrLn (5 mol%) K₃PO₄ BocO DMF. 70 °C up to 84% Yield For Aldehydes 96% ee 2-PrOH (300 mol%)

THF. -78 °C

Fig. 1 Enantioselective methods for carbonyl isoprenylation.

isolated π -allyliridium C,O-benzoate complexes derived from 4-cyano-3-nitrobenzoic acid, (S)-Ir-I to (S)-Ir-VI, in the presence of isoprenyl tert-butoxy carbonate 3a (200 mol%) and K₃PO₄ (100 mol%) in THF (0.5 M) at 80 °C (Table 1, entries 1-6). The desired product of isoprenylation 4a was formed in each case; however, excellent levels of enantiomeric enrichment were only observed for the catalyst modified by (S)-DM-SEGPHOS, which provided a modest 43% isolated yield of 4a (Table 1, entry 6). In the parent iridium-catalyzed allylation and crotylation reactions,⁶ rapid alcohol-aldehyde redox equilibration in advance of carbonyl addition was demonstrated, corroborating turnover-limiting carbonyl addition. More Lewis acidic catalysts with electron-withdrawing groups at the 4-position of the 3-nitro-C,O-benzoate moiety were shown to improve conversion and enantioselectivity. Accordingly, the π -allyliridium C,O-benzoate complex derived from 3,4-dinitrobenzoic acid and (S)-DM-SEGPHOS was evaluated in the reaction of 4-bromobenzyl alcohol 1a with isoprenyl tert-butoxy carbonate 3a.

ang and Michael 5. Krische

Asymmetric Isoprenvlation via Premetalated Reagents

View Article Online

University of Texas at Austin, Department of Chemistry, 105 E 24th St (A5300), Austin, TX 78712-1167, USA. E-mail: mkrische@mail.utexas.edu

[†] Electronic supplementary information (ESI) available: Experimental procedures and spectroscopic and HPLC data for all new compounds. Crystallographic data for compound 4c. CCDC 1873061. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c8cc09706b

Table 1 Selected optimization experiments in the enantioselective iridium-catalyzed isoprenylation of 4-bromobenzyl alcohol ${\bf 1a}^a$

^{*a*} Yields are of material isolated by silica gel chromatography. Enantioselectivities were determined by chiral stationary phase HPLC analysis. See ESI for further experimental details.

To our delight, both conversion and enantioselectivity improved (Table 1, entry 7). This level of efficiency persisted at lower reaction temperature (70 °C) and lower reaction time (24 h) (Table 1, entry 8). Finally, using DME as solvent, the isoprenylation product **4a** could be obtained in 80% yield and 95% enantiomeric excess (Table 1, entry 9). Carbonate **3a** is prepared *via* base-mediated "ring opening elimination" of isoprene oxide followed by quenching with Boc-anhydride.⁷ The corresponding halides, which are less tractable and would require an additional step to prepare, were not evaluated.

Optimal conditions identified for the formation of isoprenylation product 4a were applied to a diverse set of benzylic, allylic and aliphatic alcohols (Table 2). In each case, good isolated yields were accompanied by uniformly high levels of enantioselectivity. As illustrated by the formation of 4e, 4f and 4h, these conditions for isoprenylation are compatible with N- and S-containing heterocycles. Aliphatic alcohols 1m and 1n bearing heteroatoms at the β -position are converted to the products of isoprenylation 4m and 4n, respectively, without E1cB-elimination at the stage of the transient aldehyde. Notably, the synthesis of compound 4n, which was previously accomplished in 7 steps from (–)-malic acid,⁸ is now accomplished in a single step from commercially available O-benzyl propane diol 1n. The conversion of prenyl alcohol 1j and isoamyl alcohol 1o to adducts 4j and 4o, respectively, represent enantioselective total syntheses of the terpenoid natural products (+)-ipsenol and (+)-ipsdienol, which are aggregation pheromones of the bark beetle.9,10

In these hydrogen auto-transfer processes, the alcohol reactants **1a–1o** serve dually as reductant and aldehyde proelectrophile (Table 2). Carbonyl isoprenylation also can be conducted using the analogous aldehyde reactants **2a–2o** in combination with 2-propanol as reductant under otherwise identical conditions (Table 3). The conversion of aldehydes **2a–2o** to adducts **4a–4o** occurs with similar levels of efficiency and selectivity, although for less stable aldehydes **2m** and **2n**, which incorporate heteroatoms at the β -position, higher isolated yields are obtained *via* isoprenylation of the alcohols **1m** and **1n**.

