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Neighboring-group participation in the reaction catalyzed by purine nucleoside phosphorylase involves a
compression mode between the 50- and 40-ribosyl oxygens, facilitated by His257. The His257Gly mutant
opens a space in the catalytic site. Hydrophobic 50-substituted Immucillins are transition-state analogue
inhibitors of this mutant enzyme. Dissociation constants as low as 2 pM are achieved, with Km/Kd as high
as 400,000,000.
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Purine nucleoside phosphorylase (PNP)1 catalyzes the phospho-
rolytic cleavage of inosine and guanosine as well as their 20-deoxy
analogues to (deoxy)ribose 1-phosphate and hypoxanthine or
guanine (Fig. 1).

Inhibition of human PNP activity causes accumulation of deoxy-
guanosine, which in turn leads to downstream inhibition of cell
division and apoptosis specifically in T-lymphocytes.2–4 Thus,
PNP has been identified as a target for the treatment of T-cell
lymphoma, rheumatoid arthritis, psoriasis, multiple sclerosis, and
other T-cell mediated disorders.5

The human PNP-catalyzed reaction has been shown to proceed
through a dissociative transition state characterized by a ribo-
oxacarbenium ion with a cationic C-10, which is separated from
the nucleobase by >3 Å.6 These features were incorporated into a
family of transition-state analogue inhibitors called Immucillins
(Fig. 2), whose members typically possess low nanomolar to
picomolar affinity for human PNP. The potent inhibitors exhibit
slow-onset behavior, where a time-dependent conformational
change converts the initial enzyme–inhibitor complex (E�I), with
dissociation constant Ki, to an even more stable complex (E*�I), with
dissociation constant Ki

*. The first-generation inhibitor, Immucil-
lin-H (ImmH, 1),7 has a Ki of 3.3 nM and a Ki

* of 58 pM.8 Modifica-
tion of ImmH produced second- and third-generation Immucillins
represented by DADMe-ImmH (4)9 and SerMe-ImmH (9),10 respec-
tively, with Ki

* values of 11 and 5.2 pM, respectively.
All rights reserved.
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).
Mutation of His257 has shown that this residue serves an
important role in transition-state formation by hydrogen-bonding
with the 50-OH, orienting it into an electron-rich ‘oxygen stack’
with O-40 and OP from the phosphate nucleophile (Fig. 3).8 This
interaction is reasoned to provide electron density to weaken the
ribosidic bond and stabilize the developing cationic transition
state. Though mutation adversely affected the steady-state proper-
ties of PNP, mutants were capable of binding ImmH and DADMe-
ImmH with reasonably good affinity. Structural analysis revealed
that one of the mutants, His257Gly, was capable of binding these
inhibitors nearly identically to the native protein, despite side-
chain removal (Fig. 4). We envisioned that the active-site cavity
introduced in the His257Gly mutant could be exploited in the
binding of bulkier Immucillin derivatives.

50-Methylthio-ImmH (MeS-ImmH, 2) and 50-phenylthio-ImmH
(PhS-ImmH, 3)11 were originally developed as specific inhibitors
of PNP from Plasmodium falciparum, exhibiting 112- and 2-fold
binding preference over human PNP, respectively.12 With native
human PNP, 2 and 3 bind with weaker affinity than 1, showing
no slow-onset behavior and yielding Ki values of 101 and
160 nM, respectively (Table 1). In comparison to the substrate ino-
sine (Km = 40 lM), modification of the 50-hydroxyl of ImmH re-
sulted in a drop in relative affinity (Km/Ki) from 690,000 to 400
and 250, respectively. Mutation of His257 to glycine abolished
the slow-onset character of ImmH (1), resulting in a Ki of
11.0 nM. Taken in light of the elevated Km (750 lM) with this mu-
tant, the relative affinity decreased 10-fold relative to the native
enzyme [(mutant Km/Ki)/(native Km/Ki) = 0.099]. In the case of the
bulkier derivatives 2 and 3, however, not only was increased
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Figure 2. Three-generations of Immucillins, potent PNP transition-state analogue inhibitors. ImmH, DADMe-ImmH, and SerMe-ImmH are shown along with 50-alkylthio and
arylthio derivatives used in this study.

Figure 1. Phosphorolysis of inosine catalyzed by PNP.
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absolute affinity observed (Ki = 4.9 and 6.0 nM, respectively),
but also the relative affinity increased to 150,000 and 120,000,
respectively, up to 500-fold over native PNP.

