'Phospha-Wittig' reactions using isolable phosphoranylidenephosphines ArP=PR₃ (Ar = 2,6-Mes₂C₆H₃ or 2,4,6-Bu^t₃C₆H₂)

Shashin Shah and John D. Protasiewicz*†

Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106-7708, USA

Phosphoranylidenephosphines $DmpP=PMe_3$ (1a, $Dmp = 2,6-Mes_2C_6H_3$) and $Mes*P=PMe_3$ (1b, $Mes* = 2,4,6-But_3C_6H_2$) act as 'Phospha-Wittig' reagents with aldehydes providing phosphaalkenes [ArP=C(H)R] in high yields.

The successful synthesis of a 'true phosphobenzene', Mes*P=PMes* (Mes* = 2,4,6-But₃C₆H₂),¹ signaled a new era in the study of phosphorus–phosphorus double bonds.² We have recently uncovered reactions of [Cp₂Zr=PDmp(PR₃)] (Dmp = 2,6-Mes₂C₆H₃) which produce phosphoranylidenephosphines DmpP=PR₃ (R = Me or Bu).³ Phosphoranylidenephosphines are formally the products of phosphinidene transfer to phosphines.⁴ These novel materials contain PP multiple bonding of a very differing nature, as exemplified by the following resonance forms:

$ArP=PR_3 \leftrightarrow Ar\overline{P}-\overline{P}R_3$

Similar resonance forms are commonly drawn for Wittig reagents $R_2C=PR_3$, and the nature of the bonding between the P and C atoms in these species has been reviewed.⁵ Bearing such a close kinship to Wittig reagents, it was anticipated that phosphoranylidenephosphines could act as potential 'phospha-Wittig' reagents by reacting with aldehydes to generate phosphaalkenes RP=C(H)R [eqn. (1)]. Several transition metal containing systems have been reported that accomplish similar transformations.^{6–8} Herein we present the reactivity of the phosphoranylidenephosphines DmpP=PMe₃ **1a** and Mes*P=PMe₃ **1b** with aldehydes to generate phosphaalkenes.

$$R-C'_{H} + ArP=PMe_{3} \longrightarrow R-C'_{H} + O=PMe_{3}$$
(1)

Compounds **1a** and **1b** are conveniently prepared by reduction of either DmpPCl₂ or Mes*PCl₂ with Zn dust in the presence of excess PMe₃ in 88–95% yields [**1a**: ³¹P NMR (C₆D₆), δ –2.8, –114.7 (*J*_{PP} 582 Hz); **1b**: ³¹P NMR (C₆D₆), δ 4.7, –134.0 (*J*_{PP} 581 Hz)].³[‡] In the absence of air and water, compounds **1a**, **b** are stable yellow crystalline solids. Both **1a** and **1b** slowly decompose in solution to lose PMe₃ and form DmpP=PDmp and Mes*P=PMes*, respectively (days to weeks).⁹

Reactions of **1a** and **1b** with C=O containing molecules were thus examined. A series of *para*-substituted benzaldehydes reacted with **1a**, **b** in THF to produce the desired phosphaalkenes in excellent isolated yields (Table 1). Work-up involves removal of THF and extraction of the phosphaalkene into hexanes to remove the relatively insoluble O=PMe₃. Reaction times, as well as product yields, varied with the nature of the substituent; the most electron releasing substituents required the longest reactions times (2–24 h) and provided the lowest yields. Each reaction produced a single isomer of the phosphaalkene, and the ${}^{2}J_{PH}$ coupling constants (24–25 Hz) are consistent with an assignment of *E*-isomers for the products.¹⁰§

Our new protocol can be contrasted to multistep procedures utilizing sterically hindered primary phosphines such as Mes*PH₂. For example, compound **2b** has been prepared in 80% yield after purification by chromatography [eqn. (2)].¹⁰ The primary phosphine Mes*PH₂ is obtained by LiAlH₄ reduction of Mes*PCl₂ and isolated in 80% yield after recrystallization.¹¹ Our procedure thus represents not only a saving in time but also of material due to phosphaalkene access from the more readily available dichlorophosphine precursors. A more dramatic advance in the utility of the current reaction was realized by the discovery that compounds **1a** and **1b** can be generated and used *in situ*. For example, reaction of DmpPCl₂, benzaldehyde, zinc dust and excess PMe₃ gives an isolated yield of 95% of DmpP=C(H)Ph. Likewise, Mes*P=C(H)Ph is obtained in 87% yield from Mes*PCl₂ under the same conditions.

