Stereoselective Reduction of 2-Methyl-3-oxo Esters (or Amides) with Sodium Borohydride Catalyzed by Manganese(II) Chloride or Tetrabutylammonium Borohydride. A Practical Preparation of *erythro* and *threo*-3-Hydroxy-2-methyl Esters (or Amides)

Masahiko Taniguchi, Hideaki Fujii, Koichiro Oshima,* and Kiitiro Utimoto*

Division of Material Chemistry, Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan

(Received in Japan 19 August 1993; accepted 8 October 1993)

Abstract: erythro-3-Hydroxy-2-methylpropionates or erythro-3-hydroxy-2-methylpropionamides were prepared with high stereoselectivity by NaBH₄ reduction of the corresponding 2-methyl-3-oxo esters or 2-methyl-3-oxo amides in the presence of a catalytic amount of manganese(II) chloride. On the other hand, reduction of these substrates with n-Bu₄NBH₄ provided threo-isomers selectively. erythro-Selective reduction of 2-methyl-3-oxo amides with NaBH₃CN in 1N HCI-MeOH is also described.

The stereoselective synthesis of *erythro* or *threo*-3-hydroxy-2-methyl esters and *erythro* or *threo*-3-hydroxy-2-methyl amides is a challenging problem for synthetic organic chemists since these moieties repeatedly appear in the framework of natural products.¹ Aldol condensation of various metal enolates has been successfully employed for such purpose.² A promising alternative solution of this problem is the stereoselective reduction of the corresponding 2-methyl-3-oxo esters or 2-methyl-3-oxo amides. Selective reduction with $Zn(BH_4)_2^3$ or PhMe₂SiH/CF₃COOH⁴ has been reported to give aldol type products of the *erythro* configuration. Meantime, potassium triethylborohydride (KBHEt₃)⁵ or PhMe₂SiH/F⁻ reagent⁶ proved to be effective for *threo*-directed reduction. Here we wish to report⁷ an extremely simple and effective alternative procedure for the stereoselective reduction of 2-methyl-3-oxo esters or amides into *erythro* (or *threo*)-3-hydroxy-2-methyl esters or amides with NaBH₄ in the presence of a catalytic amount of MnCl₂ (or *n*-Bu₄NBH₄).⁸

(1) erythro-Selective Reduction of 2-Methyl-3-oxo Esters with Sodium Borohydride in Methanol in the Presence of Manganese(II) Chloride

The keto ester PhCOCH(CH₃)COOEt (1a) was chosen as a substrate and the stereoselectivity of the reduction of 1a (1.0 mmol) with NaBH₄ (1.0-2.0 mmol) was examined in the presence of various metal chlorides (2.0 mmol) which were readily soluble in methanol (Table 1). Coexistence of metal chloride accelerated the reaction and increased the formation of *erythro* product. The reduction required only 10 min at

0 °C. One exceptional example was a reduction of 1a with NaBH₄ in the presence of ZnCl₂ which gave *erythro* product selectively in spite of the retardation of the reaction rate. The reduction required 6 h. Other metal chlorides such as CoCl₂, CrCl₃, RuCl₃, AgCl, PdCl₂ also retarded the reaction and gave a mixture of 2a and 3a in ratios of 36/64-17/83 which were close to the ratio (25/75) obtained in the reduction without metal chloride. It is worth to comment several points. 1) Going down the periodic table, selectivity (2a/3a) decreased in the case of alkaline earth metallic chlorides. The fact might be explained by the formation of rigid transition state (*vide infra*, Scheme 1) for the metal chloride which has small ionic radius. The ionic radius⁹ of metal and the ratio of the products (2a/3a) were as follows: Mg²⁺, 0.86 Å, 86/14; Ca²⁺, 1.14 Å, 80/20; Sr²⁺, 1.32 Å, 75/25; Ba²⁺, 1.49 Å, 64/36. 2) High selectivities in the reduction with NaBH₄ in the presence of MnCl₂ or ZnCl₂ could be attributed to their small ion radii (Mn²⁺: 0.81 Å and Zn²⁺: 0.88 Å) which are close to that of Mg²⁺. 3) Lanthanoids accelerated the reaction, but the selectivities were not high (61/39-66/34) and were similar to the selectivity with BaCl₂ which is a left-hand neighbor of lanthanoids in periodic table.

Ph OEt Me 1a		Ph OEt + F Me 2a	Ph O Me 3a
Metal Chloride	Ratio of 2a/3a	Metal Chloride	Ratio of 2a/3a
None	25/75	SrCl ₂	75/25
CeCl ₃	61/39	CaCl ₂	80/20
SmCl ₂	64/36	ZnCl ₂	86/14
BaCl ₂	64/36	MgCl ₂	86/14
YbCl ₃	66/34	MnCl ₂	90/10

Table 1. Reduction of PhCOCH(CH₃)COOEt (1a) with NaBH₄ in the Presence of Various Metal Chloride

Among many metal chlorides, three metal chlorides $CaCl_2$, $ZnCl_2$, and $MnCl_2$ were selected because of their high selectivity and easy handling. The reduction of various 2-alkyl-3-oxo esters with NaBH₄ was examined in the presence of these metal halides at 0 °C in methanol. The results are shown in Table 2 with examples by NaBH₄ for comparison.

Table 2. Selective Reduction of 3-Keto Ester	rsa)
--	------

5 6 7 8	Bu → OEt Me 1b	None CaCl ₂ (2.0) MnCl ₂ (2.0) MnCl ₂ (0.2)	10/90 92/8 99/1 95/5
9 10 11 12	OEt Me 1c	None ZnCl ₂ (2.0) CaCl ₂ (2.0) MnCl ₂ (2.0)	25/75 49/51 80/20 76/24
13	Ph	None	38/62
14	Me	CaCl ₂ (2.0)	72/28
15	1d	MnCl ₂ (2.0)	70/30
16 17 18	Me OMe Me 1e	None CaCl ₂ (2.0) MnCl ₂ (2.0)	41/59 57/43 60/40
19	Ph Ot-Bu	None	12/88
20	Me 1f	MnCl ₂ (2.0)	78/22
21	Ph OMe	None	27/73
22	Et 1g	MnCl ₂ (2.0)	92/8
23	Ph OMe	None	72/28
24		MnCl ₂ (2.0)	99/1
25 26 27	Ph OMe Ph 11	None CaCl ₂ (2.0) MnCl ₂ (2.0)	86/14 >99/1 >99/1

a) The reactions were performed in methanol at 0 °C. The combined isolated yields of 2 and 3 were 80-95%.

The experimental results can be summarized as follows. 1) Whereas the reduction with NaBH₄ in the absence of metal chlorides gave *threo* isomer 3 as a major product, the reduction with NaBH₄ in the presence of metal chlorides afforded *erythro* product 2 predominantly. 2) Manganese(II) chloride provided the highest *erythro* selectivity for all substrates except for the cases of 1c and 1d. 3) In the case of 3-oxo ester 1b, *erythro* product was obtained exclusively. The reduction of 1b could be conducted in the presence of a catalytic

amount of MnCl₂ with small loss of stereoselectivity (Entry 8). 4) The replacement of 2-Me group by ethyl group did not affect the stereoselectivity so much. However, the use of isopropyl or phenyl group instead of methyl group changed the selectivity dramatically and *erythro* 3-hydroxy-2-isopropyl or 3-hydroxy-2-phenyl ester was obtained almost exclusively in the presence of MnCl₂ (Entries 24 and 27).

