

Eur. J. Med. Chem. 37 (2002) 147-161

Original article

COX-1/COX-2 inhibitors based on the methanone moiety

Gerd Dannhardt^{a,*}, Bernd L. Fiebich^b, Johannes Schweppenhäuser^a

^a Institute of Pharmacy, Fachbereich Chemie und Pharmazie, Johannes Gutenberg, University of Mainz, Staudingerweg 5, D-55099 Mainz, Germany

^b Department of Psychiatry and Psychotherapy, Albert-Ludwigs-University, D-79104 Freiburg, Germany

Received 17 July 2001; received in revised form 5 December 2001; accepted 6 December 2001

Abstract

This paper focuses on the synthesis and the in vitro testing of dual COX-1/COX-2 inhibitors. Starting from structures of non-steroidal anti-inflammatory drugs (NSAIDs) the diaryl methanone element was chosen as a lead. Modifications were carried out on this scaffold to obtain potent inhibitors of the COX enzymes. The *N*-(2-aroylphenyl)sulphonamides and -amides were studied in detail, and to consolidate the data evaluated the corresponding 3- and 4-regioisomers were also investigated. The potency and the enzyme selectivity were varied by structural modifications of the lead. © 2002 Published by Éditions scientifiques et médicales Elsevier SAS.

Keywords: N-(Aroylphenyl)amides and -sulphonamides; COX-1/COX-2 inhibition; Structure-activity relationships

1. Introduction

Prostaglandins are important biological mediators of inflammation, originating from biotransformation of arachidonic acid catalysed by cyclooxygenase [1]. In spite of some adverse side effects [2,3], cyclooxygenase inhibitors are the drugs to suppress inflammatory processes. Two isoenzymes of cyclooxygenase have been identified: COX-1 and COX-2 [4,5]. Selective inhibition of COX-2 [6] or dual inhibition of COX-1 and COX-2 [7] is under discussion as a promising principle in the treatment of inflammatory diseases. For several reasons, including increased cardiovascular risks, the important role of COX-2 produced prostaglandins in the response of the mucosa to irritants and in healing and other critical aspects the accuracy of selective COX-2 inhibition as the principle tenet is under debate [8–10].

A number of substituted sulphonamides are known as anti-inflammatory agents (Fig. 1) [11-13]. The first substances were diflumidone and nimesulide, which was

* Correspondence and reprints. *E-mail address:* dannhrdt@mail.uni-mainz.de (G. Dannhardt). a lead for NS-398 and flosulide. Diarylmethanones such as ketoprofen, tiaprofenic acid, tolmetine, and ketorolac are used in the therapy of inflammation.

The objective of this study was to correlate the structural parameters with the inhibitory potency and the enzyme selectivity, i.e. to evaluate the significance of

Fig. 1. Structures of COX-inhibitors.

the aryl substituents, of the carbonyl-moiety as the linking element, the impact of the sulphonamide and the amide group, and the contribution of the functional moiety at different positions on the phenyl ring. In this context, we also studied the meaning of the rotation phenomena of the two aromatic rings (Fig. 2).

The compounds were tested in vitro to evaluate their COX-1/COX-2 inhibitory activity.

2. Chemistry

The compounds, synthesised are summarised in Table 1 and Fig. 3.

The synthesis of the N-(aroylphenyl)sulphonamides and -amides 1a, 2a-h, 5, 6a-b, 7, 2a-b, 9, 10a-c, 12a-c, 13a-c started with commercially available amines and sulphonyl chlorides or carbonyl chlorides.

Adapted to procedures described by Walsh [14] and Miyachi et al. [15], 2-aminobenzoic acid with methanesulphonyl chloride in aqueous sodium carbonate gave rise to 2-methylsulphonylamido benzoic acid which was transformed to the chloride and subsequently by Friedel-Crafts acylation to N-(aroylphenyl)sulphonamides $\mathbf{1b-c}$ (Fig. 4).

The synthesis of **1d** is likewise possible but to obtain a compound with greater purity we chose the procedure of Guilhemat et al. [16] and reacted 1-phenylbenzene isatoic anhydride and AlCl₃ at 110 °C for 8 h. The corresponding amine together with methanesulphonyl chloride yielded the desired product **1d** (Fig. 5).

Another strategy was used to synthesise 1e, 2i and 2j. The reaction sequence is outlined in Fig. 6.

2-Aminophenyl-2-thienyl methanone, the basic moiety of the compounds 3, 4a-b and 11a-c was synthesised according to a procedure of Hunziker et al. [17]. The amides and sulphonamides were obtained using the corresponding sulphonyl and carbonyl chlorides.

Due to the structural complexity of this group, the sulphonamides 14-20 were prepared using two different strategies. Compound 17 can be obtained directly from 1a with dimethylsulphate in absolute THF, 1a and 1,2-ethanedithiol-boron trifluoride etherate gave rise to 18 [18], LiAlH₄ reduction of 1a led to 19. Starting material for the sulphonamides 14-16 and 20 were commercially available amines. In the case of 16 the 2-amino-6-methoxyphenyl-phenylmethanone was synthesised according to a procedure of Walsh [14]. The data of the compounds are summarised in Table 2.

Fig. 2. $R = aryl; R'R'' = O; R' = OH, R'' = H; R', R'' = H; R''' = CH_3, aryl; X = SO_2, CO.$

Table 1

N-(Aroylphenyl)sulphonamides and -amides

Compound	R	R′	RCO-position
1a	ph	CH ₃	2
1b	4-CH ₃ -ph	CH ₃	2
1c	4-CH ₃ -S-ph	CH ₃	2
1d	4-ph-ph	CH ₃	2
1e	4-tert-butyl-ph	CH ₃	2
2a	ph	ph	2
2b	ph	4-CH ₃ -ph	2
2c	ph	4-Cl–ph	2
2d	ph	4-CH ₃ -O-ph	2
2e	ph	4-tert-butyl-ph	2
2f	ph	3,5-bis-tri-F-ph	2
2g	ph	2-naphthyl	2
2h	ph	2-thienyl	2
2I	4-CH ₃ -ph	4-CH ₃ -ph	2
2j	4-tert-butyl-ph	4-CH ₃ -ph	2
3	2-thienyl	CH ₃	2
4a	2-thienyl	4-CH ₃ -ph	2
4b	2-thienyl	4-Cl–ph	2
5	ph	CH ₃	3
6a	ph	4-CH ₃ -ph	3
6b	ph	4-Cl–ph	3
7	ph	CH ₃	4
8a	ph	4-CH ₃ -ph	4
8b	ph	4-Cl–ph	4
9	ph	CH ₃	2
10a	ph	ph	2
10b	ph	4-CH ₃ -ph	2
10c	ph	4-Cl-ph	2
11a	2-thienyl	ph	2
11b	2-thienyl	4-CH ₃ -ph	2
11c	2-thienyl	4-Cl–ph	2
12a	ph	ph	3
12b	ph	4-CH ₃ -ph	3
12c	ph	4-Cl–ph	3
13a	ph	ph	4
13b	ph	4-CH ₃ -ph	4
13c	ph	4-Cl–ph	4

3. Pharmacology

The compounds were tested for their inhibitory potency against COX-1 in an intact cell assay described earlier [29]. Porcine blood was used as the enzyme source and the isolated platelets as the source for COX-1 activity. The cells were incubated with the compounds and stimulated with calcium ionophore A 23187. The amount of malondialdehyde (MDA) was determined by fluorometry. IC_{50} values were calculated with the program GRAFIT, Erithacus Software Ltd.,

Fig. 3. Modified sulphonamides.

UK. Amfenac, diclofenac, indomethacin and ketoprofen were used as reference standards (IC_{50} values see Fig. 7).

To determine the COX-2 activity the method of Fiebich et al. [30] was applied. The inhibition of LPS-induced COX-2 in human monocytes was calculated using monocytes from the peripheral blood of healthy donors and the PGE_2 assay.

The increase of potency of anti-inflammatories is often correlated with the lipophilicity using the thiophene approach [31] but our tests show that the thienoyl sulphonamides 3, 4a-b possess less potency than the corresponding aroyl sulphonamides 1a-c. The highest inhibitory activity is found for the tosyl-sulphonamides (1b: 0.05; 2b: 0.35; 4a: 1.06 μ M).

4. Results and discussion

Table 1 and Fig. 3 summarise the compounds tested. All the compounds were screened for their COX-1 inhibitory potency. Some of them were also tested to ascertain COX-2 inhibition. The results are listed in Table 3.

4.1. N-(Aroylphenyl)sulphonamides

The *N*-(2-benzoylphenyl)methanesulphonamides **1a**–e differ only at position 4' of R. For none of these compounds can any noticeable inhibitory activity against COX-2 be found. The unsubstituted **1a** and the methylsulphanyl derivative **1c** inhibit COX-1 equipotently. A significant increase of inhibitory potency is observed for the 4'-methyl compound **1b** (IC₅₀ = 0.05 μ M). Bulky substituents such as a phenyl (**1d**) or a *tert*-butyl residue (**1e**) result in a lack of COX-1 inhibition. These findings are confirmed in the **2** series by **2j**.

In the arylsulphonyl series $2\mathbf{a}-\mathbf{j}$ no inhibition of COX-2 are found, but most of the compounds are more potent or equipotent COX-1 inhibitors than the lead **1a**. The *para*-methylsulphonamide **2b** is the most potent COX-1 inhibitor, but the activity decreases if position 4' of the aroyl moiety is substituted, especially with a bulky residue such as the *tert*-butyl group (**2j**).

Fig. 4. (a) Cl–SO₂CH₃, aq. Na₂CO₃; (b) SOCl₂; (c) AlCl₃–C₆H₅–R, CH₂Cl₂.

Fig. 5. (a) AlCl₃/110 °C/8 h; (b) concd. HCl; (c) CH₃SO₂–Cl, CH₂Cl₂–pyridine.

Fig. 6. (a) $AlCl_3-C_6H_5-R$, CH_2Cl_2 ; (b) hydrogen (10 bar), Pd-C; (c) R'-SO₂-Cl, CH_2Cl_2 -pyridine.

Consequently, we investigated the regioisomeric 3and N-(4-benzoylphenyl)sulphonamides 5, 6a, 6b and 7, 8a-b. Compound 5 (0.25 μ M) is fourfold more potent than 1a (1.12 μ M) and 16-fold more potent than 7 (4.11 μ M). These results are in agreement with Harrington et al. [11] and Moore and Harrington [12] testing 3-benzoyl fluoroalkanesulphonamides. The arylsulphonamides 8a-b and 6a-b inhibit COX-1 in the low micromolar range. The tosylamides 8a (0.23 μ M) and 6a (0.67 μ M) are more potent than the corresponding 4-chloro-sulphonamides 8b (0.33 μ M) and 6b (2.73 μ M). In contrast to methanesulphonamides 7 the arylsulphonamide derivatives 8a and 8b are the most potent compounds in this series.

