

Accepted Article

Title: Highly Selective Nucleophilic 4-Aryl-2,3-allenylation of Malonates

Authors: Shihua Song and Shengming Ma*

This manuscript has been accepted and appears as an Accepted Article online.

This work may now be cited as: *Chin. J. Chem.* **2020**, *38*, 10.1002/cjoc.202000300.

The final Version of Record (VoR) of it with formal page numbers will soon be published online in Early View: http://dx.doi.org/10.1002/cjoc.202000300.

WILEY-VCH SIOC CCS

ISSN 1001-604X • CN 31-1547/O6 mc.manuscriptcentral.com/cjoc www.cjc.wiley-vch.de

Highly Selective Nucleophilic 4-Aryl-2,3-allenylation of Malonates

Shihua Song^a and Shengming Ma*,^a

^a Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, People's Republic of China.

Cite this paper: Chin. J. Chem. 2019, 37, XXX-XXX. DOI: 10.1002/cjoc.201900XXX

Summary of main observation and conclusion Allenes are a class of very important compounds and the development of straightforward, efficient, and lighly enantioselective synthetic strategies for allenes have attracted extensive interests. Along this line, it is well known that aryl-substituted allenes may e readily racemized, thus, difficult to prepare in high ee. Herein, an efficient palladium-catalyzed nucleophilic allenylation of malonates with racemic 4-aryl-2,3-butadienyl carbonates has been developed. The selectivity issue of mono- vs. bis-allenylation with 2-non-substituted malonates has been dtressed. By utilizing (R)-(-)-DTBM-SEGPHOS as the chiral ligand, various aryl-substituted allenes and bisallenes have been prepared with good to excellent yields with high chemoselectivity and enantioselectivity under mild reaction conditions. Au-catalyzed cycloisomerization and APK reaction affording optically active mono- and bicyclic products have been demonstrated.

Background and Originality Content

Allene units present widely in natural products and non-natural products with unique bioactivities.^[1] Also, they have been demonstrated as versatile building blocks in organic syntheses,^[2] r roviding novel methodologies to construct diverse and complex compounds, especially optically active chemicals via chirality transfer strategy.^[3] Thus, design and development of new catalytic ecipes to access functionalized chiral allenes are of high current interest.^[4,5] However, it is well known that aryl-substituted allenes racemize easily in the presence of metal catalysts, which results mostly from the interaction of metal catalysts with the conjugate C=C in the allene parts (Scheme 1a)^[6] and highly enantioselective s /ntheses of chiral aryl allenes are still challenging. Recently, /tic asymmetric allenylation of malonates with 2,3-allenol derivatives^[7] or 1,3-dien-2-yl derivatives^[8] sharing the same intermediacy has been developed as an efficient approach for nantioselective syntheses of alkyl-substituted allenes (Scheme 1b). We wonder whether such a protocol may be applied to the yntheses of the thermo-sensitive aryl-allenes (Scheme 1c). The hallenges are as follows: 1) such reactions with 4-aryl-2,3-allenol derivatives may be too reactive, resulting in the formation of a nixture of mono- and bis-allenylation products with nonubstituted malonates (for such a report with 1,3-dien-2-yl derivatives, see: Scheme 1d);^[9] 2) the reported enantioselectivity vith 4-phenyl-2,3-allenyl derivatives is low even with the sterically bulky diethyl 2-acetamidomalonate (Scheme 1e);^[7a,8] 3) a more active catalytic system, which will work at very mild reaction conditions to avoid the racemization of in situ generated sensitive aryl-substituted allenes, is required. Herein, we wish to report our recent realization of Pd-catalyzed highly chemoselective monoallenylation of non-substituted malonates (Scheme 1f). The protocol also works well with allenylation of sterically bulkier 2-substituted malonates and bisallenylation of 2-non-substituted malonates under mild reaction conditions.

Scheme 1 Ready racemization of chiral arylallenes and syntheses allenes via

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/cjoc.202000300

This article is protected by copyright. All rights reserved.

Results and Discussion

We commenced our study on the reaction of allenylic arbonate 1a with the most challenging dimethyl malonate 2a to address the selectivity issue of monoallenylation over sallenylation. As expected, we found that treatment of **1a** with 2a catalyzed by Pd₂(dba)₃·CHCl₃ with (±)-BINAP as ligand and K₂CO₃ base in THF furnished (±)-3aa smoothly in 68% yield together with the bisallenylation product (±)-4aa (entry 1, Table 1) in a poor vity of 4:1.^[9] Increasing the loading of 2a would slightly increase the selectivity of monoallenylation product (±)-3aa over b sallenylation product (±)-4aa (entries 2 and 3, Table 1). The screening of ligands inferred that (±)-BINAP was still the best choice (entries 4-5, Table 1). Interestingly, a profound solvent effect was oserved: By using dioxane as solvent the reaction afforded nonoallenylation product (±)-3aa in 68% yield, exclusively (entry 6, Table 1). A much higher yield with an exclusive chemoselectivity v as observed using toluene as solvent (entry 7, Table 1). In this solvent, reducing the amount of 2a further increased the yield of (+)-3aa to 80%, with no formation of bisallenylation product (±)-.aa.