(2) erythro-Selective Reduction of 2-Methyl-3-oxo Amides with NaBH₄ in the Presence of MnCl₂

The stereoselectivity of the reduction of PhCOCH(CH₃)CONMe₂ (4a) with NaBH₄ was examined in the presence of various metal chlorides. The respective metal chloride and the isomeric ratio of the reduction product (*erythro*-3-hydroxy amide 5a : *threo*-3-hydroxy amide 6a) were as follows: None, 25/75; SrCl₂, 85/15; CaCl₂, 91/9; CeCl₃, 97/3, YbCl₃, 98/2; MgCl₂, >99/1; ZnCl₂, >99/1; MnCl₂, >99/1. A remarkably higher stereoselectivity was observed in the reduction of 3-keto amides 4a-4d compared to selectivity in the reduction of 3-keto esters. As shown in Table 3, MnCl₂ gave the highest selectivity for substrates 4a, 4c, and 4d. Again, the reduction with CaCl₂ or MnCl₂ was fast and required only 10 min at 0 °C. It is worth noting that MnCl₂ could be reduced to a catalytic amount without decrease of selectivity. For instance, the reduction of 4a (1.0 mmol) with NaBH₄ in the presence of 0.2 mmol, 0.1 mmol, or 0.05 mmol of MnCl₂ provided hydroxy amides 5a and 6a in a ratio of 5a/6a = >99/1, >99/1, or 99/1, respectively.

The reduction of 4a with other borohydrides such as NaBH(OAc)₃¹⁰ and LiBH₄ was examined. A high selectivity (5a/6a = 97/3) was observed in the reduction with NaBH(OAc)₃ in the presence of MnCl₂, whereas the reduction did not take place in the absence of MnCl₂. In the case of the reduction with LiBH₄, *erythro*-3-hydroxy amide 5a was obtained almost exclusively (5a/6a = 99/1) in the presence of MnCl₂ and a mixture of 5a and 6a (5a/6a = 56/44) was produced in the absence of metal chloride.

	NMe ₂ NaBH ₄ NMe ₂ MCl _n	R NMe ₂ + R Me 5	OH O NMe₂ Me 6
Entry	3-Keto amide	MCl ₂ (mmol)	Ratio of 5/6
1		<i>n</i> -Bu ₄ NBH ₄ (1.2) ^b)	18/82
2		None	25/75
3	o o	MgCl ₂ (2.0)	>99/1
4		CaCl ₂ (2.0)	91/9
5	Me en	ZnCl ₂ (2.0)	>99/1
6	4a	MnCl ₂ (2.0)	>99/1
7		MnCl ₂ (0.2)	>99/1

Table 3. Selective Reduction of 3-Keto Amidesa)

a) The reactions were performed in methanol at 0 °C. The combined isolated yields of 5 and 6 were 80–95%. b) The data of the reduction with n-Bu₄NBH₄ were shown for comparison.

The selective formation of erythro product 2 or 5 can be rationalized by assuming that hydride attacks the carbonyl carbon from the opposite side of the 2-methyl group in a six-membered metal chelate in a similar fashion as shown in previous reports³ on the reduction with $Zn(BH_4)_2$ (Scheme 1). The coexisting metal chlorides enhanced reactivity of keto esters or keto amides toward hydride attack. The reduction of 4a with NaBH₄ in the presence of MnCl₂ was fast even at -46 °C and required only 10 min. On the other hand, the reduction of 4a without MnCl₂ at -46 °C for 10 min resulted in formation of a small amount of hydroxy amide (~5%) in addition to the recovered starting material (90%). The importance of metal chelation was supported by the following competitive experiments. Treatment of a methanol solution of a mixture of propiophenone and 4a (1.0 mmol each) with NaBH₄ (0.1 mmol) at 0 °C for 10 min gave a mixture of 1-phenyl-1-propanol (24% yield) and 2-methyl-3-hydroxy amide (a mixture of 5a and 6a, 9% combined yield) along with recovered starting material. Thus, propiophenone reacted twice as fast as 3-oxo amide 4a without metal chloride. In contrast, reduction of the same mixture of propiophenone and 4a (1.0 mmol each) with NaBH₄ (0.1 mmol) in the presence of MnCl₂ (1.0 mmol) provided 2-methyl-3-hydroxy amide 5a (40% yield) and 1-phenyl-1-propanol (<1%). Moreover, the reaction with NaBH₄ (0.1 mmol) in the presence of a catalytic amount of MnCl₂ (0.1 mmol) also afforded 5a (32% yield) selectively. The yield of 1-phenyl-1-propanol was again <<1%. These results showed that the coordination of 4a to MnCl₂ accelerated the reduction of 4a with NaBH₄ much more

effectively as compared to the coordination of propiophenone to MnCl₂.

The ¹H NMR spectral properties of the CaCl₂ complex of 3-oxo amide **4a** (PhCOC(Ha)CH₃CONMe₂) was investigated in CD₃OD in order to substantiate the metal chelation. Upon addition of CaCl₂, the signal of the methine proton (Ha) was moved downfield. The chemical shift for Ha varied with increasing concentration of CaCl₂. Chemical shift and concentration (molar ratio of **4a**/CaCl₂) were as follows: $\delta 4.86$, without CaCl₂; $\delta 4.90$, 2/1; $\delta 5.00$, 1/1; $\delta 5.06$, 1/2. Small downfield shifts ($\Delta 80.01$ -0.05) were also observed for protons of three methyl groups. These ¹H NMR spectral changes indicate coordination of the calcium ion with 3-keto amide **4a** even in such a polar solvent as methanol. The ¹H NMR spectral properties of the CaCl₂ complex of 3-oxo ester **1a** (PhCOCH(CH₃)COOEt) was examined in similar fashion. The signal of methine proton was moved downfield slightly ($\Delta \delta 0.01$) upon addition of 4 equivalents of CaCl₂. Thus, a higher stereoselectivity in the reduction of 3-keto amides compared to selectivity in the reduction of 3-keto amides to metal chloride compared to keto esters.

(3) threo-Selective Reduction of 2-Methyl-3-oxo Esters with n-Bu4NBH4

Reduction of 2-methyl-3-oxo esters with n-Bu₄NBH₄ or NaBH₄ gave *threo* isomer 3 as a major product. In order to obtain *threo* isomer 3 more selectively, the reduction of PhCOCH(CH₃)COOEt (1a) with sodium borohydride or tetrabutylammonium borohydride was examined in detail under various reaction conditions (Table 4). The selectivity of 3a/2a increased from 65/35 to 83/17 with decrease of the amount of sodium borohydride (5 mmol per 1.0 mmol of 1a to 1.0 mmol per 1.0 mmol of 1a).