4.2. Modified sulphonamides

Compounds 14-20 show no or poor (20) enzyme inhibiting potency. These results indicate that modifications of the carbonyl moiety or the restriction of the rotation of both aryl rings are detrimental to the activity. Evidently the ketone function is a prerequisite for COX-1 and COX-2 potency.

4.3. N-(Aroylphenyl)benzamides

The N-(aroylphenyl)amides were prepared to test whether the sulphonamide moiety is pharmacophore in essence.

The benzamides 10a-c inhibit the COX-1 enzyme with the activity increasing from the unsubstituted compound to the chloro derivative 10c (IC₅₀ = 0.18 μ M).

Compounds **10a**-c are balanced dual inhibitors of COX-1 and COX-2 (COX-1/COX-2 ratio: 0.52-0.82).

The thienoyl-derivatives 11a-c represent potent COX-1 inhibitors. Compound 11c was identified as one of the most potent COX-1 inhibitors (IC₅₀ = 0.05 μ M), however, in contrast to the corresponding benzoyl compounds 10a-c the thienoyl-derivatives 11a-c inhibit the COX-2 enzyme less potently (see Table 3).

The 3-benzoyl derivatives 12a-c are equipotent COX-1 inhibitors and more potent than the corresponding 4-regioisomers 13a-c. Compounds 12a-c and 13a-c preferentially inhibit the COX-1 isoform.

4.4. Comparison of N-(aroylphenyl)sulphonamides and N-(aroylphenyl)benzamides

As mentioned above, *N*-(aroylphenyl)sulphonamides are selective COX-1 inhibitors. Most of the investigated *N*-(aroylphenyl)benzamides are potent COX-1 and COX-2 inhibitors with a varying selectivity profile. The

Table 2

 IC_{50} values of compounds tested (μM or percentage of inhibition at a concentration of 10 $\mu M)$

Compound	COX-1	COX-2	COX-1/COX-2
	1.12	13.7	
1b	0.05	36.9	
1c	1.31	n.t.	
1d	>10	10.3	
1e	>10	0%	
2a	0.40	n.t.	
2b	0.35	n.t.	
2c	0.58	9%	
2d	1.00	n.t.	
2e	1.70	n.t.	
2f	1.83	n.t.	
2g	1.40	n.t.	
2h	1.08	n.t.	
2i	2.95	n.t.	
2j	>10	10%	
3	2.77	n.t.	
4a	1.06	n.t.	
4b	~ 10	0%	
5	0.25	n.t.	
6a	0.67	n.t.	
6b	2.73	5%	
7	4.11	n.t.	
8a	0.23	n.t.	
8b	0.33	20%	
9	>10	n.t.	n.d.
10a	2.09	2.55	0.82
10b	0.32	0.61	0.52
10c	0.18	0.24	0.75
11a	0.42	2.63	0.16
11b	0.11	3.00	0.04
11c	0.05	24%	n.d.
12a	0.49	1.80	0.27
12b	0.39	3.30	0.12
12c	0.42	1.67	0.25
13a	2.93	n.t.	n.d.
13b	3.98	10	0.40
13c	0.58	25%	n.d.
14	>10	n.t.	
15	>10	n.t.	
16	>10	n.t.	
17	>10	n.t.	
18	>10	n.t.	
19	>10	n.t.	
20	>10	n.t.	

n.t., not tested; n.d., not determined.

Fig. 7. IC₅₀ values for COX-1 and COX-2 inhibition of indomethacin, amfenac, diclofenac and ketoprofen [32].

benzamides 10a-c are equipotent dual inhibitors of COX-1 and COX-2.

In general benzamide derivatives are more potent than the corresponding sulphonamides except the sulphonamides **2a** and **8a** which inhibit the COX-1 enzyme more potently than the benzamides **10a** and **13b**.

5. Summary and conclusions

Starting with N-(2-benzoylphenyl)methanesulphonamide (1a) as a lead, variations of the benzoyl, aniline and sulphonamide moiety were produced. In addition the exchange of benzoyl by a 2-thienoyl residue was performed. A substituent at position 4'of the 2-benzoyl moiety led to 1b, the most potent COX-1 inhibitor. The shift from mesyl to tosyl derivatives increased COX-1-inhibition.

Based on these results the molecules were modified systematically to postulate the following structure–activity relationships:

- (a) *flexibility* of the molecule seems to be a prerequisite for interaction with the amino acids of the inner surface of the COX-channel;
- (b) the *carbonyl moiety* as a link between the two aryl rings allows an orientation to each other which is optimum for intermolecular bonding. In addition it is a hydrogen acceptor;
- (c) the *NH-group* may serve as the donor of intermolecular hydrogen bonds;
- (d) increasing lipophilicity does not enhance the COX inhibitory potency.

The corresponding 3- and 4-regioisomers reinforced the structure–activity relationships discussed above. In general, arylsulphonamides preferentially inhibit COX-1 but the corresponding amides are more potent. Some N-(aroylphenyl) amides are balanced dual COX-1 and COX-2 inhibitors.

6. Experimental

6.1. Chemistry

Melting points were measured on a Büchi apparatus (Dr Tottoli) and were not corrected. IR spectra (KBr disks unless otherwise stated) were recorded on a Beckmann IR Model 4220 spectrophotometer. ¹H-NMR-spectra were obtained on a Bruker AC 200 (200 MHz) or Bruker AC 300 (300 MHz) and were consistent with proposed structures (solvent: CDCl₃ unless otherwise stated). Chemical shifts are described in parts per million. Tetramethylsilane was used as internal standard. Coupling constants (J) are reported in Hertz. Mass spectra (electron impact) were obtained on a Varian MAT 311 A. Thinlayer chromatography (TLC) was carried out with E. Merck silica gel 60 F₂₅₄ plates. CC were conducted over SiO₂ in glass tubes $(30 \times 500 \text{ mm})$ under pressure $(N_2, 0.8)$ bar). Analyses indicated by the element symbols were within $\pm 0.4\%$ of the theoretical values. All chemicals were of analytical grade. Yields are reported in percent from their theoretically calculated value.

6.2. General procedure for the preparation of sulphonamides and carbonamides (Method A)

To a stirred and cooled (ice bath) solution of the amine and 1.5 equiv. pyridine in dry CH_2Cl_2 a solution of the SOCl₂, or carbonyl chloride, was added. The solution was stirred for 3 h at room temperature (r.t.) before being hydrolysed with water. The organic layer was separated, washed three times with water, Na_2CO_3 and water and finally dried with Na_2SO_4 . The solvent was evaporated under reduced pressure to yield the crude product, which was usually purified by CC.

Table 3					
Physical	data	of	compounds	synthesised.	