Table 1 Identifying the optimal reaction conditions for the reaction of 1a

$\begin{array}{c} \begin{array}{c} 2^{'5} \text{ moly6} \text{ Pd}_2(\text{dba})_3\text{-CHCl}_3 \\ & \text{ moly6} \text{ Ligand} \\ & \text{ dimethyl majonate 2a} (X \text{ equiv}) \\ & \text{ M_2 CO2}_{(2')} \text{ equiv}) \\ & \text{ N_2 CO2}_{(2')} \text{ equiv}) \\ \hline \\ $	Ar CO ₂ Me + CO ₂ Me Ar (±) ⁻ 4aa
Entry Ligand X Solvent (±) 3aa (±) 3aa: (± 1 (±) BINAP 2'0 THF 68 81:19	Ar4aa
Entry Ligand × Solvent (±) 388 (±) 388; (\pm) 388;	
1 (±) ⁻ BINAP 2'0 THF 68 81:19) ⁻ Recovery of 1a ^b
	-c
2 (±) [•] BINAP 3.0 THF 71 91:9	-c
3 (±) ⁻ BINAP 4.0 THF 63 93:7	- <i>c</i>
4 DPPE 4.0 THF 6 100:0	73
5 PPh ₃ ^d 4 [·] 0 THF ^{-c} ^{-c}	61
6 (±) BINAP 4.0 Dioxane 68 100.0	-c
7 (±) BINAP 4'0 Toluene 74 100'0	-c
8 (±) ⁻ BINAP 2 [.] 0 T ^{ojuene} 80 (78) ^e 100 [.] 0	-c

^oThe reaction of Pd₂(dba)₃·CHCl₃ (2.5 mol%), ligand (0.012 mmol), K₂CO₃ (0.4 mmol), **2a** (x equiv)/solvent (1.0 mL), and **1a** (0.2 mmol) in solvent (1.0 mL) was stirred at 30 °C. ^bData determined by NMR analysis of the crude reaction mixture. ^cNot detected. ^d12 mol% PPh₃ was used. ^eIsolated yield.

Next, the substrate scope for the synthesis of racemic 1,3disubstituted arylallenes was investigated (Table 2). The reaction of dimethyl malonate (**2a**) with allenylic carbonates **1a-1f** afforded the monoallenylation products (\pm)-**3aa** to (\pm)-**3fa** exclusively in 64-78% yields. As for nucleophilic reagents **2b-2e** equipped with useful functional groups, such as 2-acetamide, 2-allyl, 2-allenyl, and 2propargyl, the reaction with different 4-aryl-2,3-allenylic carbonates **1** containing electron-withdrawing and electrondonating groups on the aryl ring could all deliver the desired products with moderate to excellent yields (44-90%), regardless of the location of the substituents.

© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Chin. J. Chem. 2019, 37, XXX-XXX

 Table 2
 The synthesis of racemic 1,3-disubstituted arylallenyl malonates^a
 conditions^a

A

^aThe mixture of Pd₂(dba)₃·CHCl₃ (0.005 mmol), (±)-BINAP (0.012 mmol), K₂CO₃ (0.4 mmol), **2** (0.4 mmol)/toluene (1.0 mL) and **1** (0.2 mmol)/toluene (1.0 mL) were added and the resulting mixture was stirred at 30 °C. The yields were gained after column chromatographic separation on silica gel. ¹ THF was used instead of toluene. ^cDTBM-SEGPHOS was used instead of (±)-BINAP. ^d5 mol% Pd(dmdba)₂ was used instead of 2.5 mol% Pd₂(dba)₃·CHCl₃.

We went further to develop the asymmetric version of this transformation by using 4-aryl-2,3-allenylic carbonate 1a and the much less sterically hindered dimethyl malonate (2a) as the model rates. Under the catalysis of Pd₂(dba)₃·CHCl₃, different chiral ligands were tried (entries 1-6, Table 3) and (R)-(-)-DTBM-SEGPHOS was found to be the preferred ligand. The results in Table 3 showed nat both the loadings of 2a and base had an obvious effect on the of (R_a)-**3aa** and the selectivity enantioselectivity of nonoallenylation product (R_a) -**3aa**/bisallenylation product (R_a, R_a) aa (entries 6-9, Table 3). With 2.0 equiv each of 2a and K₂CO₃, the reaction afforded (R_a)-**3aa** in 77% yield with an ee of 93% and the atio of (R_a) -**3aa**/ (R_a,R_a) -**4aa** was improved to 92/8 in THF (entry 7, able 3). Replacing THF with toluene, the reaction furnished monoallenylation product (R_a) -**3aa** overwhelmingly with an ee of 7% (entry 8, Table 3). Further optimization led to the establishment of the optimal reaction conditions for further scope study: with 2.5 equiv of 2a, the reaction in toluene at -20 °C yielded (R_a)-**3aa** exclusively with an ee of 91% (entry 11, Table 3).

Table 3 Identifying the best ligand and optimization of reaction

ر ۲	a , _A r = _p F0	CO ₂ Me 	2`5 mol% Pd ₂ 6 mol% Ch Jimethyl malona K ₂ CO ₃ () N ₂ ' Tolue	rdb ^a) ₃ •CH0 ral lig <mark>and</mark> ate 2a (× e (^{equiv}) ne [,] 5 °C	$(R_a)^{-2I_3}$ Ar $(R_a)^{-3aa}$	AI	CO ₂ Me CO ₂ Me (R _a 'R _a) ⁻ 4 aa
	NH NH PPPh ₂ Ph L1	1→ ○ 2₽→ ◯ 〉		Ph ₂ MeO Ph ₂ MeO L	OMe PPh ₂ Co PPh ₂ Co	L4 $L6: Ar = 3$	$\begin{array}{c} O \\ O \\ O \\ O \\ A \\ A \\ A \\ A \\ A \\ A \\$
	Entry	Ligand	x/y	t (h)	Yield of $(R_a)^{-3aa} (\%)^{b}$	E ^{e o} f (<i>R</i> a) 3 ^{aa} (%) ^c	(R _{a)} 3 aa: (R _a 'R _a) 4 aa d
-	1 ^e	L1	2.0/5.5	10	7	-t	-
	2 ^e	L2	2.0/5.5	10	77	40	89 [:] 11
	3 ^e	L3	2.0/2.5	11	74	75	84:16
	4 ^e	L4	2.0/5.5	13	73	84	82:18
	5 ^e	L5	2.0/5.5	11.2	74	77	89 [:] 11
	6 ^e	L6	2.0/5.5	18	69	84	85 [:] 15
	7 ^e	L6	2.0/5.0	12	77	93	92:8
	8	L6	2.0/5.0	13	80	86	97:3
	9^g	L6	2.2/5/2.0	17	67	87	100:0
	10 ^{<i>ri</i>}	L6	2`5/2`0	21	73	89	100:0
_	11 ⁱ j	L6	2.2/2.0	36	80	91	100:0