F		OR ² →Bu₄NBH₄ MeOH		• R ¹	H O OR ² Me 3
Entry	Substrate	NaBH4 (mmol) or n-Bu4NBH4	Reaction temp	Reaction time	Ratio of 2/3
1	1a	NaBH4 (0.3)	0°C	10 min	17/83a)
2	1a	NaBH4 (0.5)	0°C	10 min	17/83 ^{a)}
3	1a	NaBH4 (1.0)	0°C	10 min	17/83
4	1a	NaBH4 (3.0)	0°C	10 min	25/75
5	1a	NaBH4 (5.0)	0°C	10 min	35/65
6	1a	NaBH4 (1.0)	−23 °C	3 h	14/86

Table 4. threo-Selective Reduction of 3-Oxo Esters

1a	NaBH4 (1.0)	−78 °C	12 h	9/91
1a	n-Bu4NBH4 (1.0)	0°C	50 min	9/91
1a	n-Bu4NBH4 (1.2)	−23 °C	2 h	7/93
1a	n-Bu ₄ NBH ₄ (1.2)	−78 °C	6 h	7/93
1 b	n-Bu ₄ NBH ₄ (1.2)	0°C	2 h	6/94
1 c	n-Bu ₄ NBH ₄ (1.2)	0 °C	1 h	22/78
1 e	n-Bu4NBH4 (1.2)	0 °C	30 min	33/67
1 f	NaBH ₄ (1.0)	0 °C	30 min	12/88
1f	n-Bu4NBH4 (1.2)	0 °C	30 min	5/95
1 f	n-Bu4NBH4 (1.2)	−78 °C	6 h	3/97
1 j	n-Bu ₄ NBH ₄ (1.2)	0° C	1.5 h	2/98
1 k	<i>n</i> -Bu ₄ NBH ₄ (1.2)	0 °C	1.5 h	18/82
	1a 1a 1a 1b 1c 1e 1f 1f 1f 1f 1 1 1 k	1a NaBH4 (1.0) 1a n-Bu4NBH4 (1.0) 1a n-Bu4NBH4 (1.2) 1a n-Bu4NBH4 (1.2) 1a n-Bu4NBH4 (1.2) 1b n-Bu4NBH4 (1.2) 1c n-Bu4NBH4 (1.2) 1e n-Bu4NBH4 (1.2) 1f NaBH4 (1.0) 1f n-Bu4NBH4 (1.2) 1j n-Bu4NBH4 (1.2) 1k n-Bu4NBH4 (1.2)	1a NaBH4 (1.0) -78 °C 1a n-Bu4NBH4 (1.0) 0 °C 1a n-Bu4NBH4 (1.2) -23 °C 1a n-Bu4NBH4 (1.2) -78 °C 1a n-Bu4NBH4 (1.2) -78 °C 1b n-Bu4NBH4 (1.2) 0 °C 1c n-Bu4NBH4 (1.2) 0 °C 1e n-Bu4NBH4 (1.2) 0 °C 1f NaBH4 (1.0) 0 °C 1f n-Bu4NBH4 (1.2) 0 °C 1f n-Bu4NBH4 (1.2) 0 °C 1j n-Bu4NBH4 (1.2) 0 °C 1k n-Bu4NBH4 (1.2) 0 °C	1aNaBH4 (1.0) $-78 \ ^{\circ}\text{C}$ 12 h1a <i>n</i> -Bu4NBH4 (1.0) $0 \ ^{\circ}\text{C}$ 50 min1a <i>n</i> -Bu4NBH4 (1.2) $-23 \ ^{\circ}\text{C}$ 2 h1a <i>n</i> -Bu4NBH4 (1.2) $-78 \ ^{\circ}\text{C}$ 6 h1b <i>n</i> -Bu4NBH4 (1.2) $0 \ ^{\circ}\text{C}$ 2 h1c <i>n</i> -Bu4NBH4 (1.2) $0 \ ^{\circ}\text{C}$ 1 h1e <i>n</i> -Bu4NBH4 (1.2) $0 \ ^{\circ}\text{C}$ 30 min1fNaBH4 (1.0) $0 \ ^{\circ}\text{C}$ 30 min1f <i>n</i> -Bu4NBH4 (1.2) $0 \ ^{\circ}\text{C}$ 30 min1f <i>n</i> -Bu4NBH4 (1.2) $-78 \ ^{\circ}\text{C}$ 6 h1j <i>n</i> -Bu4NBH4 (1.2) $0 \ ^{\circ}\text{C}$ 1.5 h1k <i>n</i> -Bu4NBH4 (1.2) $0 \ ^{\circ}\text{C}$ 1.5 h

a) Starting material was recovered (30-50%).

The use of less than 1.0 mmol of NaBH₄ resulted in incompletion of the reaction and the isomeric ratio 3a/2a was unchanged (83/17, Entries 1 and 2). The reaction at low temperature improved the *threo* selectivity. For instance, treatment of 1a with NaBH₄ in methanol at -78 °C gave a mixture of 3a and 2a in a 91:9 ratio. The

use of *n*-Bu₄NBH₄ having no counter metal cations was more effective than NaBH₄ for the *threo*-selective reduction. The *threo* selectivity may be explained by Felkin-Anh's model¹¹ and the hydride anion attacks the β carbonyl at the opposite side to the bulky carboalkoxy group selectively (Fig. 1).^{5,12} The explanation was further supported by the fact that selectivity was enhanced in the reduction of more bulky *tert*-butyl esters (Entries 15, 17, and 18).

(4) erythro-Selective Reduction of 2-Methyl-3-oxo Amides 4 with NaBH₃CN in 1N HCl-Methanol

Sodium cyanoborohydride ¹³ proved to be effective for the selective reduction of 3-oxo amide 4 in acidic media. Treatment of 4 with NaBH₃CN in methanol containing 1N HCl at 25 °C gave the corresponding *erythro*-3-hydroxy-2-methyl amide 5 in good yield under high stereocontrol (Table 5). We are tempted to assume that proton behaves as metal cation such as Mn^{2+} or Ca^{2+} in the reduction of 4 with NaBH₄ in the presence of MnCl₂ or CaCl₂ and 3-oxo amide occupies planner conformation like six-membered metal chelate. Treatment of 3-oxo ester 1a with NaBH₃CN under the same reaction conditions resulted in a formation of a mixture of 2a and 3a in a 26/74 ratio in only 10% yield along with a recovered starting material 1a.

	Me ₂ NaBH ₃ CN Me ₂ 1N HCI - MeOH	0H 0 R NMe ₂ + Me 5	
Entry	Substrate R	Isolated yield	Ratio of 5/6
1	Ph (4a)	93%	98/2
2	<i>t</i> -Bu (4b)	83%	99/1
3	Cyclohexyl (4c)	80%	97/3
4	Me (4d)	88%	78/22
5	Et (4e)	94%	92/8

Table 5. Reduction of 2-Methyl-3-oxo Amides 4 with NaBH₃CN

EXPERIMENTAL

Distillation of the products was performed by the use of Kugelrohr (Büchi), and boiling points are indicated by air-bath temperature without correction. Melting point was obtained on a Yanako MP-50929 melting point apparatus and are uncorrected. ¹H NMR and ¹³C NMR spectra were taken on a Varian GEMINI 300 Spectrometer, CDCl₃ was used as solvent, and chemical shifts being given in δ with tetramethylsilane as an internal standard. IR spectra were determined on a JASCO IR-810 spectrometer. The analyses were carried out at the Elemental Analysis Center of Kyoto University.