Compound	m.p. (°C)	IR (KBr)	¹ H-NMR (200 MHz), δ (ppm), J (Hz)/MS (EI, 70 eV): m/z
1a	108 (106–107 [19])	1625 (C=O), 1325, 1150 (SO ₂ -N)	3.08 (s, 3H, CH ₃), 7.11 (ddd, ${}^{3}J$ = 7.9 Hz, ${}^{3}J$ = 7.6 Hz, ${}^{4}J$ = 1.2 Hz, 1H, H _{arom}), 7.47–7.52 (m, 2H, H _{arom}), 7.56–7.64 (m, 3H, H _{arom}), 7.68–7.70 (m, 2H, H _{arom}), 7.81 (dd, ${}^{3}J$ = 8.3 Hz, ${}^{4}J$ = 0.7 Hz, 1H, H _{arom}), 10.28 (s, 1H, NH)
			275.0 [23%, M ⁺], 196.1 [30%, M ⁺ $-$ SO ₂ CH ₃], 105.1 (12%, C ₆ H ₅ CO ⁺)
1b	96	1630 (C=O), 1335, 1150 (SO ₂ –N)	2.43 (s, 3H, ArCH ₃), 3.04 (s, 3H, SO ₂ CH ₃), 7.13 (dd, ${}^{3}J = 7.8$ Hz, ${}^{3}J = 7.3$ Hz, 1H, H _{arom}), 7.28 (d, ${}^{3}J = 7.8$ Hz, 2H, AA'), 7.52–7.62 (m, 4H, H _{arom}), 7.78 (d, ${}^{3}J = 8.3$ Hz, 1H, H _{arom}), 10.11 (s, 1H, NH) 290.2 [24%, M ⁺], 210.8 [100%, M ⁺ – SO ₂ CH ₃], 119.3 (42%, CH ₃ C ₆ H ₅ CO ⁺), 91.3 (27%, C ₇ H ₇ ⁺)
1c	127	1630 (C=O), 1320, 1155 (SO ₂ -N)	2.53 (s, 3H, S–CH ₃), 3.04 (s, 3H, SO ₂ CH ₃), 7.13 (dd, ${}^{3}J = 7.8$ Hz, ${}^{3}J = 7.3$ Hz, 1H, H _{arom}), 7.28 (d, ${}^{3}J = 8.8$ Hz, 2H, AA'), 7.52–7.80 (m, 5H, H _{arom}), 10.00 (s, 1H, NH) 321.2 [57%, M ⁺], 241.9 [24%, M ⁺ – SO ₂ CH ₃], 194.9 (23%), 84.2 (100%)
1d	145	1640 (C=O), 1340, 1155 (SO ₂ –N)	3.07 (s, 3H, CH ₃), 7.16 (dd, ${}^{3}J = 7.6$ Hz, 1H, H _{arom}), 7.39–7.82 (m, 12H, H _{arom}), 10.21 (s, 1H, NH) 351.7 [36%, M ⁺], 372.7 [100%, M ⁺ – SO ₂ CH ₃], 181.1 (22%, C ₆ H ₅ C ₆ H ₄ CO ⁺)
1e	158	1630 (C=O), 1330, 1150 (SO ₂ -N)	1.37 (s, 9H, <i>t</i> Bu), 3.05 (s, 3H, CH ₃), 7.15 (ddd, ${}^{3}J = 7.9$ Hz, ${}^{3}J = 7.4$ Hz, ${}^{4}J = 1.2$ Hz, 1H, H _{arom.}), 7.51 (d, ${}^{3}J = 8.5$ Hz, 2H, AA'), 7.58 (ddd, ${}^{3}J = 7.9$ Hz, ${}^{3}J = 7.6$ Hz, ${}^{4}J = 1.7$ Hz, 1H, H _{arom.}), 7.66 (d, ${}^{3}J = 8.3$ Hz, 2H, BB'), 7.66 (d, ${}^{3}J = 8.3$ Hz, 2H, BB'), 7.80 (dd, ${}^{3}J = 8.3$ Hz, ${}^{4}J = 1.0$ Hz, 1H, H _{arom.}), 10.16 (s, 1H, NH) 331.6 [48%, M ⁺], 251.1 [21%, M ⁺ - SO ₂ CH ₃], 237.0 (41%), 196.3 (100%), 56.0 (79%)
2a	135	1625 (C=O), 1320, 1170 (SO ₂ -N)	7.07 (dd, ${}^{3}J$ = 7.8 Hz, ${}^{4}J$ = 1.0 Hz, 1H, H _{arom}), 7.23–7.59 (m, 10H, H _{arom}), 7.67–7.80 (m, 3H, H _{arom}), 10.14 (s, 1H, NH) 337.2 [34%, M ⁺], 196.3 [100%, M ⁺ – SO ₂ CH ₃], 105.0 (14%, C ₆ H ₅ CO ⁺), 77.0 (53%, C ₆ H ₅ ⁺)
2b	119 (127 [20])	1630 (C=O), 1390, 1165 (SO ₂ -N)	2.20 (s, 3H, CH ₃), 7.01 (d, ${}^{3}J = 7.9$ Hz, 2H, AA'), 7.06–7.10 (m, 1H, H _{arom}), 7.34–7.40 (m, 5H, H _{arom}), 7.47–7.56 (m, 4H, H _{arom}), 7.76–7.78 (m, 1H, H _{arom}), 9.97 (s, 1H, NH) 351.4 [61%, M ⁺], 196.1 [100%, M ⁺ – SO ₂ C ₆ H ₄ CH ₃], 91.4 (37%, C ₇ H ₇ ⁺)
2c	124	1630 (C=O), 1320, 1175, (SO ₂ -N)	7.09–7.79 (m, 14H, H _{arom.}), 9.96 (s, 1H, NH)
			371.7 [26%, M ⁺], 196.3 [100%, M ⁺ - SO ₂ C ₆ H ₄ Cl], 77.2 (24%, C ₆ H ₅ ⁺)
2d	98 (92–100 [21])	3260 (N–H), 1635 (C=O), 1345, 1160 (SO ₂ –N)	3.67 (s, 3H, OCH ₃), 6.67 (d, ${}^{3}J = 8.8$ Hz, 2H, AA'), 7.08 (dd, ${}^{3}J = 7.8$ Hz, ${}^{3}J = 7.83$ Hz, 1H, H _{arom}), 7.34–7.62 (m, 9H, H _{arom}), 7.77 (d, ${}^{3}J = 8.3$ Hz, 1H, H _{arom}), 9.92 (s, 1H, NH) 367.5 [64%, M ⁺], 196.4 [100%, M ⁺ - SO ₂ C ₆ H ₄ OCH ₃], 171.2 (46%, SO ₂ C ₆ H ₄ OCH ₃ ⁺), 107.2 (43%, C ₆ H ₄ OCH ₃ ⁺), 77.3 (51%, C ₆ H ₅ ⁺)
2e	135	3180 (N–H), 1640 (C=O), 1345, 1180 (SO ₂ –N)	1.18 (s, 9H, <i>t</i> Bu), 7.08 (dd, ${}^{3}J$ = 7.8 Hz, ${}^{3}J$ = 7.3 Hz, 1H, H _{arom} .), 7.29 (d, ${}^{3}J$ = 8.5 Hz, 2H, AA'), 7.35–7.55 (m, 7H, H _{arom} .), 7.62 (d, ${}^{3}J$ = 8.5 Hz, 2H, BB'), 7.80 (d, ${}^{3}J$ = 8.3 Hz, 1H, H _{arom} .), 10.17 (s, 1H, NH) 393.7 [31%, M ⁺], 196.3 [100%, M ⁺ – SO ₂ C ₆ H ₄ <i>t</i> Bu]
2f	98	3250 (N–H), 1645 (C=O), 1365, 1130 (SO ₂ –N)	7.18–7.82 (m, 10H, $H_{arom.}$), 8.06 (s, 1H, $H_{arom.}$), 10.00 (s, 1H, NH)
		/	474.4 [22%, M ⁺], 196.8 (100%)
2g	118	3180 (N–H), 1640 (C=O), 1340, 1170 (SO ₂ –N)	7.01–7.86 (m, 15H, H _{arom.}), 8.20 (s, 1H, H _{arom.}), 10.07 (s, 1H, NH)
			387.2 [68%, M ⁺], 196.2 [100%, M ⁺ – SO ₂ C ₁₀ H ₇], 127.5 (68%, C ₁₀ H ₇ ⁺)
2h	124	1630 (C=O), 1325, 1155 (SO ₂ –N)	6.84 (dd, ${}^{3}J = 3.9$ Hz, ${}^{4}J = 1.5$ Hz, 1H, thiophen _{H-4}), 7.12 (dd, ${}^{3}J = 7.8$ Hz, ${}^{4}J = 1.5$ Hz, 1H, H _{arom}), 7.35–7.61 (m, 9H, H _{arom}), 7.84 (d, ${}^{3}J = 8.3$ Hz, 1H, H _{arom}), 10.22 (s, 1H, NH) 343.4 [45%, M ⁺], 278.5 (23%), 196.5 [100%, M ⁺ - SO ₂ C ₄ H ₃ S], 147.1 (10%, SO ₂ C ₄ H ₃ S ⁺), 105.3 (29%, C ₆ H ₅ CO ⁺), 77.3 (36%, C ₆ H ₅ ⁺)

Table 3 (continued).