^{*a*}A mixture of Pd₂(dba)₃·CHCl₃ (2.5 mol%), chiral ligand (0.012 mmol), K₂CO₃ (y equiv), and dimethyl malonate **2a** (x equiv)/toluene (1.5 mL) was stirred at 25 °C for 30 min. The mixture was stirred at 5 °C for 10 min and then **1a** (0.2 mmol)/toluene (0.5 mL) was added. ^{*b*}Isolated yields. ^{*c*}The ees of (R_a)-**3aa** were determined by chiral HPLC analysis. ^{*d*}Data determined by NMR analysis of the crude product. ^{*e*}THF was used as solvent instead of toluene. ^{*f*}(R_a)-**3aa** was not afforded and 89% of **1a** was recovered. ^{*g*}The reaction was conducted at -5 °C. ^{*h*}The reaction was conducted at -5 °C. ^{*h*}The reaction was conducted at -5 °C.

With the optimal reaction conditions in hand (entry 11, Table 3), the substrate scope of 2,3-allenylic carbonates with 2-nonsubstituted dimethyl malonate **2a** was studied (Table 4). Generally speaking, electronic and steric effects have a very limited impact on this reaction and the desired products were afforded in good yields (62-82%) with high ees (90-95%) and selectivity (s = 94:6 to 100:0). Substituents on phenyl rings in allene **1**, such as F, Cl, Br, and OMe, are all compatible. Importantly, the mono-substituted malonate-type products (R_a)-**3aa** to (R_a)-**3la** still possess a handle for further synthetic elaboration. The absolute configuration of major enantiomer of **3ca** was determined by X-ray single crystal diffraction study to be *R*.

Table 4 The substrate scope of allenylic carbonates with dimethyl

© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Report

malonate^a

^oThe mixture of 7 mol% Pd(dmdba)₂, 8.4 mol% L6, K₂CO₃ (0.4 mmol), and 2a 5 mmol)/solvent (1.5 mL) were stirred at 25 °C for 30 min. The mixture as stirred at -20 °C for 10 min and then 1 (0.2 mmol)/solvent (0.5 mL) was added. The s values were calculated by NMR yields of (*R*_a)-3 and (*R*_a,*R*₃)-4 as stermined by NMR analysis of the crude product. ^b5 mol% PPh₃ and 9.8 mol% L6 were used as ligands. ^c2.5 mol% Pd₂(dba)₃·CHCl₃ and 6 mol% L6 were used. ^dThe reaction using 2.0 equiv 2a with THF as solvent was c nducted at 5 °C. ^c5 mol% Pd(dmdba)₂ and 6 mol% L6 were used. ^fThe solvent (Toluene:THF = 30:1) was used. ^g3.5 mol% Pd₂(dba)₃·CHCl₃ was used.

Moreover, bis(arylallenylation) of dimethyl malonate **2a** was a'so realized in good to excellent yields (86-95%) and excellent nantio- and diastereoselectivities (>99% ee, 96:4 to 97:3 dr) upon the molar ratio of **1:2a** being adjusted to 2.5:1 (Table 5).

Song et al.

°The mixture of Pd(dmdba)₂ (0.01 mmol), (*R*)-(-)-DTBM-SEGPHOS (0.012 mmol), K₂CO₃ (0.5 mmol), and **2a** (0.2 mmol)/THF (1.5 mL) were stirred at 25 °C for 30 min. The mixture was stirred at 5 °C for 10 min and then **1** (0.5 mmol)/THF (0.5 mL) was added. The ee values and drs were determined by chiral HPLC analysis. ^b3.0 equiv **1f** was used.

Then the scope of 2-substituted malonates for this enantioselecctive transformation was evaluated (Table 6). Compared to **2a**, 2-substituted malonates (**2b-2f**) could afford the arylallenes with relatively higher ees as expected. When diethyl 2-acetamidomalonate (**2b**) was exploited as nucleophile, allenylic carbonates with the aryl group substituted with 4-Me, 4-F, 4-CN, and 2-naphthyl gave the products with 97-98% ee.^[7a,8] In addition, 2-allyl, 2-allenyl, 2-propargyl, and 2-(3-phenylpropargyl)-substituted malonates all worked smoothly. These synthetically useful groups combined with the chiral allene unit could afford other chiral cyclic molecules via different types of $[4+2]^{[3f,3g]}$, $[2+2+1]^{[3h]}$ or $[2+22]^{[10]}$ cycloaddition reactions.