Preparation of 3-Oxo Esters 2-Alkyl 3-oxo esters 1a-1k were prepared by aldol reaction of aldehydes with lithium enolate derived from ethyl propionate, *tert*-butyl propionate, methyl butyrate, methyl isovalerate, or methyl phenylacetate followed by Jones oxidation. Physical data of 1a, ¹⁴ 1b, ¹⁵ 1c, ¹⁶ 1d, ¹⁷ 1e, ¹⁸ 1f, ¹⁹ and $1g^{20}$ are available in the literature and those of 1h, 1i, 1j, and 1k are shown below.

Methyl 2-Benzoyl-3-methylbutanoate (1h): Bp 120-123 °C (1.0 Torr, bath temp); IR (neat) 2962, 1738, 1688, 1598, 1449, 1435, 1325, 1291, 1220, 1195, 1161, 1125, 1024, 1002, 741, 690 cm⁻¹; ¹H NMR (CDCl₃) δ 0.94 (d, J = 6.6 Hz, 3H), 1.05 (d, J = 6.7 Hz, 3H), 2.59-2.73 (m, 1H), 3.68 (s, 3H), 4.13 (d, J = 9.5 Hz, 1H), 7.42–7.65 (m, 3H), 7.98-8.15 (m, 2H); ¹³C NMR (CDCl₃) δ 20.51, 20.97, 29.11, 52.35, 61.28, 128.56, 128.74, 133.52, 136.85, 169.61, 194.66. Fond: C, 70.71; H, 7.10%. Calcd for C₁₃H₁₆O₃: C, 70.89; H, 7.32%.

Methyl 2-Benzoyl-2-phenylacetate (1i): Mp 75.8-76.5 °C; IR (nujol) 2922, 2852, 1746, 1671, 1459, 1451, 1377, 1195, 1180, 1157, 724, 699 cm⁻¹; ¹H NMR (CDCl₃) δ 3.77 (s, 3H), 5.64 (s, 1H), 7.25-7.66 (m, 8H), 7.93-8.07 (m, 2H); ¹³C NMR (CDCl₃) d 52.76, 60.35, 128.2, 128.3, 128.7, 128.9, 129.5, 132.8, 133.6, 135.5, 169.3, 193.2. Found: C, 75.36; H, 5.65%. Calcd for C₁₆H₁₄O₃: C, 75.58; H, 5.51%.

tert-*Butyl 2-Pivaloylpropanoate (Ij)*: Bp 60–63 °C (3.0 Torr, bath temp); IR (neat) 2972, 2936, 1743, 1708, 1479, 1459, 1369, 1158 cm⁻¹; ¹H NMR (CDCl₃) δ 1.19 (s, 9H), 1.27 (d, *J* = 7.0 Hz, 3H), 1.42 (s, 9H), 3.63 (q, *J* = 7.0 Hz, 1H); ¹³C NMR (CDCl₃) δ 14.67, 26.19, 27.84, 45.19, 46.98, 81.35, 169.9, 211.9. Found: C, 67.02; H, 10.13%. Calcd for C₁₂H₂₂O₃: C, 67.26; H, 10.35%.

tert-*Butyl 2-Cyclohexylcarbonylpropanoate (1k)*: Bp 65-68 °C (1.0 Torr, bath temp); IR (neat) 2976, 2930, 2854, 1741, 1711, 1452, 1370, 1318, 1250, 1234, 1160, 1123, 988 cm⁻¹; ¹H NMR (CDCl₃) δ 1.18–1.90 (m, 10H), 1.26 (d, *J* = 7.0 Hz, 3H), 1.45 (s, 9H), 2.51–2.61 (m, 1H), 3.57 (q, *J* = 7.0 Hz, 1H); ¹³C NMR (CDCl₃) δ 12.85, 25.43, 25.73, 27.89, 28.28, 28.88, 50.16, 51.93, 81.54, 169.9, 209.4. Found: C, 69.78; H, 9.85%. Calcd for C₁₄H₂₄O₃: C, 69.96; H, 10.06%.

General Procedure for the Reduction of 3-Oxo Esters in the Presence of Metal Chloride Reduction of methyl 2-benzoyl-3-methylbutanoate (1h) with NaBH₄ in the presence of MnCl₂ is representative. Manganese(II) chloride (0.25 g, 2.0 mmol) was added to a solution of 1h (0.22 g, 1.0 mmol) in methanol (10 ml) at 25 °C and the mixture was stirred for 30 min at 25 °C. Sodium borohydride (40 mg, 1.0 mmol) was added to the solution at 0 °C and whole was stirred for 10 min at 0 °C. The resulting mixture was poured into 1N HCl and extracted with ethyl acetate (10 ml x 2). The organic layer was concentrated in vacuo and the isomeric ratio of product was determined by capillary gas chromatography (Silicone OV-1, 25 m, 0.35 mm i. d., 2h/3h = 99/1). Purification of the product by silica-gel column chromatography provided methyl *erythro*-methyl 3-hydroxy-2-isopropyl-3-phenylpropanoate (2h, 0.21 g) in 95% yield: Bp 105-108 °C (0.3 Torr, bath temp); IR (neat) 3448, 2958, 1730, 1455, 1436, 1390, 1370, 1334, 1282, 1237, 1195, 1163, 1041, 1025, 1004, 759, 700 cm⁻¹; ¹H NMR (CDCl₃) δ 0.98 (d, J = 7.0 Hz, 3H), 1.05 (d, J = 6.9 Hz, 3H), 2.20-2.38 (m, 1H), 2.60 (bs, 1H), 2.74 (dd, J = 8.1, 4.6 Hz, 1H), 3.48 (s, 3H), 4.98 (d, J = 8.1 Hz, 1H), 7.23-7.40 (m, 5H); ¹³C NMR (CDCl₃) δ 18.35, 22.05, 26.75, 51.03, 58.50, 73.09, 126.45, 127.83, 128.33, 142.28, 173.46. Found: C, 70.10; H, 7.99%. Calcd for C₁₃H₁₈O₃: C, 70.25; H, 8.16%. Physical data of 2a/3a,²¹ 2c/3c,²² 2d/3d,²³ 2e/3e,¹⁸ 2f/3f,²⁴ 2g/3g²⁵ were identical with those in the literature.

Methyl threo-3-*Hydroxy*-2-*isopropyl*-3-*phenylpropanoate* (**3***h*): Bp 102-104 °C (0.3 Torr, bath temp); IR (neat) 3452, 2958, 1733, 1455, 1436, 1391, 1372, 1286, 1235, 1195, 1164, 1136, 1061, 1003, 773, 701 cm⁻¹; ¹H NMR (CDCl₃) δ 0.93 (d, J = 6.8 Hz, 3H), 1.04 (d, J = 6.7 Hz, 3H), 1.89-2.03 (m, 1H), 2.57 (dd, J = 7.5, 6.1 Hz, 1H), 3.36 (d, J = 7.5 Hz, 1H), 3.57 (s, 3H), 4.96 (dd, J = 7.5, 6.6 Hz, 1H), 7.20-7.40 (m, 5H); ¹³C NMR (CDCl₃) δ 19.74, 21.08, 27.82, 51.33, 59.24, 72.64, 125.77, 127.59, 128.38, 142.34, 175.17. Found: C, 69.98; H, 8.18%. Calcd for C₁₃H₁₈O₃: C, 70.25; H, 8.16%.