Compound	m.p. (°C)	IR (KBr)	¹ H-NMR (200 MHz), δ (ppm), J (Hz)/MS (EI, 70 eV): m/z
2i	125 (123 [20])	1630 (C=O), 1320, 1155 (SO ₂ -N)	2.21 (s, 3H, CH ₃), 2.43 (s, 3H, CH ₃), 7.01 (d, ${}^{3}J = 7.9$ Hz, 2H, AA'), 7.09 (dd, ${}^{3}J = 7.6$ Hz, ${}^{4}J = 1.2$ Hz, 1H, H _{arom}), 7.18 (d, ${}^{3}J = 7.9$ Hz, 2H, AA'), 7.29 (d, ${}^{3}J = 8.3$ Hz, 2H, BB'), 7.36 (dd, ${}^{3}J = 7.9$ Hz, ${}^{4}J = 1.4$ Hz, 1H, H _{arom}), 7.50 (dd, ${}^{3}J = 8.3$ Hz, ${}^{4}J = 1.4$ Hz, 1H, H _{arom}), 7.54 (d, ${}^{3}J = 8.3$ Hz, 4J = 1.4 Hz, 1H, H _{arom}), 7.54 (d, ${}^{3}J = 8.3$ Hz, 4J = 1.0 Hz, 1H, H _{arom}), 9.88 (s, 1H, NH) 365.2 [32%, M ⁺], 210.2 [100%, M ⁺ - SO ₂ C ₆ H ₄ CH ₃], 91.1 (42%, C ₇ H ₇ ⁺)
2j	118	3250 (N–H), 1630 (C=O), 1600, 1340, 1170 (SO ₂ –N)	1.35 (s, 9H, <i>t</i> Bu), 2.21 (s, 3H, CH ₃), 7.01 (d, ${}^{3}J = 8.1$ Hz, 2H, AA'), 7.09 (ddd, ${}^{3}J = 7.6$ Hz, ${}^{4}J = 1.0$ Hz, 1H, H _{arom}), 7.31–7.56 (m, 8H, H _{arom}), 7.77–7.80 (m, 1H, H _{arom}) 9.94 (s, 1H, NH) 407.0 [47%, M ⁺], 196.1 (100%), 91.1 (28%, C ₇ H ₇ ⁺), 57.6 (36%, <i>t</i> Bu ⁺)
3	yellow liquid	3280 (N–H), 1625 (C=O), 1340, 1170 (SO ₂ –N)	3.01 (s, 3H, CH ₃), 7.15–7.21 (m, 2H, H _{arom.}), 7.53–7.61 (m, 2H, H _{arom.}), 7.76–7.89 (m, 3H, H _{arom.}), 7.86 (dd, ${}^{3}J$ = 7.8 Hz, ${}^{4}J$ = 1.5 Hz, 1H, H _{arom.}), 9.55 (s, 1H, NH) 281.8 [20%, M ⁺], 202.4 [37%, M ⁺ – SO ₂ CH ₃]
4a	124 (125 [22])	3230 (N–H), 1310, 1170 (SO ₂ –N)	2.14 (s, 3H, CH ₃), 6.91 (d, ${}^{3}J = 8.3$ Hz, 2H, AA'), 7.01–7.10 (m, 2H, H _{arom.}), 7.17 (ddd, ${}^{3}J = 7.8$ Hz, ${}^{4}J = 1.5$ Hz, 1H, H _{arom.}), 7.44 (d, ${}^{3}J = 8.3$ Hz, 2H, BB'), 7.56 (ddd, ${}^{3}J = 8.3$ Hz, ${}^{4}J = 1.5$ Hz, 1H, H _{arom.}), 7.69–7.77 (m, 2H, H _{arom.}), 9.26 (s, 1H, NH) 357.0 [41%, M ⁺], 202.3 [100%, M ⁺ -SO ₂ C ₆ H ₄ CH ₃], 91.1 (41%, C ₇ H ₇ ⁺)
4b	134	3240 (N–H), 1620 (C=O), 1350, 1180 (SO ₂ –N)	7.04–7.10 (m, 4H, H _{arom}), 7.22 (ddd, ${}^{3}J = 7.8$ Hz, ${}^{3}J = 7.3$ Hz, ${}^{4}J = 1.0$ Hz, 1H, H _{arom}), 7.48 (d, ${}^{3}J = 8.3$ Hz, 2H, BB'), 7.58 (ddd, ${}^{3}J = 7.8$ Hz, ${}^{3}J = 7.3$ Hz, ${}^{4}J = 1.5$ Hz, 1H, H _{arom}), 7.72–7.78 (m, 2H, H _{arom}), 9.22 (s, 1H, NH) 377.8 [27%, M ⁺], 202.4 [100%, M ⁺ – SO ₂ C ₆ H ₄ Cl], 111.2 (35%, C ₄ H ₃ SCO ⁺)
5	100 (99–101 [23])	3260 (N–H), 1650 (C=O), 1330, 1150 (SO ₂ –N)	3.04 (s, 3H, CH ₃), 7.09 (s, 1H, NH), 7.42–7.65 (m, 7H, H _{arom} .), 7.77–7.82 (m, 2H, H _{arom} .) 2H, H _{arom} .) 275.5 [96%, M ⁺], 196.4 [27%, M ⁺ –SO ₂ CH ₃], 105.1 (100%, C ₆ H ₅ CO ⁺), 77.4 (70%, C ₆ H ₅ ⁺)
6a	118	3300 (N–H), 1670 (C=O), 1330 1170 (SO ₂ –N)	2.35 (s, 3H, CH ₃), 7.18–7.70 (m, 14H, H $_{\rm arom.}$ and NH)
		1556, 1176 (502 17)	351.7 [38%, M^+], 105.7 (32%, $C_6H_5CO^+$), 91.6 (80%, $C_7H_7^+$), 84.3 (100%), 77.3 (32%, $C_6H_5^+$), 64.6 (21%, SO_2^+)
6b	130	3220 (N–H), 1645 (C=O), 1350, 1170 (SO ₂ –N)	7.36–7.71 (m, 19H, H _{arom.} and NH)
		1000, 11/0 (002 11)	371.5 [79%, M^+], 178.2 (83%), 105.0 (100%, $C_6H_5CO^+$), 77.4 (68%, $C_6H_5^+$)
7	137 (145–147 [24])	3230 (N–H), 1645 (C=O), 1320, 1150 (SO ₂ –N)	3.12 (s, 3H, CH ₃), 7.32 (d, ${}^{3}J = 8.6$ Hz, 2H, AA'), 7.41 (s, 1H, NH), 7.46–7.51 (m, 2H, H _{arom}), 7.60 (dddd, ${}^{3}J = 7.4$ Hz, ${}^{4}J = 1.3$ Hz, 1H, benzoyl _{H-4}), 7.75–7.78 (m, 2H, H _{arom}), 7.83 (d, ${}^{3}J = 8.6$ Hz, 2H, BB') 274.9 [58%, M ⁺], 197.9 [23%, M ⁺ – C ₆ H ₅], 105.1 (33%, C ₆ H ₅ CO ⁺), 79.3 (70%, SO ₂ CH ₃ ⁺)
8a	177 (175 [25])	3230 (N–H), 1645 (C=O), 1350, 1155 (SO ₂ –N)	2.37 (s, 3H, CH ₃), 7.14–7.26 (m, 4H, H _{arom} .), 7.40–7.59 (m, 4H, H _{arom} .), 7.68–7.77 (m, 6H, H _{arom} . and NH). 351.3 [88%, M ⁺], 274.4 [29%, M ⁺ – C ₆ H ₅], 155.0 (46%, C ₆ H ₄ NHSO ₂ ⁺), 105.0 (26%, C ₆ H ₅ CO ⁺), 91.1 (100%, C ₇ H ₇ ⁺), 77.4 (30%, C ₆ H ₅ ⁺)
8b	160	3220 (N–H), 1640 (C=O), 1350 (SO ₂ –N), 1320, 1150	7.17 (d, ${}^{3}J = 8.8$ Hz, 2H, AA'), 7.41–7.61 (m, 6H, H _{arom.}), 7.68–7.81 (m, 6H, H _{arom.} and NH)
		(50 ₂ -N)	371.6 [86%, M ⁺], 294.3 [49%, M ⁺ - C ₆ H ₅], 196.3 [28%, M ⁺ - SO ₂ C ₆ H ₄ Cl], 168.2 (100%), 140.8 (41%, C ₆ H ₄ SO ₂ ⁺), 105.0 (54%, C ₆ H ₅ CO ⁺), 77.4 (60%, C ₆ H ₅ ⁺)
9	85 (83–84 [26])	3300 (N–H), 1695 (C=O), 1630 (C=O)	2.22 (s, 3H, CH ₃), 7.08 (dd, ${}^{3}J$ = 7.9 Hz, ${}^{4}J$ = 1.2 Hz, 1H, H _{arom}), 7.46–7.71 (m, 7H, H _{arom}), 8.62 (d, ${}^{3}J$ = 8.3 Hz, 1H, H _{arom}), 10.81 (s, 1H, NH) 238.9 [44%, M ⁺], 196.0 [100%, M ⁺ - CH ₃ CO]
10a	90	3290 (N–H), 1655 (C=O), 1610 (C=O)	7.13 (ddd, ${}^{3}J = 8.0$ Hz, ${}^{3}J = 7.3$ Hz, ${}^{4}J = 1.2$ Hz, 1H, H _{arom} .), 7.47–7.74 (m, 10H, H _{arom} .), 8.07 (dd, ${}^{3}J = 8.0$ Hz, ${}^{4}J = 1.7$ Hz, 2H, H _{arom} .), 8.90 (dd, ${}^{3}J = 8.6$ Hz, ${}^{4}J = 1.0$ Hz, 1H, H _{arom} .), 11.98 (s, 1H, NH) 301.1 [26%, M ⁺], 195.9 [39%, M ⁺ – C ₆ H ₅ CO], 105.1 (100%, C ₆ H ₅ CO ⁺), 77.3 (47%, C ₆ H ₅ ⁺)

Table 3 (continued).

Compound	m.p. (°C)	IR (KBr)	¹ H-NMR (200 MHz), δ (ppm), J (Hz)/MS (EI, 70 eV): m/z
10b	81 (75 [27])	3290 (N–H), 1685 (C=O), 1635 (C=O)	2.42 (s, 3H, CH ₃), 7.11 (ddd, ${}^{3}J = 7.9$ Hz, ${}^{3}J = 7.4$ Hz, ${}^{4}J = 1.2$ Hz, 1H, H _{arom.}), 7.31 (d, ${}^{3}J = 7.9$ Hz, 2H, AA'), 7.45–7.74 (m, 7H, H _{arom.}), 7.97 (d, ${}^{3}J = 8.4$ Hz, 2H, BB'), 8.88–8.91 (m, 1H, H _{arom.}), 11.93 (s, 1H, NH) 314.9 [28%, M ⁺], 210.3 [29%, M ⁺ – C ₆ H ₅ CO], 119.2 (100%, CH ₃ C ₆ H ₄ CO ⁺), 91.3 (43%, C ₇ H ₇ ⁺)
10c	104 (103–104 [26])	1690 (C=O), 1625 (C=O)	7.12 (dd, ${}^{3}J$ = 7.8 Hz, ${}^{3}J$ = 7.3 Hz, 1H, H _{arom} .), 7.45–7.72 (m, 9H, H _{arom} .), 8.02 (d, ${}^{3}J$ = 8.3 Hz, 2H, BB'), 8.83–8.87 (m, 1H, H _{arom} .), 12.00 (s, 1H, NH) 335.0 [22%, M ⁺], 230.4 [35%, M ⁺ – C ₆ H ₅ CO], 139.3 (100%, ClC ₆ H ₄ CO ⁺), 111.3 (48%, C ₆ H ₄ Cl ⁺)
11a	136	3230 (N–H), 1650 (C=O)	7.16–7.23 (m, 2H, H _{arom}), 7.48–7.59 (m, 3H, H _{arom}), 7.62–7.68 (m, 2H, H _{arom}), 7.76 (dd, ${}^{3}J$ = 4.9 Hz, ${}^{4}J$ = 1.1 Hz, 1H, H _{arom}), 7.90 (dd, ${}^{3}J$ = 7.9 Hz, ${}^{4}J$ = 1.7 Hz, 1H, H _{arom}), 8.01–8.04 (m, 2H, H _{arom}), 8.80 (dd, ${}^{3}J$ = 8.4 Hz, ${}^{4}J$ = 0.7 Hz, 1H, H _{arom}), 11.39 (s, 1H, NH) 306.4 [19%, M ⁺], 195.7 [42%, M ⁺ – C ₄ H ₃ SCO], 107.7 (100%, C ₆ H ₅ CO ⁺), 76.9 (51%, C ₆ H ₅ ⁺)
11b	141	3280 (N–H), 1650 (C=O)	2.42 (s, 3H, CH ₃), 7.16–7.21 (m, 2H, H _{arom}), 7.30 (d, ${}^{3}J$ = 8.1 Hz, 2H, AA'), 7.61–7.67 (m, 2H, H _{arom}), 7.76 (dd, ${}^{3}J$ = 5.0 Hz, ${}^{4}J$ = 1.1 Hz, 1H, thiophen), 7.87–7.93 (m, 3H, BB' and thiophen), 8.79 (dd, ${}^{3}J$ = 8.5 Hz, ${}^{4}J$ = 0.8 Hz, 1H, thiophen), 11.34 (s, 1H, NH) 320.6 [31%, M ⁺], 209.9 [33%, M ⁺ – C ₄ H ₃ SCO], 118.7 (100%, CH ₃ C ₆ H ₄ CO ⁺), 90.8 (67%, C ₇ H ₇ ⁺)
11c	93	3330 (N–H); 1675 (C=O), 1620 (C=O)	7.15–7.24 (m, 3H, H _{arom} .), 7.45 (d, ${}^{3}J = 8.3$ Hz, 2H, AA'), 7.61–7.78 (m, 3H, H _{arom} .), 7.88–7.97 (m, 3H, BB' and H _{arom} .), 8.75 (d, ${}^{3}J = 8.3$ Hz, 1H, H _{arom} .), 11.42 (s, 1H, NH) 341.6 [16%, M ⁺], 230.4 [28%, M ⁺ – C ₄ H ₃ SCO], 202.4 [11%, M ⁺ – COC ₆ H ₄ CI], 139.3 (100%, ClC ₆ H ₄ CO ⁺), 111.2 (84%, C ₄ H ₃ SCO ⁺)
12a	125	3290 (N–H), 1630 (C=O)	7.42–7.61 (m, 8H, H _{arom}), 7.78 (m, 2H, H _{arom}), 7.87 (m, 2H, H _{arom}), 7.94 (dd, ${}^{4}J = 1.7$ Hz, 1H, H _{arom}), 8.12 (ddd, ${}^{3}J = 8.3$ Hz, ${}^{4}J = 1.7$ Hz, 1H, H _{arom}), 8.26 (s, 1H, NH) 300.9 [28%, M ⁺], 105.1 (100%, C ₆ H ₅ CO ⁺), 77.2 (34%, C ₆ H ₅ ⁺)
12b	112	3310 (N–H), 1635 (C=O)	2.41 (s, 3H, CH ₃), 7.25 (d, ${}^{3}J = 8.1$ Hz, 2H, AA'), 7.44–7.61 (m, 5H, H _{arom.}), 7.76–7.80 (m, 4H, H _{arom.}), 7.92 (dd, ${}^{4}J = 1.7$ Hz, 1H, H _{arom.}), 8.11 (ddd, ${}^{3}J = 7.9$ Hz, ${}^{4}J = 1.8$ Hz, 1H, H _{arom.}), 8.16 (s, 1H, NH) 314.9 [31%, M ⁺], 119.0 (100%, CH ₃ C ₆ H ₄ CO ⁺), 91.0 (86%, C ₇ H ₇ ⁺)
12c	135	3290 (N-H), 1625 (C=O)	7.40 (d, ${}^{3}J = 8.6$ Hz, 2H, AA'), 7.43–7.49 (m, 3H, H _{arom}), 7.52 (ddd, ${}^{3}J = 7.6$ Hz, ${}^{4}J = 1.4$ Hz, 1H, H _{arom}), 7.59 (ddd, ${}^{3}J = 7.6$ Hz, ${}^{4}J = 1.3$ Hz, 1H, H _{arom}), 7.74–7.77 (m, 2H, H _{arom}), 7.82 (d, ${}^{3}J = 8.6$ Hz, 2H, BB'), 7.95 (dd, ${}^{4}J = 1.7$ Hz, 1H, H _{arom}), 8.12 (ddd, ${}^{3}J = 7.9$ Hz, ${}^{4}J = 1.8$ Hz, 1H, H _{arom}), 8.34 (s, 1H, NH) 334.3 [31%, M ⁺], 138.6 (100%, ClC ₆ H ₄ CO ⁺), 110.9 (36%, ClC ₆ H ₄ ⁺)
13a	150	3330 (N–H), 1630 (C=O)	7.45–7.52 (m, 4H, H _{arom.}), 7.55–7.62 (m, 2H, H _{arom.}), 7.76–7.91 (m, 8H, H _{arom.}), 8.15 (s, 1H, NH) 300.9 [39%, M^+], 105.0 (100%, C ₆ H ₅ CO ⁺), 77.3 (43%, C ₆ H ₅ ⁺)
13b	179	3320 (N–H), 1640 (C=O)	2.42 (s, 3H, CH ₃), 7.28 (d, ${}^{3}J$ = 8.1 Hz, 2H, AA'), 7.45–7.50 (m, 2H, H _{arom}), 7.58 (ddd, ${}^{3}J$ = 7.4 Hz, ${}^{4}J$ = 1.4 Hz, 1H, H _{arom}), 7.76–7.80 (m, 6H, H _{arom}), 7.85 (dd, ${}^{3}J$ = 8.8 Hz, 2H, BB'), 8.15 (s, 1H, NH) 314.9 [59%, M ⁺], 119.1 (100%, CH ₃ C ₆ H ₄ CO ⁺), 91.1 (29%, C ₇ H ₇ ⁺)
13c	163	3280 (N-H), 1650 (C=O)	7.46–7.51 (m, 4H, AA' and AA'), 7.59 (dddd, ${}^{3}J = 7.4$ Hz, ${}^{4}J = 1.3$ Hz, 1H, H _{arom.}), 7.76–7.79 (m, 4H, H _{arom.}), 7.83–7.88 (m, 4H, BB' and BB'), 8.05 (s, 1H, NH) 334.4 [18%, M ⁺], 138.7 (100%, ClC ₆ H ₄ CO ⁺), 110.9 (30%, ClC ₆ H ₄ ⁺)
14	108 (105–107 [28])	3150–3000 (N–H), 1655 (C=O)	2.67 (s, 3H, CH ₃ CO), 3.06 (s, 3H, SO ₂ CH ₃), 7.15 (ddd, ${}^{3}J$ = 7.6 Hz, ${}^{4}J$ = 1.2 Hz, 1H, Ar), 7.56 (ddd, ${}^{3}J$ = 7.6 Hz, ${}^{4}J$ = 1.7 Hz, 1H, Ar), 7.75 (dd, ${}^{3}J$ = 8.3 Hz, ${}^{4}J$ = 1.0 Hz, 1H, Ar), 7.93 (dd, ${}^{3}J$ = 7.9 Hz, ${}^{4}J$ = 1.4 Hz, 1H, Ar), 11.34 (s, 1H, NH) 212.9 [41%, M ⁺], 198.1 [23%, M ⁺ - CH ₃], 134.1 [100%, M ⁺ - SO ₂ CH ₃], 118.8 [43%, M ⁺ - NHSO ₂ CH ₃], 106.0 (56%)