Table 6The substrate scope of allenylic carbonates with substitutedmalonates a

© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Chin. J. Chem. **2019**, 37, XXX-XXX

^oThe mixture of Pd₂(dba)₃·CHCl₃ (0.0125 mmol), (*R*)-(-)-DTBM-SEGPHOS (0.03 mmol), K₂CO₃ (1.0 mmol), and **2** (1.0 mmol)/THF (4.0 mL) was stirred at 25 °C for 30 min. The mixture was stirred at 5 °C for 10 min and then **1** (0.5 mmol)/THF (1.0 mL) was added. ^b5 mol% Pd(dmdba)₂ was used instead of 2.5 mol% Pd₂(dba)₃·CHCl₃. ^c**2f** was dimethyl 2-(3-phenylprop-2-ynyl) malonate.

This transformation could be easily conducted on a gram-scale: he reaction of allenylic carbonate **1c** (4.0 mmol) with diethyl 2acetamidomalonate (**2b**) gave (R_a)-**3cb** (1.08 g) in 75% yield and 97% e. Synthetic applications have been demonstrated to highlight the potential values of this methodology. Treatment of (R_a)-**3ba** with CHO (37%, aq.) in the presence of NaHCO₃ gave γ -allenol (R_a)-**5ba**, which subsequently produced optically active tetrahydrofuran clerivative (*S*,*E*)-**6ba** with an exclusive *E*-C=C bond through goldcatalyzed cycloisomerization.^[3e] Reaction of (R_a)-**3ba** with 3nhenylpropargyl bromide gave (R_a)-**3bf** and its subsequent APK reaction of (R_a)-**3bf** in the presence of CO co-catalyzed by [Rh(CO)₂Cl]₂/AgOTs afforded the optically active bicyclopentenone compound (*R*)-**7bf** with a highly sensitive chiral center via chirality uransfer strategy.^[3h]

Scheme 2 Scheme captionGram-scale reaction and synthetic applications

 $\begin{array}{l} (1) \; \text{NaHCO}_3 \left(1^{\circ} 0 \; \text{equiv}\right), \; \text{CH}_2 O \; \left(4^{\circ} 0 \; \text{equiv}\right), \; \text{EtOH/H}_2 O \equiv 2/1 \cdot 0 \; ^{\circ}\text{C} \; \left(5 \; \text{min} + 10 \; \text{min}\right), \; \text{then ft} \; \left(24 \; \text{h}\right); \; \left(2\right) 5 \; \text{more} \; \text{Au(LB \; PhoS_C1^{\circ} 5 \; \text{more} \text{AgOTs}^{\circ} \; \text{CHO}_3^{\circ} \; 20 \; ^{\circ}\text{C} \; 87 \; \text{h} \; \text{N}_2; \; \left(3\right) \; 3 \; \text{pherey} \; \text{propargyl bromide} \; \left(1 \; \text{equiv}\right), \; \text{NH} \; \left(1 \; \text{equiv}\right), \; \text{THF} \; 0 \; ^{\circ}\text{C} \; \left(5 \; \text{min} + 2 \; \text{h}\right), \; \text{N}_2; \; \left(4\right) \; \text{CO balloon} \; 4 \; \text{mole} \; \text{RhCl}(\text{CO}_{22}) \; 8 \; \text{mole} \; \text{AgOTs}^{\circ} \; \text{Toulene} \; 20 \; ^{\circ}\text{C} \; 5 \; \text{h} \; \text{N}_2; \; \left(4\right) \; \text{CO balloon} \; 4 \; \text{mole} \; \text{RhCl}(\text{CO}_{22}) \; 8 \; \text{mole} \; \text{AgOTs}^{\circ} \; \text{Toulene} \; 20 \; ^{\circ}\text{C} \; 5 \; \text{h} \; \text{N}_2; \; \left(4\right) \; \text{CO balloon} \; 4 \; \text{mole} \; \text{RhCl}(\text{CO}_{22}) \; 8 \; \text{mole} \; \text{AgOTs}^{\circ} \; \text{Toulene} \; 20 \; ^{\circ}\text{C} \; 5 \; \text{h} \; \text{N}_2; \; \left(4\right) \; \text{CO balloon} \; 4 \; \text{mole} \; \text{RhCl}(\text{CO}_{22}) \; 8 \; \text{mole} \; 1 \; \text{AgOTs}^{\circ} \; \text{Toulene} \; 20 \; ^{\circ}\text{C} \; 5 \; \text{h} \; \text{N}_2; \; \left(4\right) \; \text{CO balloon} \; 1 \; \text{Adot} \;$

Finally, a rationale was proposed (Scheme 3): $S_N 2'$ -type exidation addition of PdL* with (R_a)-1 or (S_a)-1 from the back side of the C-OCO₂Me bond would generate the same intermediate *E*-1-1,3-dienyl Pd,^[11] which would immediately undergo delocalization to yield intermediate η^3 -Int **A**. Subsequently, the nucleophile would attack from the back side of the terminal carbon c tom to generate the chiral allene **3** in *R* configuration as shown in the model on the up right corner.

Scheme 3 A rationale for the formation of product (R_a) -**3**

Conclusions

In summary, we have developed a Pd(0)-catalyzed synthesis of the easily racemizable aryl-substituted allenes via highly selective nucleophilic allenylation of 2-non-substituted and 2-substituted malonates with allenylic carbonates. The highly enantioselective version of this transformation has been successfully realized with (R)-(-)-DTBM-SEGPHOS as the chiral ligand. This method features high efficiency, high selectivity, good substrate scope, and very mild reaction conditions avoiding racemization. Synthetic applications have also been demonstrated. We are actively pursuing other targets in this area.

