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Abstract
Two diastereomers of d-limonene-derived five-membered 

cyclic carbonates were prepared from the corresponding
isomers of d-limonene oxide with CO2. Their syntheses were 
catalyzed by commercially available tetrabutylammonium 
chloride with high stereoselectivity. The reaction behavior 
dependent on the reaction conditions such as CO2 pressure was 
clarified.

Five-membered cyclic carbonates (5CCs) are versatile
platform compounds for functional and reactive materials, 
especially for isocyanate-free synthesis of polyurethanes.1

Therefore, synthesis of 5CCs from the epoxides with CO2 has 
been widely studied.2 Today, utilization of biomass as natural 
resource instead of fossil chemicals has been required. For this 
goal, fixation of CO2 into naturally occurring chemicals has 
been exploited through the preparation of bio-based 5CCs.3

One group of promising naturally occurring chemicals is 
d-limonene as a terpene and its derivatives.4 It is plant waste 
such as citrus peels and residues of fruit juice production. 
Therefore, it does not compete with food production.
d-Limonene oxide (LO) is a substantially bio-based chemical 
and is commercially available as a mixture of both cis and trans
isomers (abbreviated as c-LO and t-LO, respectively). LO is 
reactive due to the epoxy moiety.

A LO-based 5CC obtained from LO and CO2, d-limonene 
carbonate (LM5CC), which has both a 5CC moiety and a 
double bond, is a promising platform toward functional 
materials because the two functional moieties are different in 
their reactivity. Therefore, various kinds of synthetic processes 
will be possible, as is the case for LO.5 It is well known that an 
internal epoxy moiety connected to highly substituted part of
the structure such as d-limonene is usually less reactive than a 
terminal epoxy moiety. Then, transformation of the internal 
epoxide into 5CC has been challenged.6 Recently, successful 
synthesis of one isomer among four kinds of LM5CCs (Scheme 
1) was reported.7 In the article, a catalytic system comprising 
Al-aminotriphenolate complexes as catalysts with bis(triphenyl 
phosphine)iminium chloride as a nucleophile was employed. 

However, synthesis and characterization of these types of 
catalysts would require specific synthetic techniques and 
processes as well as sufficient time.8 Importantly, commercially
available compounds as catalysts can be instantly and directly 
used, and the synthetic study with as-received catalysts is also 
valuable both in academia and in industry.  Therefore, we 
believe that the synthesis of LM5CC by using commercially 
available catalysts is of great practical importance. Additionally,
there are four kinds of diastereomers for LM5CC (Scheme 1). 
Though one isomer 1A-LM5CC was successfully characterized, 
another isomer 4A-LM5CC was not isolated and characterized 
at all.7 Stereoselective synthesis of 5CCs is one of the current 
research issues in this field.9  

Here, we report on the synthesis of LM5CCs from LO, 
especially addressing the following points:

(1) Clarification of catalytic activities of commercially 
available reagents such as tetrabutylammonium chloride 
(TBAC) for the carbonation.

(2) By using TBAC, the carbonation of LO as a function 
of reaction conditions is studied.

(3) Two diastereomers, 4A-LM5CC and 1A-LM5CC  
(Scheme 1), obtained respectively from c-LO and t-LO, are 
isolated.

Among commercially available catalysts,1,2 TBAC was 
selected as a representative catalyst. It is well known that 
tetrabutylammonium halide (TBAX) is a catalyst for the 
synthesis of 5CCs.10 At first, a pure isomer11 t-LO was reacted 
with CO2 using 10 mol% TBAC without solvents. After 72 h at 
100 °C under 3 MPa CO2, the reaction mixture was evaluated 
by 1H NMR analysis (SI). t-LO was quantitatively converted to 
1A-LM5CC with high stereoselectivity. The reaction contained
neither byproducts nor other isomers such as 4A-LM5CC
(Scheme 1). Purification of the reaction mixture by silica gel 
column chromatography to remove TBAC afforded a white 
solid in a moderately good isolated yield (72%). It was revealed 
by 1H and 13C NMR analyses (Figures 1S, 2S in SI) that the 
solid was 1A-LM5CC identical to the data reported 
previously.7b, 7c

Similarly, another pure isomer11 c-LO was reacted with 

Scheme 1. Synthesis of d-limonene-derived cyclic 
carbonates (LM5CCs) and structures of four isomers.
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Figure 2 shows a set of conversions of LO and the NMR 
yield of 4A1A-LM5CC as a function of CO2 pressure. Under 
ambient CO2 pressure, the carbonation of ct-LO barely 
proceeded. Once CO2 was pressurized, the reaction of ct-LO 
smoothly proceeded. In the region examined, values of the 
conversion of ct-LO were similar to those of the NMR yield. 
Before the CO2 pressure reached 5 MPa, the conversions of 
both c-LO and t-LO increased with increasing pressure. They 
reached 27% and 85% under 5 MPa CO2, and the NMR yield 
of 4A1A-LM5CC reached 56%. However, when the pressure 
was further increased beyond 5 MPa, the conversion decreased 
slightly with increasing pressure. Next, the effect of TBAC 
amount on the conversion of ct-LO and NMR yield of 
4A1A-LM5CC was also evaluated. As shown in Figure 3, with 
1 mol% TBAC, the conversion was very low. The conversion 
and NMR yield increased gradually with increasing TBAC 
amount. The conversion of t-LO was about four times higher 
than that of c-LO. With 40 mol% TBAC, t-LO reached 
quantitative consumption, whereas the conversion of c-LO was 
still as low as 48%.

The conversion and NMR yield depended on the 
reaction temperature (Figure 10S in SI). At 60 °C and 80 °C, 
the conversion of ct-LO was 15% and 24%, respectively. It is 
obvious that the increase of temperature enhanced the 
conversion and NMR yield. When the temperature was raised 
to 100 °C or 120 °C, the conversion increased to 51% or 71%, 
respectively. It increased to 75% at 140 °C; however, unknown 
by-products in a NMR yield of ~ca. 5% were detected. From 
these results in Figures 2, 3, and 10S, it became clear that 
LM5CCs can be obtained with only TBAC by choosing the 
reaction conditions.

In conclusion, LO with CO2 was reacted to give 
d-limonene-derived 5CCs (LM5CCs). Among the four kinds of
diastereomers of LM5CCs, we achieved the individual
synthesis of 4A-LM5CC from cis-LO and 1A-LM5CC from
trans-LO. The syntheses can be made highly stereoselective
simply by commercially available TBAC. Moreover, we
studied the relationship between the reaction conditions and the
conversion of LO and NMR yield of LM5CCs. We believe that
this synthetic study will help to develop a bio-based
polyurethane industrial process starting from LM5CC, as well
as the synthesis of limonene-derived bioactive compounds.

Supporting Information
Supplemental data, experimental procedures, 

characterization data. 
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Figure 3. Conversion of ct-LO (○), t-LO ( ), and c-LO
(□), and NMR yield of 4A1A-LM5CC (●) as a function
of TBAC amount (mol%). Reaction conditions: 100 °C,
20 h, and 3 MPa CO2.
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