Table 3 (continued).

Compound	m.p. (°C)	IR (KBr)	¹ H-NMR (200 MHz), δ (ppm), J (Hz)/MS (EI, 70 eV): m/z
15	179	3260 (N-H), 1685 (C=O)	3.12 (s, 3H, CH ₃), 7.18–7.64 (m, 7H, Ar), 9.29 (s, 1H, NH) 273.0 [84%, M ⁺], 194.8 [100%, M ⁺ – SO ₂ CH ₃], 166.9 (23%), 138.8 (29%)
16	129	3180 (N–H), 1660 (C=O), 1325, 1160 (SO ₂ –N)	2.87 (s, 3H, SO ₂ CH ₃), 3.60 (s, 3H, OCH ₃), 6.79 (d, ${}^{3}J = 8.3$ Hz, 1H, Ar), 7.31–7.75 (m, 8H, Ar and NH) 304.6 [30%, M ⁺], 225.6 [100%, M ⁺ – SO ₂ CH ₃], 210.6 [89%, M ⁺ – SO ₂ CH ₃ u. –CH ₃], 148.6 (37%), 104.9 (49%, C ₆ H ₅ CO ⁺), 76.9 (45%, C ₆ H ₅ ⁺)
17	128	1670 (C=O), 1340, 1170 (SO ₂ –N)	2.78 (s, 3H, CH ₃), 3.17 (s, 3H, CH ₃), 7.39–7.59 (m, 7H, Ar), 7.77–7.81 (m, 2H, Ar) 289.2 [3%, M ⁺], 209.9 [100%, M ⁺ – SO ₂ CH ₃], 132.0 (23%), 104.9 (10%, C ₆ H ₅ CO ⁺), 91.0 (13%, C ₆ H ₄ NCH ₃ ⁺), 77.3 (26%, C ₆ H ₅ ⁺)
18	121	3250 (N–H), 1385, 1155 (SO ₂ –N)	2.54 (s, 3H, CH ₃), 3.32–3.51 (m, 4H, CH ₂ CH ₂), 7.01 (s, 1H, NH), 7.08 7.17 (m, 1H, Ar), 7.28–7.38 (m, 4H, Ar), 7.53–7.60 (m, 2H, Ar), 7.68–7.73 (m, 1H, Ar), 7.82–7.87 (m, 1H, Ar) 350.7 [25%, M ⁺], 289.9 [20%, M ⁺ – SCH ₂ CH ₂], 272.2 [20%, M ⁺ – SO ₂ CH ₃], 243.9 (100%), 211.8 (43%), 92.3 (37%, SCH ₂ CH ₂ S ⁺)
19	115	3440 (O–H), 3250 (N–H), 1330, 1150 (SO ₂ –N)	DMSO- d_6 , 2.59 (s, 3H, CH ₃), 6.09 (s, 1H, CH), 6.40 (s, 1H, OH), 7.16–7.42 (m, 9H, Ar), 8.96(s, 1H, NH) 277.0 [13%, M ⁺], 198.0 [100%, M ⁺ – SO ₂ CH ₃], 180.0 (98%), 120.2 (35%), 104.9 (31%, C ₆ H ₅ CO ⁺), 77.4 (22%, C ₆ H ₄ ⁺)
20	117	3290 (N–H), 1310, 1150 (SO ₂ –N)	2.59 (s, 3H, CH ₃), 4.01 (s, 2H, CH ₂), 6.20 (s, 1H, NH), 7.13–7.33 (m, 8H, Ar), 7.50–7.54 (m, 1H, Ar) 261.6 [22%, M ⁺], 182.4 (100%, C ₆ H ₅ CH ₂ C ₆ H ₄ NH ⁺)

6.3. General procedure for the preparation of carbonyl chlorides (Method B)

6.3.1. Carbonyl chlorides via SOCl₂

The HCO₃ was refluxed with an excess of SOCl₂ for 3 h. The excess SOCl₂ was distilled at a water jet pump and the residue dissolved with CH_2Cl_2 and washed briefly with ice-water. The organic layer was separated, washed three times with water, Na_2CO_3 and water and finally dried with Na_2SO_4 . The solvent was evaporated under reduced pressure to yield the crude product, which was not usually purified any further.

6.3.2. Carbonyl chlorides via PCl₅

To a cooled (ice bath) solution of HCO_3 in $CH_2Cl_2 \cdot PCl_5$ was added. The ice bath was removed and the mixture was stirred under reflux for 2 h. For Friedel-Crafts-acylation the mixture was not further purified.

6.4. General procedure for the Friedel-Crafts-reaction (Method C)

On an ice bath, dry $AlCl_3$ was suspended in dry CH_2Cl_2 and stirred vigorously. To this mixture, a solution of the carbonyl chloride or alkyl halide in CH_2Cl_2 and subsequently the aromatic compound (solved in CH_2Cl_2) was added dropwise. After stirring over night at r.t. the complex was hydrolysed with crushed ice and acidified with diluted HCl. The organic layer was sepa-

rated, washed three times with water, Na_2CO_3 and water and finally dried with Na_2SO_4 . The solvent was evaporated under reduced pressure to yield the crude product, which was usually purified by CC.

6.5. N-(2-Benzoylphenyl)methanesulphonamide (1a)

To a stirred solution of 1.97 g (10 mmol) 2aminophenyl-phenylmethanone and 1.19 g (15 mmol) pyridine in 100 mL dry CH₂Cl₂ 1.38 g (12 mmol) methanesulphonyl chloride were added dropwise. The solution was stirred for 3 h at r.t. before it was hydrolysed with the equivalent amount of water. The organic layer was separated, washed three times with water, Na₂CO₃ and water and finally dried with Na₂SO₄. The solvent was evaporated under reduced pressure yielding a yellow oil. CC (PE-EE = 1:1) yielded yellow crystals (1.39 g, 51%). Anal. Calc. for C₁₄H₁₃NO₃S: C, 61.08; H, 4.76. Found: C, 60.63; H, 5.10%; N.