Experimental

The asymmetric synthesis of (R_a) -**3aa** (Ssh-07-128): To a dry Schlenk tube were added K₂CO₃ (55.4 mg, 0.4 mmol), (R)-(-)-DTBM-SEGPHOS (14.2 mg, 0.012 mmol) inside a glove box. Then Pd(dmdba)₂ (8.3 mg, 0.01 mmol), and 2a (65.7 mg, 0.5 mmol)/toluene (1.5 mL) were added into this Schlenk tube under nitrogen atmosphere outside the glove box. After being stirred at 25 °C for 30 min, the resulting mixture was stirred at -20 °C for 10 min. Then 1a (43.3 mg, 0.2 mmol)/toluene (0.5 mL) was added with stirring. After being stirred for 36 h at -20 °C, the reaction was complete as monitored by TLC. Filtration through a short column of silica gel (eluent: ethyl acetate (10 mL × 3)) and evaporation afforded crude product (R_a) -**3aa** exclusively $((R_a)$ -**3aa** : (R_a, R_a) -**4aa** = 100 : 0, which was calculated by NMR yields of (R_a) -**3aa** and (R_a, R_a) -**4aa** as determined by ¹H NMR analysis of the crude product). Column chromatography on silica gel afforded (R_a)-3aa (44.8 mg, 80%) (eluent: petroleum ether (60-90 °C)/ethyl acetate/DCM = 20/1/1) as a liquid: 91% ee (HPLC conditions; Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 90/10, 0.3 mL/min, λ = 214 nm, $t_R(major) = 22.7 \text{ min}, t_R(minor) = 23.7 \text{ min}); [\alpha]_D^{20} = -197.1 (c = 0.63, c = 0.63)$ CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.26-7.17 (m, 2 H, ArH), 7.03-6.93 (m, 2 H, ArH), 6.22-6.12 (m, 1 H, =CH), 5.62 (q, J = 6.0 Hz, 1 H, =CH), 3.73 (s, 3 H, OCH₃), 3.64-3.52 (m, 4 H, CH + OCH₃), 2.85-2.62 (m, 2 H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 204.9 (d, J = 2.0 Hz), 169.2, 169.0, 162.0 (d, J = 244.9 Hz), 130.0 (d, J = 3.1 Hz), 128.2 (d, J = 7.4

© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

 $\begin{array}{l} {\sf Hz}\),\,115.5\,(d,{\it J}=21.3\,{\sf Hz}\),\,95.5,\,92.0,\,52.6,\,52.5,\,50.9,\,27.8;\,{}^{19}{\sf F}\,{\sf NMR}\\ (282\ {\sf MHz},\,{\sf CDCl}_3)\,\,-115.6\,(s,\,1\,{\sf F});\,{\sf IR}\,\,(neat,\,\,cm^{-1})\,\,3002,\,2955,\,2847,\\ 1951,\,1753,\,1737,\,1602,\,1508,\,1436,\,1342,\,1226,\,1157,\,1094,\,1039;\\ {\sf MS}\,({\sf EI},\,70\,eV)\,m/z\,(\%)\,279\,({\sf M}^++1,\,5.38),\,278\,({\sf M}^+,\,31.41),\,146\,(100);\\ {\sf HRMS}\,calcd.\,\,for\,C_{15}{\sf H}_{15}{\sf O}_4{\sf F}\,[{\sf M}^+]:\,278.0954,\,found:\,278.0952. \end{array}$

Supporting Information

The supporting information for this article is available on the WWW under https://doi.org/10.1002/cjoc.2018xxxxx.

Acknowledgement

Financial support from the National Natural Science Foundation of China (21690063 and 21572202) is greatly a preciated. We thank Mr. Jie Lin in this group for reproducing the preparation of (R_a) -**3cb** and (R_a, R_a) -**4ea**. Shengming Ma is a Qiu Shi Adjunct Professor at Zhejiang University.

Peferences

- [1] (a) Kavanagh, F.; Hervey, A.; Robbins, W. J. Antibiotic substances from basidiomycetes V. Poria corticola, poria tenuis and unidentified basidiomycete. P. Natl. Acad. Sci. USA. 1950, 36, 1-7; (b) Horler, D. F. (-) Methyl n-tetradeca-trans-2,4,5-trienoate, an allenic ester produced by the male dried bean beetle, acanthoscelides obtectus (Say). J. Chem. Soc. C. 1970, 859-862; (c) Cox, P. J.; Imre, S.; Islimyeli, S.; Thomson, R. H. Obusallene I, a new halogenated allene from laurencia obtusa. Tetrahedron Lett. 1982, 5, 579-580; (d) Gorins, G.; Kuhnert, L.; Johnson, C. R.; Marnett, L. J. (Carboxyalkyl)benzy propargyl ethers as selective inhibitors of leukocyte-type 12-lipoxygenases. J. Med. Chem. 1996, 39, 4871-4878; (e) McGrath, M. J.; Fletcher, M. T.; König, W. A.; Moore, C. J.; Cribb, B. W.; Allsopp, P. G.; Kitching, W. A suite of novel allenes from australian melolonthine scarab beetles. Structure, synthesis, and stereochemistry. J. Org. Chem. 2003, 68, 3739-3748; (f) Hoffmann-Röder, A.; Krause, N. Synthesis and properties of allenic natural products and pharmaceuticals. Angew. Chem. Int. Ed. 2004, 43, 1196-1216; (g) Jian, Y. J.; Wu, Y. The enantioselective total synthesis of nemotin. Org. Biomol. Chem. 2010. 8. 811-821.
- [2] (a) Hiroi, K.; Kato, F.; Yamagata, A. Asymmetric direct α , β functionalization of allenes via asymmetric carbopalladation. Chem. Lett. 398, 397-398; (b) Ogasawara, M.; Nagano, T.; Hayashi, T. A new route to methyl (R,E)-(-)-Tetradeca-2,4,5-trienoate (Pheromone of Acanthoscelides obtectus) utilizing a Palladium-catalyzed asymmetric allene formation reaction. J. Org. Chem. 2005, 70, 5764-5767; (c) Crouch, I. T.; Neff, R. K.; Frantz, D. E. Pd-catalyzed asymmetric β -Hydride elimination en route to chiral allenes. J. Am. Chem. Soc. 2013, 135, 4970-4973; (d) Tang, X.; Huang, X.; Cao, T.; Han, Y.; Jiang, X.; Lin, W.; Tang, Y.; Zhang, J.; Yu, Q.; Fu, C.; Ma, S. CuBr2-catalyzed enantioselective routes to highly functionalized and naturally occurring allenes. Org. Chem. Front. 2015. 2. 688-691: (e) Jiang. X.; Xue, Y.; Ma, S. Aerobic oxidation and EATA-based highly enantioselective synthesis of lamenallenic acid. Org. Chem. Front. 2017, 4, 951-957; (f) Oonishi, Y.; Hosotani, A.; Yokoe, T.; Sato, Y. Rhodium(I)catalyzed enantioselective hydroacylation of racemic allenals via dynamic kinetic resolution, Ora. Lett. 2019, 21, 4120-4123.
- [3] (a) Campolo, D.; Gastaldi, S.; Roussel, C.; Bertrand, M. P.; Nechab, M. Axialto-central chirality transfer in cyclization processes. *Chem. Soc. Rev.* 2013,