Ethyl erythro-3-*Hydroxy*-2,4,4-*trimethylpentanoate* (2b): Bp 80–82 °C (7.0 Torr, bath temp); IR (neat) 3462, 2954, 2906, 2872, 1735, 1718, 1375, 1180, 1048 cm⁻¹; ¹H NMR (CDCl₃) δ 0.95 (s, 9H), 1.23 (d, J = 7.1 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H), 2.22 (d, J = 4.6 Hz, 1H), 2,69 (dq, J = 4.3, 7.1 Hz, 1H), 3.64 (dd, J = 4.6, 4.3 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H); ¹³C NMR (CDCl₃) δ 12.89, 14.10, 26.52, 35.51, 41.08, 60.57, 78.09, 177.2. Found: C, 63.88; H, 10.79%. Calcd for C₁₀H₂₀O₃: C, 63.80; H, 10.71%.

Ethyl threo-3-Hydroxy-2,4,4-trimethylpentanoate (3b): Bp 57-60 °C (2.5 Torr, bath temp); IR (neat)

3488, 2954, 2904, 2872, 1711, 1460, 1379, 1180, 1057 cm⁻¹; ¹H NMR (CDCl₃) δ 0.90 (s, 9H), 1.28 (t, J = 7.1 Hz, 3H), 1.36 (d, J = 7.2 Hz, 3H), 2.73 (dq, J = 2.0, 7.2 Hz, 1H), 3.17 (dd, J = 9.6, 2.0 Hz, 1H), 3.74 (d, J = 9.6 Hz, 1H), 4.15 (q, J = 7.1 Hz, 2H); ¹³C NMR (CDCl₃) δ 13.98, 18.17, 26.17, 36.03, 38.26, 60.70, 82.69, 177.7. Found: C, 63.71; H, 10.52%. Calcd for C₁₀H₂₀O₃: C, 63.80; H, 10.71%.

Methyl erythro-3-Hydroxy-2,3-diphenylpropanoate (2i): Mp 88.5–89.0 °C; IR (nujol) 3382, 2950, 2920, 2852, 1736, 1455, 1432, 1348, 1281, 1195, 1156, 1016, 1004, 990 cm⁻¹; ¹H NMR (CDCl₃) δ 2.61 (d, J = 2.4 Hz, 1H), 3.52 (s, 3H), 3.89 (d, J = 7.4 Hz, 1H), 5.29 (dd, J = 2.4, 7.4 Hz, 1H), 7.27–7.45 (m, 10H); ¹³C NMR (CDCl₃) δ 52.01, 59.52, 74.95, 126.56, 127.93, 128.21, 128.57, 129.11, 134.61, 140.76, 172.79. Found: C, 74.94; H, 6.38%. Calcd for C₁₆H₁₆O₃: C, 74.98; H, 6.29%.

Methyl threo-3-Hydroxy-2,3-diphenylpropanoate (3i): Mp 103.5-104.0 °C; IR (nujol) 3456, 2952, 2920, 2852, 1716, 1455, 1168, 737, 699 cm⁻¹; ¹H NMR (CDCl₃) δ 3.12 (d, J = 4.0 Hz, 1H), 3.72 (s, 3H), 3.88 (d, J = 9.3 Hz, 1H), 5.17 (dd, J = 4.0, 9.3 Hz, 1H), 7.08–7.32 (m, 10H); ¹³C NMR (CDCl₃) δ 52.31, 59.81, 76.56, 126.57, 127.50, 127.75, 128.03, 128.20, 128.43, 128.49, 135.06, 140.62, 173.88. Found: C, 75.08; H, 6.31%. Calcd for C₁₆H₁₆O₃: C, 74.98; H, 6.29%.

Preparation of 3-Oxo Amides 2-Methyl-3-oxo amides were prepared following the reported procedure²⁶ by acylation of amide enolate derived from N,N-dimethylpropionamide. Aldol reaction between amide enolate and aldehyde followed by Jones oxidation provided an alternative route to 3-oxo amides (70-80% overall yields).

2-Benzoyl-N,N-dimethylpropionamide (4a): Mp 94.2-95.0 °C; IR (nujol) 3060, 2852, 1691, 1632, 1452, 1397, 1375, 1325, 1224, 1141, 959, 690, 647 cm⁻¹; ¹H NMR (CDCl₃) δ 1.51 (d, J = 7.0 Hz, 3H), 2.98 (s, 3H), 3.01 (s, 3H), 4.56 (q, J = 7.0 Hz, 1H), 7.46–7.70 (m, 3H), 7.98–8.08 (m, 2H); ¹³C NMR (CDCl₃) δ 13.98, 35.63, 37.22, 46.77, 128.1, 128.7, 133.2, 135.5, 170.6, 196.7. Found: C, 70.18; H, 7.49%. Calcd for C₁₂H₁₅NO₂: C, 70.22; H, 7.37%.

2-Pivaloyl-N,N-dimethylpropionamide (4b): Bp 82–85 °C (0.3 Torr, bath temp); IR (neat) 2956, 2934, 2872, 1713, 1639, 1481, 1467, 1459, 1396, 1141, 1113, 1080, 1049, 978 cm⁻¹; ¹H NMR (CDCl₃) δ 1.15 (s, 9H), 1.29 (d, J = 7.0 Hz, 3H), 2.97 (s, 3H), 3.11 (s, 3H), 4.05 (q, J = 7.0 Hz, 1H); ¹³C NMR (CDCl₃) δ 13.63, 26.76, 35.63, 37.54, 44.26, 44.92, 170.92, 210.96. Found: C, 64.68; H, 10.18%. Calcd for C₁₀H₁₉NO₂: C, 64.83; H, 10.34%.

2-Cyclohexylcarbonyl-N,N-dimethylpropionamide (4c): Bp 110–113 °C (0.3 Torr, bath temp); IR (neat) 2928, 2852, 1718, 1641, 1491, 1450, 1397, 1374, 1141, 1080, 984 cm⁻¹; ¹H NMR (CDCl₃) δ 1.08–1.89 (m, 5H), 1.34 (d, J = 7.0 Hz, 3H), 1.58–1.89 (m, 5H), 2.58 (tt, J = 11.3, 3.2 Hz, 1H), 2.99 (s, 3H), 3.03 (s, 3H), 3.77 (q, J = 7.0 Hz, 1H); ¹³C NMR (CDCl₃) δ 13.11, 25.34, 25.65, 28.68, 29.37, 35.75, 37.46, 48.03, 49.90, 170.41, 210.20. Found: C, 68.01; H, 10.26%. Calcd for C₁₂H₂₁NO₂: C, 68.21; H, 10.02%.

2-Acetyl-N,N-dimethylpropionamide (4d): Bp 78-80 °C (0.3 Torr, bath temp); IR (neat) 2934, 1723, 1639, 1499, 1459, 1450, 1399, 1357, 1181, 1148, 1078 cm⁻¹; ¹H NMR (CDCl₃) δ 1.37 (d, J = 7.0 Hz, 3H), 2.18 (s, 3H), 3.00 (s, 3H), 3.06 (s, 3H), 3.68 (q, J = 7.0 Hz, 1H); ¹³C NMR (CDCl₃) δ 13.49, 27.06, 35.78, 37.45, 51.72, 170.07, 205.34. Found: C, 58.50; H, 9.28%. Calcd for C₇H₁₃NO₂: C, 58.72; H, 9.15%.