6.6. 2-Methylsulphonylamidobenzoic acid (VII)

To a cooled solution (ice bath) of 1.36 g (10 mmol) 2-amino-benzoic acid in 30 mL saturated aq. Na_2CO_3 , methanesulphonyl chloride (1.38 g, 12 mmol) were added. The solution was stirred over night and allowed to warm up to r.t. The solution was acidified with concd. HCl and the precipitate collected and dried. The precipitate was used without any further purification.

Yield: 1.76 g (82%), m.p. 183 °C (Ref. [33]: 189–190 °C).

6.7. N-[2-(4-Methylbenzoyl)phenyl]methanesulphonamide (**1b**)

1.08 g VII (5 mmol) was transformed according to Method B. Ten millilitres SOCl₂ were added to carbonyl chloride, and subsequently reacted with 0.92 g $C_6H_5CH_3$ (10 mmol) and 0.80 g AlCl₃ (6 mmol) in 30 mL CH₂Cl₂ (Method C). The crude product was recrystallised with PE-CH₂Cl₂ yielding 0.93 g (64%) of white crystals. Anal. ($C_{15}H_{15}NO_3S$): C, H, N, S.

6.8. N-[2-(4-Methylsulphanylbenzoyl)phenyl]methanesulphonamide (1c)

Compound **VII** (1.61 g, 7.5 mmol) was transformed according to Method B with 15 mL SOCl₂ to carbonyl chloride, which was subsequently reacted with 2.33 g 1-methylsulphanylbenzene (18.8 mmol) and 1.20 g AlCl₃ (9.0 mmol) in 50 mL CH₂Cl₂ (Method C). CC of the crude product (PE-EE = 2:1; $R_{\rm f}$ = 0.33) yielded 0.90 g (38%) of yellow crystals. Anal. (C₁₅H₁₅NO₃S₂): C, H, N.

6.9. 2-Aminophenyl-4-phenylphenylmethanone (VIII)

A stirred mixture of 7.71 g 1-phenylbenzene (50 mmol), 1.63 g isatoic anhydride (10 mmol) and 6.0 g AlCl₃ (45 mmol) was melted for 8 h at 110 °C. The resulting black product was dissolved in 300 mL CH₂Cl₂. The organic layer was separated, washed three times with water, Na₂CO₃ and water and finally dried with Na₂SO₄. CC of the crude product (PE-CH₂Cl₂ = 4:1; $R_f = 0.36$) yielded 1.01 g (37%) of a yellow liquid.

6.10. N-[2-(2-Phenylbenzoyl)phenyl]methanesulphonamide (1d)

Compound VIII (0.50 g, 1.83 mmol) was reacted with 0.29 g pyridine (3.66 mmol) and 0.25 g methanesulphonyl chloride (2.20 mmol) in 30 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-CH₂Cl₂ = 3:1; $R_{\rm f}$ = 0.27) yielded 0.24 g (38%) of yellow crystals. Anal. (C₂₀H₁₇NO₃S): C, H, N, S.

6.11. [4-(tert-Butyl)phenyl](2-nitrophenyl)methanone (IX)

2-Nitro-1-benzenecarbonyl chloride (3.73 g, 22 mmol) were reacted with 2.68 g 1-(*tert*-butyl)benzene (20 mmol) and 5.33 g AlCl₃ (40 mmol) in 30 mL CH₂Cl₂ (Method C). CC of the crude product (PE–

 $EE = 4:1; R_f = 0.50$ yielded 2.11 g (37%) of white crystals (m.p. 101 °C).

6.12. (2-Aminophenyl)[4-(tert-butyl)phenyl]methanone (X)

Compound IX (1.50 g, 5.30 mmol) in 50 mL MeOH were hydrogenated with 0.10 g Pd-C (10%) and H₂ (5 bar) at r.t. for 6 h. The mixture was filtered over celite[®] and the solvent evaporated under reduced pressure. CC of the crude product (PE-EE = 8:1; $R_{\rm f}$ = 0.24) yielded 1.02 g (76%) of yellow crystals (m.p. 120 °C).

6.13. (N-{2-[(4-tert-Butyl)benzoyl]phenyl}methanesulphonamide (1e)

Compound X (0.76 g, 3.0 mmol) were reacted with 0.45 g pyridine (6.0 mmol) and 0.52 g methanesulphonyl chloride (4.50 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 5:1; $R_{\rm f}$ = 0.20) yielded 0.36 g (36%) of yellow solid. Anal. (C₁₈H₂₁NO₃S): C, H, N.

6.14. 2-Benzoyl-1-phenylsulphonamidobenzene (2a)

2-Aminophenyl-phenylmethanone (1.97 g, 10.0 mmol) were reacted with 1.19 g pyridine (15.0 mmol) and 1.69 g 1-benzenesulphonyl chloride (12.0 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 4:1; $R_{\rm f} = 0.42$) yielded 2.13 g (63%) of yellow crystals. Anal. (C₁₉H₁₅NO₃S): C, H, N, S.

6.15. 2-Benzoyl-1-(4-methylphenylsulphonamido)benzene (**2b**)

2-Aminophenyl-phenylmethanone (3.95 g, 20.0 mmol) were reacted with 2.37 g pyridine (30.0 mmol) and 4.19 g 4-methyl-1-benzenesulphonyl chloride (22.0 mmol) in 100 mL CH₂Cl₂ according to Method A. The crude product was recrystallised with PE-CH₂Cl₂ yielding 6.15 g (88%) of yellow crystals. Anal. (C₂₀H₁₇NO₃S): C, H, N.

6.16. 2-Benzoyl-1-(4-chlorophenylsulphonamido)benzene (2c)

2-Aminophenyl-phenylmethanone (1.97 g, 10.0 mmol), 1.19 g pyridine (15.0 mmol) and 2.53 g 4-chloro-1-benzenesulphonyl chloride (12.0 mmol) were reacted in 50 mL CH₂Cl₂ according to Method A. The crude product was recrystallised with PE-CH₂Cl₂ yielding 2.79 g (75%) of yellow crystals. Anal. (C₁₉H₁₄ClNO₃S): C, H, N, Cl, S.

6.17. 2-Benzoyl-1-(4-methoxy-phenylsulphonamido)benzene (2d)

2-Aminophenyl-phenylmethanone (1.97 g, 10.0 mmol) were reacted with 1.19 g pyridine (15.0 mmol) and 1.69 g 4-methoxy-1-benzenesulphonyl chloride (12.0 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 2:1; $R_{\rm f} = 0.40$) yielded 2.06 g (56%) of yellow crystals. Anal. (C₂₀H₁₇NO₄S): C, H, N.

6.18. 2-Benzoyl-1-[4-(tert-butyl)phenylsulphonamido]benzene (2e)

2-Aminophenyl-phenylmethanone (1.97 g, 10.0 mmol) were reacted with 1.19 g pyridine (15.0 mmol) and 2.79 g 4-*tert*-butyl-1-benzenesulphonyl chloride (12.0 mmol) in 50 mL CH₂Cl₂ according to Method A. The crude product was recrystallised with PE-Et₂NH 9:1 (50 mL) yielding the Et₂NH salt which was dissolved in CH₂Cl₂ and washed with diluted HCl. The organic layer was separated, washed twice with water and dried with Na₂SO₄. The product was recrystallised with PE-CH₂Cl₂ yielding 1.76 g (48%) of yellow crystals. Anal. Calc. for C₂₃H₂₃NO₃S: C, 70.20; H, 5.89. Found: C, 70.95; H, 5.41%; N.

6.19. N1-(Benzoylphenyl)-3,5-di(trifluoromethyl)-1-benzenesulphonamid (2f)

2-Aminophenyl-phenylmethanone (0.33 g, 1.6 mmol) were reacted with 0.20 g pyridine (2.50 mmol) and 0.63 g 3,5-bis(trifluoromethyl)benzenesulphonyl chloride (2.0 mmol) in 20 mL CH₂Cl₂ according to Method A. The crude product was recrystallised with PE-CH₂Cl₂ yielding 0.39 g (52%) of yellow solid. Anal. (C₂₁H₁₃F₆NO₃S): C, H, N, S.

6.20. N2-(2-Benzoylphenyl)-2-naphthalenesulphonamide (2g)

2-Aminophenyl-phenylmethanone (0.99 g, 5.0 mmol) were reacted with 0.59 g pyridine (7.5 mmol) and 1.36 g 2-naphthalenesulphonyl chloride (6.0 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 2:1; $R_{\rm f}$ = 0.40) yielded 1.05 g (54%) of colourless crystals. Anal. (C₂₃H₁₇NO₃S) C, H, N.

6.21. N2-(2-Benzoylphenyl)-2-thiophenesulphonamide (2h)

2-Aminophenyl-phenylmethanone (0.99 g, 5.0 mmol) were reacted with 0.59 g pyridine (7.5 mmol) and 1.07 g 2-thiophenesulphonyl chloride (6.0 mmol) in 50 mL CH_2Cl_2 according to Method A. CC of the crude

product (PE-CH₂Cl₂ = 4:1; $R_f = 0.23$) yielded 1.15 g (68%) of white solid. Anal. (C₁₇H₁₃NO₃S₂): C, H, N.

6.22. (4-Methylphenyl)(2-nitrophenyl)methanone (XI)

2-Nitro-1-benzenecarbonyl chloride (3.73 g, 22 mmol) were reacted with 1.84 g $C_6H_5CH_3$ (20 mmol) and 5.33 g AlCl₃ (40 mmol) in 50 mL CH₂Cl₂ (Method C). The crude product was recrystallised with PE–CH₂Cl₂ yielding 2.88 g (60%) of yellow crystals [m.p. 154 °C (Ref. [34]: 155 °C)].

6.23. (2-Aminophenyl)(4-methylphenyl)methanone (XII)

Compound XI (0.72 g, 3.0 mmol) in 50 mL MeOH were hydrogenated with 0.08 g Pd-C (10%) and H₂ (5 bar) at r.t. for 6 h. The mixture was filtered over celite[®] and the solvent evaporated under reduced pressure to yield a yellow liquid (0.63 g, 99%; m.p. Ref. [35]: 82-83 °C). The crude product was used without further purification.

6.24. N1-[2-(4-Methylbenzoyl)phenyl]-4methyl-1-benzenesulphonamide (**2i**)

Compound **XII** (0.68 g, 3.0 mmol) were reacted with 0.48 g pyridine (6.0 mmol) and 0.88 g 4-methyl-1-benzenesulphonyl chloride (4.5 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-CH₂Cl₂ = 4:1; $R_{\rm f} = 0.37$) yielded 0.67 g (56%) of white solid. Anal. (C₂₁H₁₉NO₃S): C, H, N.