42, 8434-8466; (b) Neff, R. K.; Frantz, D. E. Recent applications of chiral allenes in axial-to-central chirality transfer reactions. Tetrahedron 2015, 71, 7-18; (c) Alonso, J. M.; M. Quirós, T.; Muñoz, M. P. Chirality transfer in metal-catalysed intermolecular addition reactions involving allenes. Org. Chem. Front. 2016, 3, 1186-1204; (d) Amako, Y.; Arai, S.; Nishida, A. Transfer of axial chirality through the nickel-catalysed hydrocyanation of chiral allenes. Org. Biomol. Chem. 2017, 15, 1612-1617; (e) Zhou, J.; Fu, C.; Ma, S. Gold-catalyzed stereoselective cycloisomerization of allenoic acids for two types of common natural γ-butyrolactones. Nat. Commun. 2018, 9, 1654-1663; (f) Han, Y.; Ma, S. Rhodium-catalyzed highly diastereoselective intramolecular [4+2] cycloaddition of 1,3-disubstituted allene-1,3-dienes. Org. Chem. Front. 2018, 5, 2680-2684; (g) Han, Y.; Qin, A.; Ma, S. One stone for three birds-rhodium-catalyzed highly diastereoselective intramolecular [4+2] cycloaddition of optically active allene-1,3-dienes. Chin. J. Chem. 2019, 37, 486-496; (h) Han, Y.; Zhao, Y.; Ma, S. Rhodium-catalyzed Pauson-Khand-type cyclization of 1,5-allene-alkynes: a chirality transfer strategy for optically active bicyclic ketones. Chem. Eur. J. 2019, 25, 9529-9533.

- [4] For selected reviews of the synthesis of allenes: (a) Krause, N.; Hoffmann-Röder, A. Synthesis of allenes with organometallic reagents. *Tetrahedron* 2004, *60*, 11671-11694; (b) Brummond, K. M., DeForrest, J. E. Synthesizing allenes today (1982 2006). *Synthesis* 2007, *6*, 795-818; (c) Ogasawara, M. Catalytic enantioselective synthesis of axially chiral allenes. *Tetrahedron: asymmetry* 2009, *20*, 259-271; (d) Yu, S.; Ma, S. How easy are the syntheses of allenes? *Chem. Commun.* 2011, *47*, 5384-5418; (e) Neff, R. K.; Frants, D. E. Recent advances in the catalytic syntheses of allenes: a critical assessment. *ACS Catal.* 2014, *4*, 519-528; (f) Ye, J.; Ma, S. Conquering three-carbon axial chirality of allenes. *Org. Chem. Front.* 2014, *1*, 1210-1224; (g) Chu, W.; Zhang, Y.; Wang, J. Recent advances in catalytic asymmetric synthesis of allenes. *Catal.* 2017, *7*, 4570-4579.
- [5] For recent reports on catalytic enantioselective syntheses of allenes, see: (a) Li, C.; Wang, X.; Sun, X.; Tang, Y.; Zheng, J.; Xu, Z.; Zhou, Y.; Dai, L. Iron porphyrin-catalyzed olefination of ketenes with diazoacetate for the enantioselective synthesis of allenes. J. Am. Chem. Soc. 2007, 129, 1494-1495; (b) Nishimura, T.; Makino, H.; Nagaosa, M.; Hayashi, T. Rhodiumcatalyzed enantioselective 1,6-addition of arylboronic acids to enynamides: asymmetric synthesis of axially chiral allenylsilanes. J. Am. Chem. Soc. 2010, 132, 12865-12867; (c) Wan, B.; Ma, S. Enantioselective decarboxylative amination: synthesis of axially chiral allenyl amines. Angew. Chem. Int. Ed. 2013, 52, 441-445; (d) Wang, Y.; Zhang, W.; Ma, S. A room-temperature catalytic asymmetric synthesis of allenes with ECNU-Phos. J. Am. Chem. Soc. 2013, 135, 11517-11520; (e) Wang, M.; Liu, Z.; Zhang, X.; Tian, P.; Xu, Y.; Loh, T. P. Synthesis of highly substituted racemic and enantioenriched allenylsilanes via Copper-catalyzed hydrosilylation of (Z)-2-alken-4-ynoates with silylboronate. J. Am. Chem. Soc. 2015, 137, 14830-14833; (f) Yao, Q.; Liao, Y.; Lin, L.; Lin, X.; Ji, J.; Liu, X.; Feng, X. Efficient synthesis of chiral trisubstituted 1,2-allenyl ketones by catalytic asymmetric conjugate addition of malonic esters to enynes. Angew. Chem. Int. Ed. 2016, 55, 1859-1863; (g) Liu, Y.; Liu, X.; Hu, H.; Guo, J.; Xia, Y.; Lin, L.; Feng, X. Synergistic kinetic resolution and asymmetric propargyl claisen rearrangement for the synthesis of chiral allenes. Angew. Chem. Int. Ed. 2016. 55, 4054-4058: (h) Chu, W. D.; Zhang, L.; Zhou, Q.; Mo, F.; Zhang, Y.; Wang, J. Enantioselective Synthesis of trisubstituted allenes via Cu(I)-catalyzed coupling of diazoalkanes with terminal alkynes. J. Am. Chem. Soc. 2016, 138, 14558-14561; (i) Poh, J. S.; Makai, S.; Keutz, T. v.; Tran, D. N. Battilocchio, C.; Pasau, P.; Ley, S. V. Rapid asymmetric synthesis of disubstituted allenes by coupling of flow-generated diazo compounds and propargylated amines.