2-Propionyl-N,N-dimethylpropionamide (4e): Bp 78-80 °C (0.3 Torr, bath temp); IR (neat) 2976, 2936, 1723, 1635, 1499, 1459, 1413, 1399, 1376, 1148, 1095, 1078 cm⁻¹; ¹H NMR (CDCl₃) δ 1.05 (dd, J = 7.3, 7.2 Hz, 3H), 1.36 (d, J = 7.0 Hz, 3H), 2.46 (dq, J = 18.0, 7.2 Hz, 1H), 2.56 (dq, J = 18.0, 7.3 Hz, 1H), 2.99 (s, 3H), 3.05 (s, 3H), 3.70 (q, J = 7.0 Hz, 1H); ¹³C NMR (CDCl₃) δ 7.63, 13.52, 32.78, 35.77, 37.47, 50.84, 170.39, 207.91. Found: C, 60.82; H, 9.36%. Calcd for C₈H₁₇NO₂: C, 61.12; H, 9.62%.

General Procedure for the Reduction of 3-Oxo Amides with NaBH₄ in the Presence of Metal Chloride A typical experiment is as follows. Manganese(II) chloride (0.25 g, 2.0 mmol) was added to a methanol (10 ml) solution of 3-keto amide **4a** (0.21 g, 1.0 mmol) at 25 °C and the resulting clear solution was stirred for 30 min at 25 °C. The mixture was cooled to 0 °C and NaBH₄ (40 mg, 1.0 mmol) was added. Vigorous gas evolution occurred. After stirring for 10 min at 0 °C, the reaction mixture was poured into 1N HCl and extracted with ethyl acetate (10 ml x 2). The combined organic layer was dried over Na₂SO₄ and concentrated in vacuo. The isomeric ratio of the product was determined by capillary gas chromatography (Silicone OV-1, 25 m, 0.35 mm i. d., **5a:6a** = >99/1). Purification of the product by silica-gel column chromatography gave **5a** (0.20 g) in 96% yield: Mp 91.1-92.0 °C; IR (CHCl₃) 3404, 3010, 1623, 1498, 1453, 1418, 1402, 1254, 1234, 1223, 1198, 1155, 1106, 1054, 987, 745, 702 cm⁻¹; ¹H NMR (CDCl₃) δ 1.04 (d, J = 7.1 Hz, 3H), 2.87 (dq, J = 2.4, 7.1 Hz, 1H), 2.98 (s, 3H), 3.03 (s, 3H), 5.09 (s, 1H, OH), 5.11 (d, J = 2.4 Hz, 1H), 7.24–7.45 (m, 5H); ¹³C NMR (CDCl₃) δ 10.57, 36.08, 38.01, 42.33, 74.03, 126.7, 127.8, 128.8, 142.5, 177.9. Found: C, 69.56; H, 8.46%. Calcd for C₁₂H₁₇NO₂: C, 69.54; H, 8.27%.

threo-3-Hydroxy-3-phenyl-2, N, N-trimethylpropionamide (**6a**): Mp 87.3–87.6 °C; IR (nujol) 3378, 2922, 2852, 1620, 1454, 1377, 1046, 753, 698 cm⁻¹; ¹H NMR (CDCl₃) δ 1.19 (d, J = 7.1 Hz, 3H), 2.84 (s, 3H), 2.89 (s, 3H), 2.95–3.15 (m, 1H), 4.52 (bs, 1H), 4.78 (bs, 1H), 7.26–7.46 (m, 5H); ¹³C NMR (CDCl₃) δ 15.27, 35.35, 37.16, 42.57, 76.65, 126.1, 127.5, 128.2, 142.9, 175.8. Found: C, 69.64; H, 8.36%. Calcd for C₁₂H₁₇NO₂: C, 69.54; H, 8.27%.

erythro-3-Hydroxy-2,4,4,N,N-pentamethylpentanamide (**5b**): Mp 53-55 °C; IR (nujol) 2952, 2928, 2866, 1708, 1628, 1459, 1413, 1390, 1144, 1114, 1079, 979, 685 cm⁻¹; ¹H NMR (CDCl₃) δ 0.97 (s, 9H), 1.18 (d, J =7.0 Hz, 3H), 2.93-2.99 (dq, J = 2.0, 7.0 Hz, 1H), 2.96 (s, 3H), 3.07 (s, 3H), 3.53 (d, J = 1.9 Hz, 1H), 4.01 (bs, 1H); ¹³C NMR (CDCl₃) δ 11.58, 26.89, 35.00, 35.30, 35.38, 37.23, 77.75, 178.1. Found: C, 64.10; H, 11.29%. Calcd for C₁₀H₂₁NO₂: C, 64.13; H, 11.30%.

threo-3-Hydroxy-2.4,4,N,N-pentamethylpentanamide (**6b**): Bp 70–73 °C (0.3 Torr, bath temp); IR (neat) 3318, 2952, 2866, 1620, 1458, 1418, 1400, 1366, 1252, 1152, 1114, 1056, 981 cm⁻¹; ¹H NMR (CDCl₃) δ 0.87 (s, 9H), 1.35 (d, J = 7.1 Hz, 3H), 2.86–2.97 (dq, J = 1.7, 7.3 Hz, 1H). 2.94 (s, 3H), 3.11

(s, 3H), 3.21 (dd, J = 1.7, 8.6 Hz, 1H), 5.86 (d, J = 8.6 Hz, 1H); ¹³C NMR (CDCl₃) δ 18.06, 26.50, 32.20, 35.40, 36.06, 37.32, 83.86, 178.24. Found: C, 63.97; H, 11.14%. Calcd for C₁₀H₂₁NO₂: C, 64.13; H, 11.30%.

erythro-3-Hydroxy-3-cyclohexyl-2,N,N-trimethylpropionamide (5c): Bp 98–100 °C (0.3 Torr, bath temp); IR (neat) 3408, 2922, 2848, 1622, 1499, 1450, 1419, 1400, 1160, 1135, 1112, 1086, 982 cm⁻¹; ¹H NMR (CDCl₃) δ 0.74-1.84 (m, 10H), 1.12 (d, J = 7.2 Hz, 3H), 2.16 (bd, J = 11.5 Hz, 1H), 2.86 (dq, J = 1.9, 7.2 Hz, 1H), 2.96 (s, 3H), 3.06 (s, 3H), 3.49 (bd, J = 8.3 Hz, 1H), 4.74 (s, 1H); ¹³C NMR (CDCl₃) δ 9.33, 25.79, 26.00, 26.37, 28.73, 29.82, 35.17, 35.43, 37.34, 39.49, 75.35, 177.96. Found: C, 67.30: H, 10.95%. Calcd for C₁₂H₂₁NO₂: C, 67.57: H, 10.87%.

threo-3-Hydroxy-3-cyclohexyl-2,N,N-trimethylpropionamide (6c): Mp 87–88 °C; IR (nujol) 3394, 1709, 1621, 1460, 1402, 1372, 1286, 1258, 1118, 1096, 1080, 1051, 990, 980, 965 cm⁻¹; ¹H NMR (CDCl₃) δ 0.81–1.86 (m, 10H), 1.25 (dd, J = 7.1, 1.1 Hz, 1H), 2.96 (s, 3H), 3.07 (s, 3H), 3.22–3.38 (m, 1H), 4.24 (bd, J = 8.7 Hz, 1H); ¹³C NMR (CDCl₃) δ 15.49, 26.00, 26.26, 26.40, 28.58, 30.03, 35.25, 36.01, 37.24, 41.90, 79.11, 177.16. Found: C, 67.36; H, 11.03%. Calcd for C₁₂H₂₃NO₂: C, 67.57: H, 10.87%.

