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CuH in a Bottle: A Convenient Reagent for
Asymmetric Hydrosilylations**
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Copper hydride (CuH), when complexed by the Takasago
ligand (R)-(�)-DTBM-segphos, (1),[1] as shown in Scheme 1

(DTBM= 3,5-di-tert-butyl-4-methoxy), is a remarkably reac-
tive yet selective reagent for effecting asymmetric hydro-
silylations. Aromatic ketones,[2a] hindered cyclic enones,[2b]

aryl imines,[2c] and selected a,b-unsaturated esters and
lactones[2d] all react with [{(R)-(�)-DTBM-segphos}CuH]
(2) in the presence of stoichiometric PMHS[3] to afford the
corresponding products of asymmetric reduction with excel-
lent ee values. Substrate-to-catalyst (S/C) ratios typical of
asymmetric hydrosilylations (< 500:1) mediated by other
metals (e.g., Rh, Ti, Ru)[4] can be increased substantially,
while reaction rates are comparable in many cases, even at
much lower temperatures.

Preparation of 2 typically follows either of two proce-
dures: 1) addition of ligand 1 to preformed [{(Ph3P)CuH}6]
(i.e., Stryker reagent)[5] or 2) in situ formation[6] by using
CuCl, NaOtBu, and 1 in the presence of excess silane
(PMHS). To simplify handling and to gauge reagent lifetime
for potential storage and ease of use, alternatives to its

preparation have been investigated. Herein, we report our
findings, which suggest that complex 2 is, indeed, quite robust.

Several copper salts were screened as alternatives to
CuCl. In particular, those with counterions that are already
oxygen-based are, in principle, ready for direct transmetala-
tion with PMHS to CuH. The 1,4-reduction of hindered enone
isophorone was used as a test case; results from several
experiments are illustrated in Table 1. Each reaction was

performed under otherwise identical conditions, with a S/C
ratio of 200:1. While the ee values for all but one case were >

96%, the extent of conversion over time varied considerably
as a function of the counterion. In principle, the counterion
should not play a major role, but these data suggest that rates
can indeed be affected by this reaction variable. Cu-
(OAc)2·H2O (Table 1, entry 1) appears to be the best choice
to date for several reasons (see below), as also noted recently
by others.[7] Copper phenoxide (Table 1, entry 2) was roughly
comparable in all respects, an unexpected result in light of
prior work from Stryker and co-workers, who found that the
replacement of NaOtBu with NaOPh did not lead to a useful
catalytic system.[8] The bulky phenoxide from BHT (Table 1,
entry 11), on the other hand, in the form of Cu(BHT), led to a
far less reactive albeit highly selective precursor to ligated
CuH.

The catalyst 2 derived from Cu(OAc)2·H2O led to
complete reduction of enone 3 to nonracemic ketone 4 in
1 h with > 99% ee. Given the room temperature conditions
and high enantioselectivity, this observation encouraged
investigation of reagent shelf life, but now with catalyst 2 at
a S/C ratio of 1000:1 (vs. 200:1; see Table 1, entry 1). Thus, a
0.001m solution of 2 in toluene was prepared and stored in a
bottle at room temperature. This stock solution stored in a
refrigerator was monitored over time for yields of isolated
product and levels of induction in the reaction of isophorone
(1 mmol) added to 2 (1 mL). As shown in Table 2, over a 4-

Scheme 1. Formation of [(DTBM-segphos)CuH].

Table 1: Survey of copper salt precursors to [(DTBM-segphos)CuH].

Entry Copper source[a] t [h] Conversion [%] ee [%][b]

1 Cu(OAc)2·H2O 1 100 99
2 CuOPh 1.5 100 99
3 CuCl 2 100 99
4 CuOAc 2 100 99
5 CuCl2·H2O 20 17 98
6 Cu(O2CCF3)2·H2O 20 50 98
7 Cu(OTf)2 20 25 97
8 [Cu(acac)2] 20 44 99
9 [Cu(bzac)2] 20 5 86

10 [Cu(TMHD)2] 20 67 98
11 Cu(BHT) 20 81 99

[a] acac=acetoacetate; BHT=2,6-di-tert-butyl-4-methylphenol; bzac=
PhC(O)CH2C(O)CH3; Tf= trifluoromethanesulfonyl; TMHD=2,2,6,6-
tetramethyl-3,5-heptanedione. [b] By chiral capillary GC. [c] From CuCl
+ NaBHT.
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week period, the enantioselectivity dropped only slightly
(from 99 to 96% ee). After 2 months, the recorded enantio-
selectivity was still � 94% ee. To show that the decline in
enantioselectivity was likely to be due to adventitious oxygen
introduced over time as a result of normal use, a fresh solution
of CuH was prepared and stored at room temperature for
14 days without puncturing the Sure/Seal. The CuH in a bottle
was tested again on isophorone [Eq. (1)]; no loss in enantio-

selectivity was observed. Thus, we have found that reagent
degradation can be minimized by simply switching to a more
efficient Oxford Sure/Seal Storage valve cap. With reagent
integrity documented at room temperature for a 2-week
period, prospects for routine storage and even commercial-
ization now exist. Notably, whereas in prior applications the
ratio of substrate-to-copper was about 100:1 (i.e., � 1%
CuCl),[2b] in the case at hand the amount of copper present is
equal to the quantity of ligand, thus significantly decreasing
the extent of transition metal involved.