Angew. Chem. Int. Ed. 2017, 56, 1864-1868; (j) Wei X.-F.; Wakaki, T.; Itoh, T.; Li, H.-L.; Yoshimura, T.; Miyazaki, Aya.; Oisaki, K.;, Hatanaka, M.;, Shimizu, Y.; Kanai, M. Catalytic regio- and enantioselective proton migration from skipped enynes to allenes. Chem. 2018, 5, 585-599; (k) Hölzl-Hobmeier, A.; Bauer, A.; Silva, A. V.; Huber, S. M.; Bannwarth, C.; Bach, T. Catalytic deracemization of chiral allenes by sensitized excitation with visible light. Nature 2018, 564, 240-243; (I) Poulsen, P. H.; Li, Y.; Lauridsen, V. H.; Jørgensen, D. K. B.; Palazzo, T. A.; Meazza, M.; Jørgensen, K. A. Organocatalytic formation of chiral trisubstituted allenes and chiral furan derivatives. Angew. Chem. Int. Ed. 2018, 57, 10661-10665; (m) Petrone, D. A.; Isomura, M.; Franzoni, I.; Rössler, S. L.; Carreira, E. M. Allenylic carbonates in enantioselective Iridium-catalyzed alkylations. J. Am. Chem. Soc. 2018. 140. 4697-4704: (n) Trost. B. M.: Zell. D.: Hohn. C.: Mata, G.; Maruniak, A. Enantio- and diastereoselective synthesis of chiral allenes by Palladium-catalyzed asymmetric [3+2] cycloaddition reactions. Angew. Chem. Int. Ed. 2018, 57, 12916-12920; (o) Huang, Y.; Pozo, J.; Torker, S.; Hoveyda, A. H. Enantioselective synthesis of trisubstituted allenyl-B(pin) compounds by phosphine-Cu-catalyzed 1,3-Enyne hydroboration. Insights regarding stereochemical integrity of Cu-allenyl intermediates. J. Am. Chem. Soc. 2018, 140, 2643-2655; (p) Isomura, M.; Petone, D. A.; Carreira, E. M. Coordination-induced stereocontrol over carbocations: asymmetric reductive deoxygenation of racemic tertiary alcohols. J. Am. Chem. Soc. 2019, 141, 4738-4748; (q) Adamson, N. J.; Jeddi, H.; Malcolmson, S. J. Preparation of chiral allenes through Pd-catalyzed intermolecular hydroamination of conjugated enynes: enantioselective synthesis enabled by catalyst design. J. Am. Chem. Soc. 2019, 141, 8574-8583; (r) Bayeh-Romero, L.; Buchwald, S. L. Copper hydride catalyzed enantioselective synthesis of axially chiral 1,3-disubstituted allenes. J. Am. Chem. Soc. 2019. 141. 13788-13794: (s) Zhu. C.: Chu. H.: Li. G.: Ma. S.: Zhang, J. J. Am. Chem. Soc. 2019, 141, 19246-19251; (t) Zheng, W.-F., Zhang, W.; Huang, C.; Wu, P.; Qian, H.; Wang, L.; Guo, Y.-L.; Ma, S. Tetrasubstituted allenes via the palladium catalysed kinetic resolution of propargylic alcohols using a supporting ligand. Nat. Catal. 2019, 2, 997-1005; (u) Yang, J.; Wang, Z.; He, Z.; Li, G.; Hong, L.; Sun, W.; Wang, R. Organocatalytic enantioselective synthesis of tetrasubstituted α -amino allenoates by dearomative γ -addition of 2,3-disubstituted indoles to β , γ alkynyl-a-imino esters. Angew. Chem. Int. Ed. 2020, 59, 642-647; (v) Wang, H.; Luo, H.; Zhang, Z.-M.; Zheng, W.-F.; Yin, Y.; Qian, H.; Zhang, J.; Ma, S. J. Am. Chem. Soc. 2020, 10.1021/jacs.0c02876.