erythro-3-Hydroxy-2,N,N-timethylbutanamide (5d): Bp 65–67 °C (0.3 Torr, bath temp); IR (neat) 3404, 2968, 2930, 1623, 1500, 1459, 1418, 1401, 1168, 1084 cm⁻¹; ¹H NMR (CDCl₃) δ 1.16 (d, J = 6.3 Hz, 3H), 1.16 (d, J = 7.2 Hz, 3H), 2.61 (dq, J = 2.2, 7.2 Hz, 1H), 2.97 (s, 3H), 3.07 (s, 3H), 4.12 (dq, J = 1.7, 6.5 Hz, 1H), 4.56 (bs, 1H); ¹³C NMR (CDCl₃) δ 9.24, 19.58, 35.27, 37.29, 39.85, 66.98, 177.78. Found: C, 57.61; H, 10.24%. Calcd for C₇H₁5NO₂: C, 57.90; H, 10.41%.

threo-3-Hydroxy-2, N, N-trimethylbutanamide (6d): Bp 65–67 °C (0.3 Torr, bath temp); IR (neat) 3398, 2968, 2932, 1625, 1501, 1459, 1416, 1400, 1375, 1260, 1166, 1110, 1077, 1039 cm⁻¹; ¹H NMR (CDCl₃) δ 1.19 (d, J = 7.1 Hz, 3H), 1.22 (d, J = 6.3 Hz, 3H), 2.65 (dq, J = 5.7, 7.1 Hz, 1H), 2.97 (s, 3H), 3.07 (s, 3H), 3.86 (ddq, J = 6.4, 5.7, 6.1 Hz, 1H), 3.95 (d, J = 6.4 Hz, 1H); ¹³C NMR (CDCl₃) δ 14.93, 21.08, 35.30, 37.29, 42.38, 70.12, 176.33. Found: C, 57.80; H, 10.19%. Calcd for C₇H₁₅NO₂: C, 57.90; H, 10.41%.

General Procedure for the Reduction of 3-Oxo Esters with Tetrabutylammonium Borohydride. Tetrabutylammonium borohydride (0.31 g, 1.2 mmol) was added to a solution of 1j (0.21 g, 1.0 mmol) in methanol (10 ml) at 0 °C. The mixture was stirred for 1.5 h at 0 °C and poured into 1 N HCl and extracted with ethyl acetate (10 ml x 2). The organic layer was concentrated in vacuo and isomeric ratio of product was determined by capillary gas chromatography and ¹H NMR. Purification of the product by silica-gel column chromatography gave *tert*-butyl *threo*-3-hydroxy-2,4,4-trimethylpentanoate (**3j**, 0.19 g) in 90% yield: Bp 61–64 °C (2.0 Torr, bath temp); IR (neat) 3478, 2958, 2906, 2872, 1704, 1459, 1368, 1151 cm⁻¹; ¹H NMR (CDCl₃) δ 0.91 (s, 9H), 1.34 (d, J = 7.2 Hz, 3H), 1.48 (s, 9H), 2.60 (dq, J = 1.8, 7.2 Hz, 1H), 3.13 (dd, J = 9.4, 1.8 Hz, 1H), 4.05 (d, J = 9.5 Hz, 1H); ¹³C NMR (CDCl₃) δ 18.40, 26.30, 27.88, 36.08, 38.80, 81.32, 82.81, 177.3. Found: C, 66.57; H, 11.44%. Calcd for C₁₂H₂₄O₃: C, 66.63; H, 11.18%. tert-*Butyl* erythro-3-*Hydroxy*-2,4,4-trimethylpentanoate (2j): Bp 61–64 °C (2.0 Torr, bath temp); IR (neat) 3456, 2956, 2872, 1730, 1709, 1459, 1368, 1153, 1048, 1007 cm⁻¹; ¹H NMR (CDCl₃) δ 0.95 (s, 9H), 1.19 (d, *J* = 7.1 Hz, 3H), 1.45 (s, 9H), 2.31 (d, *J* = 4.3 Hz, 1H), 2.59 (dq, *J* = 4.2, 7.1 Hz, 1H), 3.60 (dd, *J* = 4.3, 4.2 Hz, 1H); ¹³C NMR (CDCl₃) δ 12.88, 26.58, 27.94, 35.47, 41.84, 77.99, 80.55, 176.7. Found: C, 66.73; H, 11.19%. Calcd for C₁₂H₂₄O₃: C, 66.63; H, 11.18.

tert-Butyl erythro-3-Cyclohexyl-3-hydroxy-2-methylpropanoate (2k): Bp 81-83 °C (1.0 Torr, bath temp); IR (neat) 3434, 2972, 2926, 2850, 1726, 1709, 1451, 1369, 1157 cm⁻¹; ¹H NMR (CDCl₃) δ 0.90–1.82 (m, 10H), 1.13 (d, J = 7.2 Hz, 3H), 1.46 (s, 9H), 2.03–2.11 (m, 1H), 2.54 (qd, J = 7.2, 3.5 Hz, 1H), 2.65 (d, J = 3.5 Hz, 1H), 3.57 (ddd, J = 8.0, 3.5, 3.5 Hz, 1H); ¹³C NMR (CDCl₃) δ 10.18, 25.89, 26.11, 26.35, 28.02, 28.97, 29.08, 40.02, 41.85, 75.72, 80.78, 176.3. Found: C, 69.11; H, 10.60%. Calcd for C₁₄H₂₆O₃: C, 69.38; H, 10.81%.

tert-Butyl threo-3-Cyclohexyl-3-hydroxy-2-methylpropanoate (3k): Bp 83-85 °C (1.0 Torr, bath temp); IR (neat) 3484, 2974, 2924, 2850, 1729, 1711, 1451, 1368, 1207, 1153 cm⁻¹; ¹H NMR (CDCl₃) δ 0.98–1.40 (m, 6H), 1.20 (d, J = 7.3 Hz, 3H), 1.46 (s, 9H), 1.60-1.92 (m, 5H), 2.57 (qd, J = 7.3, 5.6 Hz, 1H), 2.71 (d, J = 7.9 Hz, 1H), 3.29 (ddd, J = 7.9, 5.8, 5.8 Hz, 1H); ¹³C NMR (CDCl₃) δ 14.99, 26.09, 26.39, 27.52, 28.05, 29.87, 41.58, 42.38, 77.96, 80.96, 176.1. Found: C, 69.11; H, 10.58%. calcd for C₁₄H₂₆O₃: C, 69.38; H, 10.81%.