Treatment of an aryl ketone, acetophenone (5), with
Cu(OAc)2-derived reagent 2 [Eq. (2)] led to the alcohol 6with
93% ee, essentially identical to that seen previously when
using freshly prepared [{(R)-(�)-DTBM-segphos}CuH]
derived from CuCl.[2a]

Cinnamate 7 was also exposed to [(DTBM-segphos)CuH]
(S/C 1000:1, room temperature). Initially, product ester 8 was
obtained with 98% ee [86% yield of isolated product;
Eq. (3)]. A second experiment under identical conditions
(room temperature, 2.5 h) in the presence of reagent 2 that
had been stored on the shelf at room temperature over a 2-

week period afforded 8 with essentially the same enantiose-
lectivity (99% ee) and yield (85%).

Asymmetric hydrosilylations with CuH under microwave
conditions are unprecedented in the literature, and are made
all the more interesting given the limited thermal stability of
this species. Nonetheless, the increased rates normally
observed when using this technique might allow rapid
conjugate reduction to occur. In the event, even at 1000:1 S/
C ratios, reactions run within a microwave reactor at 60 8C are
close to complete within 10 min without erosion in enantio-
selectivity (Table 3).[9]

The results of the reactions of enoates and cyclic enones at
room temperature or above in the presence of the Stryker
reagent as the catalytic source of CuH[2b,d] raises the question
as to the impact of Ph3P. Achiral [(Ph3P)CuH] could
potentially compete in a background reaction, thereby low-
ering the ee values. The addition of Ph3P (1 equiv) to a
solution of [(DTBM-segphos)CuH]/PMHS stored in a bottle
caused the ee value of the product ketone 4 from the
hydrosilylation of isophorone to drop from 99 to 96%
(Table 4, entry 2). Alternatively, the addition of ligand 1
(2 equiv) to preformed [(Ph3P)CuH] led to further erosion in
enantioselectivity to 95% ee (Table 4, entry 3). Thus, the
presence of Ph3P has a small but finite effect that detracts
from the inherent enantioselectivity imparted by the DTBM-
segphos ligand.

Although 1H NMR spectral information on the Stryker
reagent is available,[10] the corresponding data for CuH

Table 2: Shelf life of [(DTBM-segphos)CuH]/PMHS.

t [days] Yield [%][b] ee [%]

1 88 99
5 87 99
9 88 98

28 86 96
60 87 94

[a] Stored at 4 8C. [b] Yield of isolated product.

Table 3: Asymmetric hydrosilylations under microwave irradiation.

S/C Conversion[a] [%] ee [%]

500 98 99
1000 95 99

[a] By GC analysis.

Table 4: Impact of Ph3P on reactions of 3 with 2.

Entry Copper source CuH/1 t [h] ee [%]

1 [(segphos)CuH] in a bottle (2) 1:1 3 99
2 Cu(OAc)2 H2O + 1 + Ph3P (1 equiv) 1:1 5 96
3 [(Ph3P)CuH] + 1 (2 equiv) 1:2 5 95
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complexed by a nonracemic bisphosphine ligand has yet to be
reported. The spectrum of [{(Ph3P)CuH}6] in C6D6 shows the
hydride at d= 3.52 ppm.[11] Individual spectra of PMHS
(Figure 1a) and DTBM-segphos (Figure 1b) in this solvent
are shown along with that of Cu(OAc)2·H2O in the presence
of this ligand (Figure 1c). Upon addition of PMHS, a new
peak at d= 2.55 ppm appears (Figure 1d), which is presumed

to correspond to the hydride in reagent 2. The identical
chemical shift is observed for the corresponding reagent
complexed with a bitianp ligand (see the Supporting Infor-
mation).[12] These spectra also show not only that a seemingly
discrete species arises from the combination of CuH and
DTBM-segphos (or bitianp), but that the presence of Ph3P (as
noted previously; see Table 4, entry 3, and the Supporting
Information) in reactions at room temperature or above can
alter enantioselectivities through competing background
reactions that would not otherwise be observed in the
presence of DTBM-segphos alone.

In summary, a powerful source of an asymmetric Stryker
reagent, copper hydride complexed by TakasagoGs (R)-

DTBM-segphos, has been prepared and documented to be a
stable “CuH in a bottle” for easy access and use in asymmetric
hydrosilylations.[13,14] Just as our “cuprate in a bottle” (i.e., (2-
thienyl)Cu(CN)Li) introduced two decades ago[15] provides
easy access to “higher-order” cuprate species, this reagent
combination should encourage many future applications of
ligand-accelerated asymmetric CuH chemistry.
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