[6] (a) Rodriguez, O.; Morrison, H. Photosensitized racernization of an optically active allene. *Chem. Commun.* 1971, 679; (b) Claesson, A.; Olsson, L. I. Chiral allenes are racernised by organocupratest. *J.C.S. Chem. Comm.* 1979, 524-525; (c) Hrváth, A.; Bäckvall, J. Mild and efficient palladium(II)-catalyzed racemization of allenes. *Chem. Commun.* 2004, 964-965; (d) Molander, G. A.; Sommers, E. M.; Baker, S. R. Palladium(0)-catalyzed synthesis of chiral ene-allenes using alkenyl trifluoroborates. *J. Org. Chem.* 2006, *71*, 1563-1568; (e) Gandon, V.; Lemière, G.; Hours, A.; Fensterbank, L.; Malacria, M. The role of bent acyclic allene gold complexes in axis-tocenter chirality transfers. *Angew. Chem. Int. Ed.* 2008, *47*, 7534-7538; (f) Burks, H. E.; Liu, S.; Morken, J. P. Development, mechanism, and scope of the palladium-catalyzed enantioselective allene diboration. *J. Am. Chem.*

Soc. **2007**, *129*, 8766-8773; (g) Butler, K. L.; Tragni, M.; Wdenhoefer, R. A. Gold(I)-catalyzed stereoconvergent, intermolecular enantioselective hydroamination of Allenes. *Angew. Chem. Int. Ed.* **2012**, *51*, 5175-5178; (h) Hilpert, L. J.; Sieger, S. V.; Haydl, A. M.; Breit, B. Palladium- and Rhodium-catalyzed dynamic kinetic resolution of racemic internal allenes towards chiral pyrazoles. *Angew. Chem. Int. Ed.* **2019**, *58*, 3378-3381.

- [7] For reports on Pd-catalyzed enantioselective allenylation of malonates with 2,3-allenol derivatives, see: (a) Imada, Y.; Ueno, K.; Kutsuwa, K.; Murahashi, S. I. Palladium-catalyzed asymmetric alkylation of 2,3-Alkadienyl phosphates. Synthesis of optically active 2-(2,3alkadienyl)malonates. Chem. Lett. 2002, 140-141; (b) Trost, B. M.; Fandrick, D. R. & Dinh, D. C. Dynamic kinetic asymmetric allylic alkylations of allenes. J. Am. Chem. Soc. 2005, 127, 14186-14187; (c) Nemoto, T.; Kanematsu, M.; Tamura, S.; Hamada, Y. Palladium-catalyzed asymmetric allylic alkylation of 2,3-allenyl acetates using a chiral diaminophosphine oxide. Adv. Synth. Catal. 2009, 351, 1773-1778; (d) Li, Q.; Fu, C.; Ma, S. Catalytic asymmetric allenylation of malonates with the generation of central chirality. Angew. Chem. Int. Ed. 2012, 51, 11783-11786; (e) Dai, J.; Duan, X.; Zhou, J.; Fu, C.; Ma, S. Catalytic enantioselective simultaneous control of axial chirality and central chirality in allenes. Chin. J. Chem. 2018, 36, 387-391; (f) Song, S.; Zhou, J.; Fu, C.; Ma, S. Catalytic enantioselective construction of axial chirality in 1,3-disubstituted allenes. Nat. Coummn. 2019, 10, 507-515.
- [8] For reports on the Pd-catalyzed enantioselective syntheses of allenes via 2,3-allenylation of malonates with 1,3-dien-2-yl derivatives, see: (a) Ogasawara, M.; Ikeda, H.; Nagano, T.; Hayashi, T. Palladium-catalyzed asymmetric synthesis of axially chiral allenes: a synergistic effect of dibenzalacetone on high enantioselectivity. *J. Am. Chem. Soc.* 2001, *123*, 2089-2090; (b) Ogasawara, M.; Ge, Y.; Uetake, K.; Takahashi T. Vinyl ketones to allenes: preparation of 1,3-Dien-2-yl triflates and their application in Pd-catalyzed reactions with soft nucleophiles. *Org. Lett.* 2005, *7*, 5697-5700; (c) Wu, Z.; Berhal, F.; Zhao, M.; Zhang, Z.; Ayad, T.; Ratovelomanana-Vidal, V. Palladium-catalyzed efficient enantioselective synthesis of chiral allenes: steric and electronic effects of ligands. *ACS Catal.* 2014, *4*, 44-48.
- [9] Ogasawara, M.; Ikeda, H.; Hayashi, T. π-Allylpalladium-mediated catalytic synthesis of functionalized allenes. *Angew. Chem. Int. Ed.* 2000, *39*, 1042-1044.
- [10] Gulías, M.; Collado, A.; Trillo, B.; López, F.; Oñate, E.; Esteruelas, M. A.; Msacreñas, J. L. Ruthenium-catalyzed (2+2) intramolecular cycloaddition of allenenes. J. Am. Chem. Soc. 2011, 133, 7660-7663.
- [11] Ogasawara, M.; Okada, A.; Watanabe, S.; Fan, L.; Uetake, K.; Nakajima, K.; Takahashi, T. Synthesis, structure, and reactivity of (1,2,3-η³-Butadien-3yl)palladium complexes. *Organometallics* **2007**, *26*, 5025-5029.

(The following will be filled in by the editorial staff) Manuscript received: XXXX, 2019 Manuscript revised: XXXX, 2019 Manuscript accepted: XXXX, 2019 Accepted manuscript online: XXXX, 2019 Version of record online: XXXX, 2019

Entry for the Table of Contents

nucleophilic allenylation of 2-non-substituted and 2-substituted malonates with allenylic carbonates has been developed.

^a Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, People's Republic of China. E-mail:masm@sioc.ac.cn

Chin. J. Chem. 2018, template© 2018 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, **WILEY** Weinheim ONLINE LIBRARY