General Procedure for the Reduction of 3-Oxo Amides with NaBH₃CN Amide 4e (0.16 g, 1.0 mmol) was dissolved in methanol (8 ml) containing 1N HCl (4 ml). NaBH₃CN (2.0 mmol) was added to solution at 25 °C and the resulting mixture was stirred at 25 °C for 30 min. The mixture was poured into water and extracted with ethyl acetate (10 ml x 3). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated. The isomeric ratio of product was determined by the examination of ¹H NMR. Purification of the product by silica-gel column chromatography afforded *erythro*-3-hydroxy-2,*N*,*N*-trimethylpentanamide (5e) and threo isomer 6e (0.14 g, 5e/6e = 92/8) in 85% combined yield.

erythro-3-Hydroxy-2,N,N-trimethylpentanamide (5e): Bp 72–75 °C (0.3 Torr, bath temp); IR (neat) 3408, 2960, 2934, 2876, 1622, 1500, 1459, 1419, 1400, 1164, 1113, 1092, 978 cm⁻¹; ¹H NMR (CDCl₃) δ 0.96 (dt, J = 2.7, 7.4 Hz, 3H), 1.14 (d, J = 7.1 HZ, 3H), 1.25–1.43 (m, 1H), 1.53–1.70 (m, 1H), 2.68 (dq, J = 2.2, 7.2 Hz, 1H), 2.97 (s, 3H), 3.07 (s, 3H), 3.80 (ddd. J = 7.2, 5.5, 2.1 Hz, 1H), 4.65 (bs, 1H); ¹³C NMR (CDCl₃) δ 9.41, 10.41, 26.48, 35.29, 37.30, 38.09, 72.66, 177.77. Found: C, 60.26; H, 10.97%. Calcd for C₈H₁₇NO₂: C, 60.35; H, 10.76%.

threo-3-Hydroxy-2,N,N-trimethylpentanamide (6e): Bp 75–77 °C (0.3 Torr, bath temp); IR (neat) 3404, 2960, 2932, 2874, 1621, 1500, 1459, 1417, 1400, 1261, 1163, 1119, 1056, 974 cm⁻¹; ¹H NMR (CDCl₃) δ 0.98 (dt, J = 1.6, 7.3 Hz, 3H), 1.22 (dd, J = 1.6, 7.1 Hz, 3H), 1.40–1.55 (m, 2H), 2.65–2.85 ¹ (m, 1H), 2.96 (s, 3H), 3.07 (s, 3H), 3.47–3.60 (m, 1H), 4.14 (d, J = 7.3 Hz, 1H); ¹³C NMR (CDCl₃) δ 10.30, 14.98, 28.20, 35.18, 37.25, 39.56, 75.59, 176.63. Found: C, 59.91; H, 10.78%. Calcd for (C₈H₁₇NO₂: C, 60.35; H, 10.76%.

Financial supports by the Ministry of Education, Science and Culture of Japan (Grant-in-Aid for Scientific Research No. 04453098) and Asahi Glass Foundation for Industrial Technology are acknowledged. One of us (M. T) acknowledges fellowships of the Japan Society for the Promotion of Science for Japanese Junior Scientists.

REFERENCES AND NOTES

- 1. Oishi, T.; Nakata, T. Acc. Chem. Res. 1984, 17, 338-344.
- Heathcock, C. H. in "Asymmetric Synthesis," Morrison, J. D., Ed.; Academic Press: New York, 1984 vol 3, pp. 111-212; Evans, D. A.; Nelson, J. V.; Taber, T. R.; Top. Stereochem. 1982, 13, 1-115; Bal, B.; Buse, C. T.; Smith, K.; Heathcock, C. H. Org. Synth. 1985, 63, 89-98; Montgomery, S. H.; Pirrung, M. C.; Heathcock, C. H. Org. Synth. 1985, 63, 99-108.
- 3. Nakata, T.; Oishi, T. Tetrahedron Lett. 1980, 21, 1641-1644; Ito, Y.; Yamaguchi, M. ibid. 1983, 24, 5385-5388.
- 4. Fujita, M.; Hiyama, T. J. Am. Chem. Soc. 1985, 107, 8294-8296.
- 5. Ito, Y.; Katsuki, T.; Yamaguchi, M. Tetrahedron Lett. 1985, 26, 4643-4646.
- 6. Fujita, M.; Hiyama, T. J. Org. Chem. 1988, 53, 5405-5415.
- 7. A part of this work was published in a communication. Fujii, H.; Oshima, K.; Utimoto, K. Tetrahedron Lett. 1991, 32, 6147-6150.
- 8. Sorrell, T. N.; Pearlman, P. S. Tetrahedron Lett. 1980, 21, 3963-3964; D'Incan, E.; Loupy, A. Tetrahedron, 1981, 37, 1171-1179.
- 9. Shannon, R. D.; Prewitt, C. T. Acta. Crystallogra. 1969, B25, 925-946.
- 10. Evans, D. A.; DiMare, M. J. Am. Chem. Soc. 1986, 108, 2476-2478.
- Chérest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 2199-2204; Anh, N. T.; Eisenstein, O. Nouv. J. Chim. 1977, 1, 61-66.
- 12. Evans, D. A.; Ennis, M. D.; Le, T.; Mandel, N.; Mandel, G. J. Am. Chem. Soc. 1984, 106, 1154-1156.
- 13. Lane, C. F. Synthesis, 1975, 135-146; Borch, R. F. Org. Synth. Coll. Vol. 6, 1988, 499-501.
- 14. Katayama, S.; Fukuda, K.; Watanabe, T.; Yamauchi, M. Synthesis, 1988, 178-183.
- 15. Lauridsen, J.; Honore, T.; Krogsgaard-Larsen, P. J. Med. Chem. 1985, 28, 668-672.
- 16. Sakai, T.; Amano, E.; Kawabata, A.; Takeda, A. J. Org. Chem. 1980, 45, 43-47.
- 17. Banerjee, A. K.; Nasipuri, D.; Pakrashi, S. C. J. Org. Chem. 1990, 55, 3952-3954.
- 18. Nakamura, K.; Miyai, T.; Nagarr, A.; Oka, S.; Ohno, A. Bull. Chem. Soc. Jpn. 1989, 62, 1179–1187.
- 19. Turner, J. A.; Jacks, W. S. J. Org. Chem. 1989, 54, 4229-4231.
- 20. Reddy, C. P.; Tanimoto, S. J. Chem. Soc. Perkin Trans. 1 1988, 411-414.
- 21. Nakata, T.; Tani, Y.; Hatozaki, M.; Oishi, T. Chem. Pharm. Bull. 1984, 32, 1411-1415.
- 22. Otsubo, K.; Inanaga, J.; Yamaguchi, M. Tetrahedron Lett. 1987, 28, 4437-4440.
- 23. Akita, H.; Matsukura, H.; Sonomoto, K.; Tanaka, A.; Oishi, T. Chem. Pharm. Bull. 1987, 35, 4985-4987.
- 24. Heathcock, C. H.; Buse, C. T.; Kleschick, W. A.; Pirrung, M. C.; Sohn, J. E.; Lampe, J. J. Org. Chem. 1980, 45, 1066-1081.
- 25. Hsiao, C.-N.; Miller, M. J. J. Org. Chem. 1987, 52, 2201–2206; Oppolzer, W.; Blagg, J.; Rodriguez, I.; Walther, E. J. Am. Chem. Soc. 1990, 112, 2767–2772.
- 26. Fujita, M.; Hiyama, T. Org. Synth. 1990, 69, 44-51; Ito, Y.; Katsuki, T.; Yamaguchi, M. Tetrahedron Lett. 1984, 25, 6015-6018.