6.25. N1-{2-[4-(tert-Butyl)benzoyl]phenyl}-4methyl-1-benzenesulphonamide (2j)

Compound X (0.63 g, 2.5 mmol) were reacted with 0.37 g pyridine (5.0 mmol) and 0.72 g 4-methyl-1-benzenesulphonyl chloride (3.8 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 5:1; $R_{\rm f}$ = 0.25) yielded 0.42 g (41%) of white solid. Anal. (C₂₄H₂₅NO₃S): C, H, N.

6.26. N-[2-(2-Thienylcarbonyl)phenyl]methanesulphonamide (3)

(2-Aminophenyl)(2-thienyl)methanone (0.45 g, 2.2 mmol) (synthesised according to the procedure described by Hunziker et al. [17]) were reacted with 0.26 g pyridine (3.3 mmol) and 0.30 g methanesulphonyl chloride (2.64 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 2:1; $R_{\rm f}$ = 0.20) yielded 0.25 g (41%) of a yellow liquid. Anal. Calc. for C₁₂H₁₁NO₃S₂: C, 51.23, H and N, 4.98. Found: C, 52.28; H and N, 4.41%.

6.27. N1[2-(2-Thienylcarbonyl)phenyl]-4methyl-1-benzenesulphonamide (**4**a)

(2-Aminophenyl)(2-thienyl)methanone (0.45 g, 2.2 mmol) (synthesised according to the procedure described by Hunziker et al. [17]) were reacted with 0.26 g pyridine (3.3 mmol) and 0.50 g 4-methyl-1-benzene-sulphonyl chloride (2.64 mol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 4:1; $R_f = 0.17$) yielded 0.48 g (61%) of yellow crystals. Anal. (C₁₈H₁₅NO₃S₂): C, H, N.

6.28. N1-[2-(2-Thienylcarbonyl)phenyl]-4chloro-1-benzenesulphonamide (**4b**)

(2-Aminophenyl)(2-thienyl)methanone (0.45 g, 2.2 mmol) (synthesised according to the procedure described by Hunziker et al. [17]) were reacted with 0.26 g pyridine (3.3 mmol) and 0.56 g 4-chloro-1-benzene-sulphonyl chloride (2.64 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 4:1; $R_f = 0.33$) yielded 0.79 g (75%) of yellow crystals. Anal. (C₁₇H₁₂ClNO₃S₂): C, H, N.

6.29. N-(3-Benzoylphenyl)methanesulphonamide (5)

3-Aminophenyl-phenylmethanone (0.99 g, 5.0 mmol) were reacted with 0.59 g pyridine (7.5 mmol) and 0.69 g methanesulphonyl chloride (6.0 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 1:1; $R_{\rm f}$ = 0.56) yielded 0.99 g (72%) of white crystals. Anal. (C₁₄H₁₃NO₃S): C, H, N.

6.30. 3-Benzoyl-1-(4-methylphenylsulphonamido)benzol (6a)

3-Aminophenyl-phenylmethanone (0.99 g, 5.0 mmol) were reacted with 0.59 g pyridine (7.5 mmol) and 1.14 g 4-methyl-1-benzenesulphonyl chloride (6.0 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 2:1; $R_{\rm f}$ = 0.38) yielded 1.19 g (68 %) of white crystals. Anal. (C₂₀H₁₇NO₃S): C, H, N.

6.31. 3-Benzoyl-1-(4-chlorophenylsulphonamido)benzene (*6b*)

3-Aminophenyl-phenylmethanone (0.99 g, 5.0 mmol) were reacted with 0.59 g pyridine (7.5 mmol) and 1.27 g 4-chloro-1-benzenesulphonyl chloride (6.0 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 3:1; $R_{\rm f} = 0.22$) yielded 1.50 g (80%) of a white solid. Anal. (C₁₉H₁₄ClNO₃S): C, H, N.

6.32. N-(4-Benzoylphenyl)methanesulphonamide (7)

4-Aminophenyl-phenylmethanone (1.97 g, 10.0

mmol) were reacted with 1.19 g pyridine (15.0 mmol) and 1.38 g methanesulphonyl chloride (12.0 mmol) in 100 mL CH₂Cl₂ according to Method A. The crude product was recrystallised with PE–CH₂Cl₂ yielding 2.09 g (76%) of pale pink crystals. Anal. Calc. for $C_{14}H_{13}NO_3S$: C, 61.07. Found: C, 60.61%; H, N.

6.33. N1-(4-Benzoylphenyl)-4-methyl-1-benenelsulphonamide (8a)

4-Aminophenyl-phenylmethanone (0.99 g, 5.0 mmol) were reacted with 0.59 g pyridine (7.5 mmol) and 1.14 g 4-methyl-1-benzenesulphonyl chloride (6.0 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 3:1; $R_{\rm f} = 0.22$) yielded 1.63 g (93%) of a white solid. Anal. Calc. for C₂₀H₁₇NO₃S: C, 68.90. Found: C, 68.27%; H, N.

6.34. 4-Benzoyl-1-(4-chlorophenylsulphonamido)benzene (**8b**)

4-Aminophenyl-phenylmethanone (0.99 g, 5.0 mmol) were reacted with 0.59 g pyridine (7.5 mmol) and 1.27 g 4-chloro-1-benzenesulphonyl chloride (6.0 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 5:2; $R_{\rm f} = 0.29$) yielded 1.73 g (93%) of white crystals. Anal. (C₁₉H₁₄ClNO₃S): C, H, N.

6.35. N1-(2-Benzoylphenyl)acetamide (9)

2-Aminophenyl-phenylmethanone (1.97 g, 10.0 mmol) were reacted with 1.19 g pyridine (15.0 mmol) and 0.94 g ethanoyl chloride (12.0 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 3:1; $R_{\rm f}$ = 0.47) yielded 1.46 g (61%) of white crystals. Anal. (C₁₅H₁₃NO₂): C, H, N.

6.36. 2-Benzoyl-1-phenylcarboxamidobenzene (10a)

2-Aminophenyl-phenylmethanone (0.99 g, 5.0 mmol) were reacted with 0.59 g pyridine (7.5 mmol) and 0.84 g 1-benzenecarbonyl chloride (6.0 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 6:1; $R_{\rm f}$ = 0.27) yielded 1.56 g (99%) of a white solid. Anal. (C₂₀H₁₅NO₂): C, H, N.

6.37. N1-(2-Benzoylphenyl)-4-methylbenzamide (10b)

2-Aminophenyl-phenylmethanone (1.48 g, 7.5 mmol) were reacted with 1.58 g pyridine (20 mmol) and 1.55 g 4-methyl-1-benzenecarbonyl chloride (10.0 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 8:1; $R_{\rm f}$ = 0.25) yielded 1.59 g (67%) of yellow crystals. Anal. (C₂₀H₁₅NO₂): C, H, N.

6.38. N1-(2-Benzoylphenyl)-4-chlorobenzamide (10c)

2-Aminophenyl-phenylmethanone (0.99 g, 5 mmol) were reacted with 0.59 g pyridine (7.5 mmol) and 1.05 g 4-chloro-1-benzenecarbonyl chloride (6.0 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 4:1; $R_{\rm f}$ = 0.33) yielded 1.08 g (64%) of a yellow solid. Anal. (C₂₀H₁₄ClNO₂): C, H, N.

6.39. 1-Phenylcarboxyamido-2-(2-thienylcarbonyl)benzene (**11a**)

(2-Aminophenyl)(2-thienyl)methanone (0.61 g, 3.0 mmol) (synthesised according to the procedure described by Hunziker et al. [17]) were reacted with 0.48 g pyridine (6.0 mmol) and 0.63 g benzenecarbonyl chloride (4.5 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 4:1; $R_f = 0.36$) gave 0.84 g (91%) of yellow crystals. Anal. (C₁₈H₁₃NO₂S): C, H, N.

6.40. 1-(4-Methylphenylcarboxyamido)-2-(2thienylcarbonyl)benzene (11b)

(2-Aminophenyl)(2-thienyl)methanone (0.61 g, 3.0 mmol) (synthesised according to the procedure described by Hunziker et al. [17] were reacted with 0.48 g pyridine (6.0 mmol) and 0.70 g 4-methyl-1-benzenecarbonyl chloride (4.5 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 4:1; $R_{\rm f}$ = 0.34) yielded 0.86 g (89%) of yellow crystals. Anal. (C₁₉H₁₅NO₂S): C, H, N.

6.41. N1-[2-(2-Thienylcarbonyl)phenyl]-4-chlorobenzamide (**11c**)

(2-Aminophenyl)(2-thienyl)methanone (0.48 g, 2.2 mmol) (synthesised according to the procedure described by Hunziker et al. [17]) were reacted with 0.26 g pyridine (3.3 mmol) and 0.46 g 4-chloro-1-benzenecarbonyl chloride (2.64 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-CH₂Cl₂ = 1:3; $R_{\rm f} = 0.50$) yielded 0.46 g (61%) of a yellow solid. Anal. Calc. for C₁₈H₁₂ClNO₂S: C, 63.25. Found: C, 62.79%; H, N.

6.42. 3-Benzoyl-1-phenylcarboxamidobenzene (12a)

3-Aminophenyl-phenylmethanone (0.59 g, 3.0 mmol) were reacted with 0.36 g pyridine (4.5 mmol) and 0.51 g 1-benzenecarbonyl chloride (3.6 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 2:1; $R_{\rm f} = 0.48$) yielded 0.85 g (94%) of white crystals. Anal. Calc. for C₂₀H₁₅NO₂: C, 79.71. Found: C, 79.08%; H, N.

6.43. 3-Benzoyl-1-(4-methylphenylcarboxamido)benzene (12b)

3-Aminophenyl-phenylmethanone (0.59 g, 3.0 mmol) were reacted with 0.36 g pyridine (4.5 mmol) and 0.56 g 4-methyl-1-benzenecarbonyl chloride (3.6 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 2:1; $R_f = 0.60$) yielded 0.86 (91%) of white crystals. Anal. (C₂₁H₁₇NO₂): C, H, N.

6.44. 3-Benzoyl-1-(4-chlorophenylcarboxamido)benzene (12c)

3-Aminophenyl-phenylmethanone (0.59 g, 3.0 mmol) were reacted with 0.36 g pyridine (4.5 mmol) and 0.63 g 4-chloro-1-benzenecarbonyl chloride (3.6 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 4:1; $R_f = 0.27$) yielded 0.81 g (81%) of white crystals. Anal. (C₂₀H₁₄ClNO₂): C, H, N.

