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Abstract—Inexpensive enantiopure (+)-limonene oxide 1 is converted to 4-(R)-(t-butyldimethylsilyloxy)-cyclohex-2-en-1-one 2a.
All isolated intermediates can be distilled obviating the need for chromatography. With 2a,b in hand, a formal synthesis of
(±)-mesembranol 17 using vinyl triflate methodology is high yielding. © 2001 Elsevier Science Ltd. All rights reserved.

Enantiopure pure 4-(t-butyldimethylsilyloxy)-cyclohex-
2-en-1-one 2a is a highly useful chiral building block.
Since the first reported synthesis of (S)-2a from D(−)-
quinic acid by Danishefsky in 1989, a number of alter-
native methods have been published.1 One report
derives its enantiopurity from chiral catalysis; however,
the cost of the preparation or purchase of sufficient
catalyst to produce multi-gram quantities of 2a is pro-
hibitive.2a Other reports are either low yielding or
involve lengthy synthesis or separations.2 In conjunc-
tion with our vinyl triflate projects, an efficient, inex-
pensive route to 2a has been developed.3 Using our
chiral vinyl triflate methodology,4 we also report a
formal synthesis of (±)-mesembranol (17) based on the
total synthesis reported by Ogawa (Fig. 1).5

The key starting material, inexpensive (+)-limonene
oxide 1, is available as a 1:1 mixture of diastereomers.
Ozonolysis of the isopropenyl side-chain followed by
Baeyer–Villiger oxidation gives acetate 3 following a
slight modification of the Cain protocol.6 Hydrolysis

Figure 1.

and silylation under standard conditions furnish 4 in
74% yield after distillation (Scheme 1).

Regiospecific conversion of the epoxide mixture 4 to
allylic acetates 5 was achieved using diisobutylalu-
minum-diisopropylamine,7 followed by acylation of the
crude product in 94% yield. Elimination of acetate,
facilitated by catalytic palladium[0], yields diene 6 with-

Scheme 1. Conditions : A: a. O3, MeOH, CH2Cl2, b. Me2S; B: mCPBA (2.2 equiv.), CH2Cl2 25°C, 48 h; C: 10% aq. KOH, MeOH
25°C, 3 h; D: TBDMSCl, imidazole, DMF, 25°C, 3 h, distill, 74% from 1. E: (i-Pr)2NAl(i-Bu)2, benzene, 12 h, 0°C; F: Ac2O,
DMAP, Et3N, 2 h, 0–25°C, 94% crude; G: 2.5% Pd(PPh3)4, Et3N, dioxane, 5 h, reflux, distill 83%.
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Scheme 2. Conditions : H: trifluorodimethyldioxirane, gener-
ated in situ9 plus 20% THF, 0°C, 7 h; I: 1% solid HIO4, 1
equiv. NaIO4, 1:1 t-BuOH:H2O, plus 20% THF, 3 h, 25°C,
83%.

Scheme 3. Conditions : J: TBHP, 2.5% Triton B, benzene,
5°C, 2 h, 8a 85%, 8b 83%; K: pyr-NTf2, LDA, THF, −78 to
25°C, 8 h, 9a 86%, 9b 55%.

Scheme 4. Conditions : L: BH3, THF 0°C 2 h, 13a,b 88%; M: Me3Sn-Ar, 2.5% Pd2dba3, ZnCl2, AsPPh3, NMP, 25°C, 1 h, 3a 83%,
Ar-B(OH)2, 2.5% Pd(PPh3)4, LiCl, 2 M Na2CO3, DME, 50°C 45 min, 3b 86%.

out any competitive aromatization in 83% yield. Filtra-
tion through silica is necessary to remove palladium
before distillation (Scheme 2).8

Regioselective oxidative cleavage is accomplished by
first epoxidizing the exo-olefin of 6 to give 7, followed
by treatment with HIO4/NaIO4 to leave 2a in 83% yield
after silica gel chromatography.10 These reactions are
readily scaled and are regularly performed in our labo-
ratories to give �20 g of 2a. Purification of intermedi-
ates 4 and 6 is accomplished with distillation, while
silica chromatography is normally used to isolate 2a.
The yield over the three isolations is 48%, 97.8% ee
(Scheme 3).11,12

With 2a,b in hand, a formal synthesis of (±)-mesembra-
nol (17) was straightforward. Stereoselective epoxida-
tion of enone 2a,b provides 8a,b with >20:1 selectivity.13

Trapping the enolate from 8b as vinyl triflate affords 9b
in only 55% yield; however, 8a nicely furnishes 8a in
86% (Scheme 4).14

Regioselective 1,5-hydride addition to 9a,b with BH3

giving 13a,b sets the stage for coupling.15 Treatment of
13a with veratrole boronic acid under Suzuki condi-
tions provides 3a in 86% yield. Similarly, treatment of
mono-protected diol 13b with trimethylstannyl vera-
trole under Stille conditions affords coupled product
3b, the Ogawa intermediate, in 83% yield.
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