The second-generation transition-state analogue DADMe-
ImmH (4) was designed to mimic the human PNP transition state
by increasing the leaving group distance through introduction of
a methylene bridge between the pseudoribosidic bond and by
moving the cationic ring nitrogen to the 10-position, where signif-
icant positive-charge character is developed at the transition
state.13 With the native enzyme, DADMe-ImmH was found to be
a more potent inhibitor than ImmH, giving a Ki

* of 10.7 pM.8 Unlike
the case with ImmH, the His257Gly mutant bound DADMe-ImmH
in a slow-onset manner, with only slightly lowered relative affinity
[(mutant Km/Ki)/(native Km/Ki) = 0.74]. 50-Methylthio-DADMe-
ImmH (MeS-DADMe-ImmH, 5) and 50-propylthio-DADMe-ImmH
(PrS-DADMe-ImmH, 6)12 maintained strong potency with the na-
tive enzyme with Ki

* values of 19.6 pM (Km/Ki = 2,000,000) and
9.8 pM (Km/Ki = 4,100,000), respectively. These inhibitors were
found to be strikingly effective with the His257Gly mutant, exhib-
iting slow-onset inhibition and yielding Ki

* values of only 2.8 and
1.9 pM, respectively. Not only are these values lower than the most
potent inhibitor tested to date with native human PNP, but also the
relative affinities (Km/Ki) of 270,000,000 and 400,000,000 are the
largest ever reported for any enzyme–inhibitor system. Inhibitors
5 and 6 are therefore bound with 130- and 97-fold preference,
respectively, over the native protein.

Further derivatization of 5 to (±)-50-deoxy-40-fluoro-50-methyl-
thio-DADMe-ImmH (40-F-MeS-DADMe-ImmH, 7) was accom-
plished by functional group exchange from the fluorinated diol
precursor 11, followed by Mannich reaction of 13 with 9-deaza-



Scheme 1. Reagents and conditions: (a) Bu2SnO, toluene, reflux, then MsCl, 81%; (b)
NaSMe, DMF, 68%; (c) 6 N HCl; (d) 9-deazahypoxanthine, CH2O, NaOAc, water–
dioxane, 100 �C, 30%.

Figure 3. Proposed role of His257 in formation of the transition state, featuring
dynamic compression of the O50-O40-OP ‘oxygen stack’. The ‘oxygen stack’ is
represented by hashed bonds connecting bolded atoms, and arrows indicate
promoting vibrational modes. Dashed bonds represent hydrogen bonds and partial
bonds. Dynamic compressive motions (larger solid arrows) from the enzyme push
O-50 and the phosphate oxygen toward the ring oxygen, providing electron density
to stabilize ribooxacarbenium-ion development and promote ribosidic bond fission.

Figure 4. Overlay of the crystal structures of native human PNP and His257Gly
complexed with ImmH and phosphate (PO4). Side chains of selected active-site
residues within 3.2 Å of ImmH have been included. Carbon atoms of these residues
and of ImmH are green in the native enzyme and cyan in His257Gly. PO4 is colored
yellow and black in the native and mutant PNPs, respectively. The H-bond between
His257 and the 50-OH is indicated.
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hypoxanthine and formaldehyde (Scheme 1).14 Both the fluori-
nated derivative 7 and 50-deoxy-40-hydroxy-50-methylthio-DAD-
Table 1
Dissociation constants of transition-state analogues with native human PNP and His257G

Inhibitor Native human PNP (inosine Km = 40 lM)b

Ki (nM) Ki
* (nM)c Km/Ki

d

ImmH (1)b 3.3 ± 0.2 0.0579 ± 0.0015 690,00
MeS-ImmH (2) 101 ± 4 n/a 40
PhS-ImmH (3) 160 ± 15 n/a 25
DADMe-ImmH (4)b 1.10 ± 0.12 0.0107 ± 0.0011 3,700,00
MeS-DADMe-ImmH (5) 0.10 ± 0.02 0.0196 ± 0.0012 2,000,00
PrS-DADMe-ImmH (6) 0.117 ± 0.015 0.0098 ± 0.0007 4,100,00
40-F-MeS-DADMe-ImmH (7) 5.8 ± 0.4 n/a 750
40-OH-MeS-DADMe-ImmH (8) 7.9 ± 1.1 n/a 510
SerMe-ImmH (9) 0.11 ± 0.02 0.0052±0.0004 7,700,00
MeS-SerMe-ImmH (10) 4.3 ± 0.2 n/a 930

a All inhibition constants reported here were determined by the reported xanthine
preparation.