The ability of iridium complexes to catalyze site-selective oxidation of polyols is well documented and typically occurs with a kinetic preference for dehydrogenation of the less-hindered alcohol.¹¹ Similarly, the cyclometallated π -allyliridium *C*,*O*-benzoates

Table 3 Enantioselective iridium-catalyzed isoprenylation of aldehydes $\ensuremath{\text{2a-2o}^{\circ}}$

ChemComm

^{*a*} Yields are of material isolated by silica gel chromatography. ^{*b*} 48 h. ^{*c*} DME (0.2 M). Enantioselectivities were determined by chiral stationary phase HPLC analysis. See ESI for further experimental details.

developed in our laboratory display a high kinetic preference for primary alcohol oxidation, enabling direct asymmetric allylation of unprotected diols.¹² The ability to conduct protecting group-free isoprenylation of chiral glycols was briefly examined using commercially available (*R*)-butane diol **1p** (eqn (1)). Using the enantiomeric iridium complexes (*S*)- and (*R*)-Ir-**VII**, the diastereomeric adducts *cis*-**4p** and *trans*-**4p** were isolated in good yield with good to complete levels of catalyst-directed diastereoselectivity, respectively. The isoprenylation of the chiral α -stereogenic alcohol **1q** also was explored (eqn (2)).¹³ Absolute π -facial stereoselectivity in the carbonyl addition event was high; however, due to partial racemization of the transient aldehyde, the adducts *trans*-**4q** and *cis*-**4q** were each obtained with modest levels of catalyst-directed diastereoselectivity.

From (S)-Ir-VI

From (R)-Ir-VII

Diastereomers were inseparable by SiO_2 chromatography. Yields refer to material isolated by SiO_2 chromatography. Diastereoselectivity was determined by HPLC analysis

Vinyl and homoallylic boronates are appealing building blocks for synthesis, due to the potential for orthogonal functionalization of both the olefin and the boronate. To illustrate one of many possibilities *vis-à-vis* elaboration of the reaction products, the diene-containing adduct **4a** was exposed to the indicated vinylboronate in the presence of the second-generation Grubbs catalyst to furnish the product of cross-metathesis as a single regio- and stereoisomer (eqn (3)).¹⁴ Additionally, the chemo- and regioselective anti-Markovnikov product of iridium-catalyzed hydroboration, homoallylic boronate **6a**, was achieved in good yield from the **1**,3-diene TBS-**4a** (eqn (4)).¹⁵

In summary, we report the first examples of catalytic enantioselective carbonyl isoprenylation *via* hydrogen autotransfer. This process converts aliphatic, allylic and benzylic alcohols **1a–10** to the diene-containing adducts **4a–40** with uniformly high levels of efficiency and enantioselectivity. Using this method, enantioselective total syntheses of the terpenoid natural products (+)-ipsenol and (+)-ipsdienol are achieved in the absence of cryogenic conditions or premetalated reagents. Furthermore, we demonstrate that aldehydes **2a–20** are converted to an equivalent set of adducts **4a–40** using 2-propanol as reductant under otherwise identical conditions. Finally, as illustrated by the formation of the diastereomeric adducts *cis*- and *trans-***4p**, this method can be applied to the stereoselective modification of unprotected diols and chiral α -stereogenic alcohols. Studies toward amphidinolide V *via* asymmetric alcohol-mediated carbonyl isoprenylation are presently underway.

The Welch Foundation (F-0038) and the NIH (RO1-GM069445) are acknowledged for partial support of this research. The China Scholarship Council is acknowledged for research internship scholarship support (G. L. CGC.201707060020).

Conflicts of interest

There are no conflicts to declare.

Notes and references

- For recent reviews on alcohol-mediated carbonyl addition, see: (a) A. Hassan and M. J. Krische, Org. Proc. Res. Devel., 2011, 15, 1236; (b) J. M. Ketcham, I. Shin, T. P. Montgomery and M. J. Krische, Angew. Chem., Int. Ed., 2014, 53, 9142 (Angew. Chem., 2014, 126, 9294); (c) F. Perez, S. Oda, L. M. Geary and M. J. Krische, Top. Curr. Chem., 2016, 374, 365; (d) I. Shin and M. J. Krische, Top. Curr. Chem., 2016, 372, 85; (e) K. D. Nguyen, B. Y. Park, T. Luong, H. Sato, V. J. Garza and M. J. Krische, Science, 2016, 354, 300; (f) S. W. Kim, W. Zhang and M. J. Krische, Acc. Chem. Res., 2017, 50, 2371.
- For application of alcohol-mediated carbonyl addition in natural product total synthesis, see: (a) A.-M. R. Dechert-Schmitt, D. C. Schmitt, X. Gao, T. Itoh and M. J. Krische, *Nat. Prod. Rep.*, 2014, **31**, 504; (b) J. Feng, Z. A. Kasun and M. J. Krische, *J. Am. Chem. Soc.*, 2016, **138**, 5467.
- 3 For selected reviews on enantioselective carbonyl allylation, see: (a) P. V. Ramachandran, Aldrichim. Acta, 2002, 35, 23; (b) S. E. Denmark and J. Fu, Chem. Rev., 2003, 103, 2763; (c) C.-M. Yu, J. Youn and H.-K. Jung, Bull. Korean Chem. Soc., 2006, 27, 463; (d) I. Marek and G. Sklute, Chem. Commun., 2007, 1683; (e) D. G. Hall, Synlett, 2007, 1644; (f) H. Lachance and D. G. Hall, Org. React., 2008, 73, 1–573; (g) M. Yus, J. C. Gonzalez-Gomez and F. Foubelo, Chem. Rev., 2011, 111, 7774.

