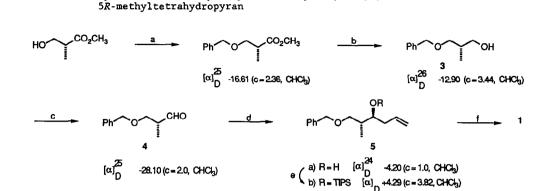

An Asymmetric Synthesis of (+)-Phyllanthocin

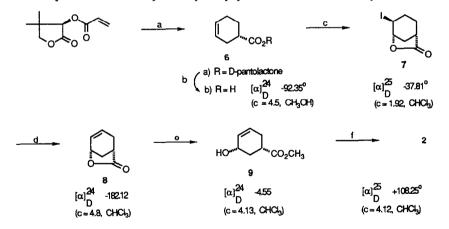
Barry M. Trost and Yoshinori Kondo Department of Chemistry Stanford University Stanford, CA 94305-5080


Summary: An enantiocontrolled synthesis of (+)-phyllanthocin from methyl R-3hydroxyisobutyrate and the acrylic ester of D-pantolactone is accomplished in 20 steps in 5% overall yield.

Phyllanthocin,¹ the aglycone of the promising antitumor agent phyllanthoside,² represents an important synthetic target for understanding structure-activity relationships and for developing analogues of improved efficacy. The conciseness of our recently reported convergent strategy to racemic phyllanthocin based upon an enyne cycloreduction³ induced us to develop an asymmetric synthesis. In this communication, we wish to record the realization of this goal.

The synthesis requires the obtention of the two halves 1 and 2 in enantiomerically pure form. Scheme 1 outlines our approach to the lactol half

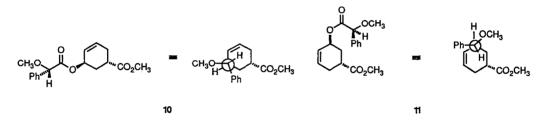
stemming from the commercial availability of methyl 3-hydroxyisobutyrate in either enantiomeric form. O-Benzylation uncomplicated by β -elimination was achieved in high yield by the protocol of Gramer using either triflic or trifluoracetic acid.⁴ The remaining steps were unexceptional with the alcohol 3 and aldehyde 4 having optical rotations that were in excellent accord with literature values for these compounds obtained by different routes.⁵ The enantiometic purity was assessed to be 87% at the stage of the alcohol $5a^6$ by conversion to its O-methylmandelate ester 5c.⁷ This sequence provided the lactol half in 35% overall yield.

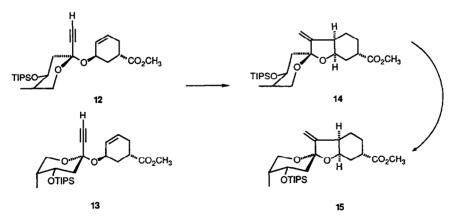

Synthesis of 2-Hydroxy-2-trimethylsilylethynyl-4S-triisopropylsiloxy-

c) R = (S)-O-methylmandelate

a) PhCH₂OC(-NH)CCl₃, CF₃SO₃H, CH₂Cl₂, O^o, 91%; b) LAH, THF, -30^o, 83%; c) DMSO, (COCl)₂, (C₂H₅)₃N, -60^o, 97%; d) CH₂-CHCH₂TMS, SnCl₄, CH₂Cl₂, -78^o, 93%; e) TIPS-OSO₂CF₃, 2,6-lutidine, CH₂Cl₂, 97%; f) for these steps see ref. 3, 53% overall.

The hydroxyester half 2 made use of the asymmetric Diels-Alder protocol developed by Helmchen⁸ as outlined in Scheme 2. Excellent agreement of optical rotations


Scheme 2. Synthesis of Methyl 3R-Hydroxycyclohex-4-en-1S-carboxylate


a) CH₂-CHCH-CH₂; TiCl₄, CH₂Cl₂-pet ether, 0° , 70%; b) LiOH, THF-H₂O, rt, 92%; c) KI, I₂, NaHCO₃, H₂O, rt, 91%; d) DBU, PhH, reflux, 91%; e) Na₂CO₃, CH₃OH, rt, 74%; f) see text 86%

Scheme 1.