b Values are from Ref. 8. All other values in this table are either newly determined or
c Ki

* is the final, equilibrium dissociation constant for the slow-onset, tight-binding p
d This ratio is Km/Ki

* in cases where slow-onset inhibition occurs.
e The weak inhibition phase (Ki) was observed but too short to accurately quantitate,
Me-ImmH (40-OH-MeS-DADMe-ImmH, 8)12 resulted in the loss of
slow-onset inhibition with native and mutant enzymes. These
compounds bound nearly equally well to native PNP with relative
affinities of 7500 and 5100, respectively. As in the case with 5 and
6, when compounds 7 and 8 were tested with the glycine mutant,
the dissociation constants dropped, resulting in enhanced relative
affinities of 540,000 and 600,000, respectively, corresponding to
78- and 120-fold improvements over the native enzyme.

The third generation of PNP transition-state inhibitors consist of
acyclic analogues of DADMe-ImmH. SerMe-ImmH (9), despite its
lack of stereocenters, binds to human PNP with a Ki

* of 5.2 pM.10

As was observed with ImmH, mutation of His257 resulted in the
loss of slow-onset behavior, lowering the relative affinity from
7,700,000 to 260,000. The corresponding ratio of the relative affin-
ities is 0.033, which is the lowest among the 10 inhibitors tested.
SerMe-ImmH was also derivatized to the methylthio analogue 10
in a manner similar to that outlined for compound 7 above
(Scheme 2).15 As observed for compounds 7 and 8, incubation of
MeS-SerMe-ImmH (10) with native and mutant PNP lacked the
slow-onset property of its underivatized analogue, yielding a lower
Km/Ki with the native protein (9300) but a larger value (680,000)
with His257Gly. The discrimination for 10 by His257Gly is
therefore 73-fold greater than that by native PNP.

This study has confirmed that human PNP tolerates substitution
of the 50-hydroxyl of the transition-state analogues ImmH, DAD-
Me-ImmH, and SerMe-ImmH with alkylthio and arylthio groups;
however, except for compounds 5 and 6, the slow-onset nature
of inhibition is lost, and inhibitor dissociation constants increase
by two to three orders of magnitude. When the imidazole moiety
of residue 257 is removed by mutation, the loss of an H-bond part-
ner for the 50-OH likely accounts for the observed decreases
in binding affinity for the unmodified analogues 1, 4, and 9.
lya

His257Gly (inosine Km = 750 lM)b Mutant Km /Ki

Ki (nM) Ki
* (nM)c Km/Ki

d Native Km/Ki

0 11.0 ± 0.9 n/a 68,000 0.099
0 4.9 ± 0.5 n/a 150,000 390
0 6.0 ± 0.3 n/a 120,000 500
0 e 0.27 ± 0.02 2,800,000 0.74
0 0.11 ± 0.02 0.0028 ± 0.0003 270,000,000 130
0 0.066 ± 0.006 0.0019 ± 0.0002 400,000,000 97
0 1.40 ± 0.04 n/a 540,000 78
0 1.26 ± 0.11 n/a 600,000 120
0 2.93 ± 0.04 n/a 260,000 0.033
0 1.10 ± 0.03 n/a 680,000 73

-oxidase-coupled assay (Ref. 12) using native or mutant enzyme from the same

have been redetermined in this study to ensure reliable comparisons.
hase of inhibition. ‘n/a’ indicates that no slow-onset phase was observed.

so only Ki
* is reported.



Scheme 2. Reagents and conditions: (a) Boc2O, MeOH; (b) 1 equiv NaH, TBDMSCl,
THF, 71% (2 steps); (c) MsCl, Et3N, CH2Cl2; (d) NaSMe, DMF, 78% (2 steps); (e) HCl,
MeOH, H2O; (f) 9-deazahypoxanthine, CH2O, NaOAc, H2O, 80 �C, 28% (2 steps).
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Nevertheless, the active-site cavity that is created accommodates
bulkier functionalities which lack H-bonding opportunities. In all
cases, the His257 mutant exhibited enhanced binding affinities rel-
ative to substrate for bulkier analogues over native PNP by factors
ranging from 73 to 500. Unprecedented selective binding was ob-
served with 5 and 6, which associate up to 400 million times more
tightly with His257Gly than inosine.
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