- 4 For non-enantioselective methods for carbonyl isoprenylation, see: (a) M. Tokuda, N. Mimura, K. Yoshioka, T. Karasawa, H. Fujita and H. Suginome, *Synthesis*, 1993, 1086; (b) Y. Masuyama, M. Fuse and Y. Kurusu, *Chem. Lett.*, 1993, 1199; (c) M. Kimura, M. Fukushima
- and D. Takushima, *J. Am. Chem. Soc.*, 2010, 132, 16346.
 For enantioselective carbonyl isoprenylation, see: (a) H. C. Brown and R. S. Randad, *Tetrahedron*, 1990, 46, 4463; (b) C.-M. Yu, M. Jeon, J.-Y. Lee and J. Jeon, *Eur. J. Org. Chem.*, 2001, 1143.
- 6 For selected alcohol-mediated enantioselective carbonyl allylations catalyzed by iridium, see: (a) I. S. Kim, M.-Y. Ngai and M. J. Krische, J. Am. Chem. Soc., 2008, 130, 14891; (b) I. S. Kim, S. B. Han and M. J. Krische, J. Am. Chem. Soc., 2009, 131, 2514.
- 7 (a) R. G. Riley, R. M. Silverstein, J. A. Katzenellenbogen and R. S. Lenox, J. Org. Chem., 1974, 39, 1957; (b) Y. Satake, T. Nishikawa, T. Hiramatsu, H. Araki and M. Isobe, Synthesis, 2010, 1992.
- 8 (a) Z. Zhang, H. Xie, H. Li, L. Gao and Z. Song, Org. Lett., 2015, 17, 4706; (b) K. Mori and M. Ikunaka, Tetrahedron, 1984, 40, 3471.
- 9 (a) R. M. Silverstein, J. O. Rodin and D. L. Wood, Science, 1966, 154, 509; (b) N. Torbjoern, Pure Appl. Chem., 1989, 61, 547; (c) Q.-H. Zhang, G. Birgersson, F. Schlyter and G.-F. Chen, J. Chem. Ecol., 2000, 26, 841.
- 10 For selected total syntheses of ipsenol and ipsdienol, see ref. 4 and 5, as well as the following literature: (a) M. Franck-Neumann, D. Martina and M. P. Heitz, *Tetrahedron Lett.*, 1989, **30**, 6679; (b) K. Mori and H. Takikawa, *Tetrahedron*, 1991, **47**, 2163; (c) Y. Yamamoto, S. Hara and A. Suzuki, *Akira Synth Comm.*, 1997, **27**, 1029; (d) K. Draillard, J. Lebreton and J. Villiéras, *Tetrahedron: Asymmetry*, 1999, **10**, 4281; (e) V. N. Kovalenko and E. A. Matyushenkov, *Russ. J. Org. Chem.*, 2012, **48**, 1168; (f) V. N. Kovalenko and K. N. Prokhorevich, *Russ. J. Org. Chem.*, 2016, **52**, 757 and references cited therein.
- 11 For an authoritative review on iridium-catalyzed alcohol oxidation, see: T. Suzuki, *Chem. Rev.*, 2011, **111**, 1825.
- 12 (a) A.-M. R. Dechert-Schmitt, D. C. Schmitt and M. J. Krische, Angew. Chem., Int. Ed., 2013, 52, 3195; (b) I. Shin, G. Wang and M. J. Krische, Chem. – Eur. J., 2014, 20, 13382; (c) I. Shin, S. Hong and M. J. Krische, J. Am. Chem. Soc., 2016, 138, 14246.
- 13 D. C. Schmitt, A.-M. R. Dechert-Schmitt and M. J. Krische, *Org. Lett.*, 2012, 14, 6302.
- 14 T. F. Funk, J. Efskind and R. H. Grubbs, Org. Lett., 2005, 7, 187.
- 15 D. Fiorito and C. Mazet, ACS Catal., 2018, 8, 9382.