literature was observed for 6b-8.⁹ Assessment of the optical purity of cishydroxyester 9 via the 0-methylmandelate⁷ indicated a value of 97% ee. A key question relates to the S_N^2 vs S_N^2 ' displacement during the alcohol inversion sequence. Subjecting the alcohol to Mitsunobu conditions [dppe, DEADCAT, HCO₂H, (C₂H₅)₃N, THF, 0°] followed directly by basic methanolysis gave an 86% yield of the *trans*-hydroxyester 2 (overall yield of Scheme 2 34%) whose ee was established as 62-70% by the 0-methylmandelate technique. This analytical procedure also established that the reaction proceeded predominantly by direct S_N^2 displacement. In particular, the absorptions for the olefin protons of the major enantiomer appear downfield (δ 5.83 and 6.04) relative to those of the minor enantiomer (δ 5.69 and 5.95) in accord with the model (cf 10 and 11).⁷

Coupling using K10 montmorillonite clay and desilylation (70% yield) produced a diastereomeric mixture of 12 and 13 which was directly reductively cyclized as before (82% yield) to 14 and 15.³ The former was equilibrated [Mg(OCOCF₃)₂, CF₃CO₂H, CH₂Cl₂, rt]¹⁰ to the latter so that the single diastereomer 15 necessary for (+)-phyllanthocin was available. Remarkably, a kinetic discrimination occurred

during the coupling of 1 and 2 that led to production of 15 of high enantiomeric purity as evidenced by the enantiomeric purity of (+)-phyllanthocin obtained in 4 steps as previously recorded³ $[\alpha]_D^{22}$ + 22.6°, mp 117-9°C which compares very favorably with the literature.⁹⁻¹¹ This asymmetric synthesis of (+)-phyllanthocin requires a total of 20 steps with a longest linear sequence being 15 in 5% overall yield from commercially available materials.

Acknowledgment: This work was supported by the Institute of General Medical Sciences, National Institutes of Health. Mass Spectra were provided by the Mass Spectrometry Facility, University of California-San Francisco, supported by the NIH Division of Research Resources.

- S.M. Kupchan, E.J. La Voie, A.R. Branfman, B.Y. Fei, W.M. Bright, R.F. Bryan J. Am. Chem. Soc. 99 (1977) 3199.
- G.R. Pettit, G.M. Cragg, M. Suffness J. Org. Chem. 50 (1985) 5060 and earlier references cited therein.
- 3. B.M. Trost, E.D. Edstrom Angew. Chem Int. Ed. Engl. 29 (1990) 520.
- F. Cramer, N. Hennrich Chem. Ber. 94 (1961) 976; H.P. Wessel, T. Iversen,
 D.R. Bundle J. Chem. Soc. Perkin Trans. I (1985) 2247.
- A.I. Meyers, K.A. Babiak, A.L. Campbell, D.L. Comins, M.P. Fleming, R. Henning, M. Heuschman, J.P. Hudspeth, J.M. Kane, P.J. Reider, D.M. Roland, K. Shimizu, K. Tomioka, R.D. Walkup J. Am. Chem. Soc. 105 (1983) 5015.
- For an alternative route see H.C. Brown, K.S. Bhat, R.S. Randad J. Org. Chem. 54 (1989) 1570.
- B.M. Trost, J.L. Belletire, S. Godleski, P. McDougal, J.M. Balkovec, J.J.
 Baldwin, M.E. Christy, G.S. Ponticello, S.L. Varga, J.P. Springer J. Org. Chem. 51 (1986) 2370.
- T. Poll, A. Sobczak, H. Hartmann, G. Helmchen Tetrahedron Lett. 26 (1985) 3095.
- For the enantiomeric series of 7 and 8 see S.F. Martin, M.S. Dappen, B. Dupre, C.J. Murphy, J.A. Colapret J. Org. Chem. 54 (1989) 2209.
- 10. D.R. Williams, S.Y. Sit J. Am. Chem. Soc. 106 (1984) 2949.
- For previous total syntheses, see A.B. Smith III, M. Fukui J. Am. Chem. Soc. 109 (1987) 1269; S.D. Burke, J.E. Cobb, K. Takeuchi J. Org. Chem. 50 (1985) 3420; P.D. McGuirk, D.B. Collum J. Am. Chem. Soc. 104 (1982) 4496.

(Received in USA 13 December 1990)

1616