6.45. 4-Benzoyl-1-phenylcarboxamidobenzene (13a)

4-Aminophenyl-phenylmethanone (0.59 g, 3.0 mmol) were reacted with 0.36 g pyridine (4.5 mmol) and 0.51 g 1-benzenecarbonyl chloride (3.6 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 2:1; $R_{\rm f}$ = 0.41) yielded 0.81 g (89%) of white crystals. Anal. (C₂₀H₁₅NO₂): C, H, N.

6.46. 4-Benzoyl-1-(4-methylphenylcarboxamido)benzene (13b)

4-Aminophenyl-phenylmethanone (0.59 g, 3.0 mmol) were reacted with 0.36 g pyridine (4.5 mmol) and 0.56 g 4-methyl-1-benzenecarbonyl chloride (3.6 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 2:1; $R_f = 0.58$) yielded 0.72 g (76%) of white crystals. Anal. (C₂₁H₁₇NO₂): C, H, N.

6.47. 4-Benzoyl-1-(4-chlorophenylcarboxamido)benzene (13c)

4-Aminophenyl-phenylmethanone (0.59 g, 3.0 mmol) were reacted with 0.36 g pyridine (4.5 mmol) and 0.63 g 4-chloro-1-benzenecarbonyl chloride (3.6 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 2:1; $R_{\rm f}$ = 0.49) yielded 0.84 g (83%) of a white solid. Anal. (C₂₀H₁₄ClNO₂): C, H, N.

6.48. N-(2-Acetylphenyl)methanesulphonamide (14)

1-(2-Aminophenyl)-1-ethanone (0.68 g, 5.0 mmol) were reacted with 0.59 g pyridine (7.5 mmol) and 0.69 g methanesulphonyl chloride (6.0 mmol) in 50 mL CH₂Cl₂ according to Method A. The crude product was recrystallised with PE–EE yielding 0.65 g (61%) of white crystals. Anal. (C₉H₁₁NO₃S): C, H, N.

6.49. N-(9-Oxo-9H-1-fluorenyl)methanesulphonamide (15)

1-Amino-9*H*-9-fluorenone (0.45 g, 2.30 mmol) were reacted with 0.46 g pyridine (5.8 mmol) and 0.40 g methanesulphonyl chloride (3.45 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 3:1; $R_f = 0.22$) yielded 0.18 g (29%) of an orange solid. Anal. (C₁₄H₁₁NO₂S): C, H, N.

6.50. N-(2-Benzoyl-3-methoxyphenyl)methanesulphonamide (16)

(2-Amino-6-methoxyphenyl)(phenyl)methanone (0.80 g, 3.5 mmol) (synthesised according to the procedure described by Walsh [14]) were reacted with 0.42 g pyridine (5.3 mmol) and 0.48 g methanesulphonyl chloride (4.2 mmol) in 50 mL CH₂Cl₂ according to Method A. CC of the crude product (PE-EE = 6:1; $R_{\rm f}$ = 0.37) yielded 0.55 g (51%) of a yellow solid. Anal. (C₁₅H₁₅NO₄S) C, H, N.

6.51. N-(2-Benzoylphenyl)-N-methylmethanesulphonamide (17)

Compound **1a** (0.83 g, 3.0 mmol) were dissolved in 30 mL of absolute THF and stirred. To the stirred solution, 0.76 g dimethyl sulphate (6.0 mmol) were added dropwise and the mixture stirred over night. To this mixture were added 50 mL of concd. NH₃ and refluxed for 1 h. The solution was washed three times with 50 mL CH₂Cl₂. The organic layers were collected, dried over Na₂SO₄ and the solvent was evaporated. CC of the crude product (PE-EE = 1:1; $R_f = 0.33$) yielded 0.49 g (56%) of yellow crystals. Anal. (C₁₅H₁₅NO₂S): C, H, N.

6.52. N-[2-(2-Phenyl-1,3-dithiolane-2-yl)phenyl]methanesulphonamide (18)

To a cooled (ice bath) solution of 0.83 g **1a** (3.0 mmol) and 0.57 g 1,2-ethanedithiol (6.0 mmol) in 50 mL CH₂Cl₂, 0.55 g boron trifluoride etherate (4 mmol) were added dropwise. After 30 min the ice bath was removed and the solution stirred over night at r.t. The organic phase was washed with saturated NaHCO₃ and subsequently with water. The organic layer was separated dried over Na₂SO₄ and the solvent evaporated. CC of the crude product (PE-EE = 4:1; $R_f = 0.32$) yielded 0.74 g (70%) of white solid. Anal. (C₁₆H₁₇NO₂S₃): C, H, N.

6.53. N-[2-Hydroxy(phenyl)methylphenyl]methanesulphonamide (19)

 $LiAlH_4$ (0.046 g, 1.2 mmol) were dissolved in 20 mL absolute THF and stirred. To this suspension a solution of 1.10 g **1a** (4.0 mmol) in 30 mL of absolute THF were

added dropwise and the mixture was heated under reflux for 1 h at r.t. The mixture was poured into ice water and acidified with 10% H_2SO_4 . The organic layer was separated dried over Na_2SO_4 and the solvent evaporated. The crude product was recrystallised with PE-EE yielding 0.73 g (66%) of white crystals. Anal. ($C_{14}H_{15}NO_3S$): C, H, N.

6.54. N-(2-Benzylphenyl)methanesulphonamide (20)

To a stirred solution of 1.83 g (10 mmol) 2-benzylphenylamine and 2.53 g (25 mmol) Et₃N in 100 mL dry 1,2-dichloroethane, 2.29 g (20 mmol) methanesulphonyl chloride were added dropwise. The solution was refluxed for 10 h before being hydrolysed with the equivalent amount of water. The organic layer was separated, washed three times with water, Na₂CO₃ and water and finally dried with Na₂SO₄. The solvent was evaporated under reduced pressure yielding a yellow oil. CC of the crude product (PE-EE = 4:1; $R_{\rm f} = 0.18$) yielded 1.22 g (47%) of white crystals. Anal. (C₁₄H₁₅NO₂S): C, H, N, S.

Acknowledgements

Financial support by the Fonds der Chemischen Industrie is gratefully acknowledged.

References

- [1] J.R. Vane, Nature 231 (1971) 232-235.
- [2] M.B. Kimmey, J. Rheumatol. 19 (Suppl. 36) (1992) 68-73.
- [3] A. Whelton, J. Clin. Pharmacol. 35 (1995) 454-463.
- [4] J.-Y. Fu, J.L. Masferrer, K. Seibert, et al., J. Biol. Chem. 265 (1990) 16737–16740.
- [5] J.L. Masferrer, B.S. Zweifel, K. Seibert, et al., J. Clin. Invest. 86 (1990) 1375–1379.
- [6] J.L. Masferrer, B.S. Zweifel, P.T. Manning, et al., Proc. Natl. Acad. Sci. USA 91 (1994) 3228–3232.
- [7] G. Dannhardt, W. Kiefer, G. Krämer, et al., Eur. J. Med. Chem. 35 (5) (2000) 499–510.
- [8] F. Catella-Lawson, B.W. McAdam, et al., J. Pharmacol. Exp. Ther. 289 (1999) 735–741.
- [9] (a) G. Dannhardt, S. Laufer, Curr. Med. Chem. 7 (2000) 1101– 1112;
 (b) G. Dannhardt, W. Kiefer, Fur, J. Med. Chem. 26 (2001)

(b) G. Dannhardt, W. Kiefer, Eur. J. Med. Chem. 36 (2001) 109–126.

- [10] J.L. Wallace, TIPS 20 (1999) 4-6.
- [11] J.K. Harrington, J.E. Robertson, D.C. Kvam, et al., J. Med. Chem. 13 (1970) 137.
- [12] G.G.I. Moore, J.K. Harrington, J. Med. Chem. 18 (1975) 386-391.
- [13] E. Schröder, M. Lehmann, C. Rufer, et al., Eur. J. Med. Chem.-Chim. Ther. 17 (1982) 165–172.
- [14] D.B. Walsh, Synthesis (1980) 677-688.
- [15] N. Miyachi, Y. Yanagawa, H. Iwasaki, et al., Tetrahedron Lett. 34 (1993) 8267–8270.

- [16] R. Guilhemat, M. Pereyre, M. Pétraud, Bull. Soc. Chim. Fr. II (1980) 334–344.
- [17] F. Hunziker, R. Fischer, P. Kipfer, et al., Eur. J. Med. Chem.-Chim. Ther. 16 (1981) 391–398.
- [18] M. Weyman, W. Pfrengle, D. Schollmeyer, et al., Synthesis (1997) 1151–1160.
- [19] Patent, Eli Lilly and Comp., US 3838167, 1974.
- [20] F. Ullmann, H. Bleier, Chem. Ber. 35 (1902) 4273-4280.
- [21] J. Beger, R. Neumann, K. Gloe, et al., J. Prakt. Chem. 330 (1988) 683–694.
- [22] W. Steinkopf, E. Günther, Liebigs Ann. Chem. 522 (1936) 28-34.
- [23] R.D. Trepka, J.K. Harrington, J.W. Belisle, J. Org. Chem. 39 (1974) 1094–1098.
- [24] Patent, Bristol-Myers, DE 2514809, 1975.
- [25] N.R. Ayyangar, R.J. Lahoti, K.V. Srinivasan, et al., Synthesis (1991) 322–324.

- [26] A. Fürstner, D.N. Jumbam, Tetrahedron 48 (1992) 5991-6010.
- [27] R.R. Schmidt, B. Beitzke, Chem. Ber. 116 (1983) 2115–2135.
 [28] R.H. Uloth, J.R. Kirk, W.A. Gould, et al., J. Med. Chem. 9
- (1966) 88–97. [29] G. Dannhardt, L. Flemmer, R.W. Hartmann, et al., Arch.
- Pharm. Pharm. Med. Chem. 331 (1998) 359–364.
- [30] B.L. Fiebich, K. Lieb, M. Busse-Grawitz, et al., J. Neuroimmunol. 67 (1996) 77–81.
- [31] J.Y. Gauthier, et al., Bioorg. Med. Chem. Lett. 6 (1996) 87-92.
- [32] (a) G. Dannhardt, W. Kiefer, G. Krämer, et al., Eur. J. Med. Chem. 35 (5) (2000) 499–510;
 - (b) Dannhardt G., unpublished results.
- [33] F.M. Menger, C.L. Johnson, Tetrahedron 23 (1967) 19-27.
- [34] M. Boetius, H. Römisch, Chem. Ber. 68 (1935) 1924-1932.
- [35] D.G. Hawkins, O. Meth-Cohn, J. Chem. Soc. Perkin Trans. I (1983) 2077–2087.