 $\mathsf{Mes}^*\mathsf{PH}_2 \xrightarrow{\mathsf{Bu}^n\mathsf{Li}} \xrightarrow{\mathsf{Me}_2\mathsf{Bu}^t\mathsf{SiCl}} \xrightarrow{\mathsf{Bu}^n\mathsf{Li}} \mathsf{Mes}^*\mathsf{P}(\mathsf{Li})\mathsf{SiMe}_2\mathsf{Bu}^t \xrightarrow{\mathsf{Ph}(\mathsf{H})\mathsf{C}=\mathsf{O}} \mathbf{2b} \quad (2)$

The scope of the phosphaalkene forming reactions using **1a** was also investigated. Pentafluorobenzaldehyde, ferrocenecarboxaldehyde and pivaldehyde provided phosphaalkenes **7a–9a** in good yields, demonstrating the remarkable tolerance of the phosphoranylidenephosphines to varying functional groups. Reactions of **1a** with ketones proved more problematic,

Table 1 Reactions of aldehydes to give phosphaalkenes

Aldehyde R(H)C=O		osphaalkene (H)C=PAr	Yield (%)	³¹ Ρ{ ¹ Η} (C ₆ D ₆) [§] δ
K(II)C=0				0
	(= H	2a	94	240.9
∖ <u> </u> ∕ H		2b	93	258.5 ¹⁰
	CI	3a	90	243.8
		3b	90	261.4
	NO_2	4a	92	265.6
		4b	92	284.6
	OMe	5a	97	225.4
		5b	87	245.1 ¹⁵
	$\rm NMe_2$	6a	78	210.4
F ₅ 0		7a	96	286.8 (t, J _{PF} 98Hz)
		7b	97	304.3 (t, J _{PF} 93Hz)
Fe H		8a	61	222.1
		9a	91	221.2

however. Acetophenone, benzophenone and cyclohexanone showed no evidence of phosphaalkene formation and yielded extensive amounts of DmpP=PDmp over time.

Effords to extend the reactivity of phosphoranylidenephosphines to systems having less steric hindrance than Dmp or Mes* have been partially successful. Attempts to isolate TripP=PMe₃ (Trip = 2,4,6-Pri₃C₆H₂) by reduction of TripPCl₂ with Zn dust in the presence of PMe₃ resulted in rapid formation of (TripP)₃.¹² Addition of benzaldehyde, however, to such reactions results in mixtures of (TripP)₃ and TripP=C(H)Ph {³¹P{¹H} (C₆D₆), δ 254.7; ¹H NMR, δ 8.99 [TripP=C(H)Ph, d, J_{HP} 25.6 Hz]}, suggesting the presence of a transient TripP=PMe₃ capable of effecting phosphaalkene formation.

Reactions of phosphoranylidenephosphines with aldehydes would be of greater synthetic value if the more readily handled (and cheaper) PPh₃ could replace PMe₃ in these reactions. Unfortunately, efforts to prepare DmpP=PPh₃ by reduction of DmpPCl₂ with Zn in the presence of PPh₃ resulted in isolation of DmpP=PDmp. Attempts to generate DmpP=PPh₃ in situ for reaction with benzaldehyde also failed. Exchange of the PMe₃ unit in **1a** with added PPh₃ also proved futile. The PMe₃ groups in 1a and 1b do undergo exchange with certain non-hindered trialkylphosphines in solution. For example, 1a and 1b react quickly with PBu₃ to produce mixtures of **1a**, PMe₃ and DmpP=PBu₃ [1c, ³¹P NMR(C₆D₆), δ 24.1, -151.3 (J_{PP} 589 Hz)] and mixtures of 1b, PMe₃ and Mes*P=PBu₃ [1d, ³¹P NMR(C₆D₆), δ 19.9, -153.7 (J_{PP} 612 Hz)], respectively.^{13,14} Compound 1c can also be generated in situ (as above) from PBu₃ and DmpPCl₂, which in the presence of benzaldehyde yields the phosphaalkene DmpP=C(Ĥ)Ph and O=PBu₃ in good yields. Work-up, however, requires more effort than the PMe₃ system due to the decreased volatility of PBu₃.

In conclusion, we have demonstrated that readily prepared and isolable phosphoranylidenephosphines are apt phosphinidene carriers in phospha-Wittig reactions. Our procedure represents a significant advance for the synthesis of phosphaalkenes as it utilizes dichlorophosphines directly, rather than derived primary phosphines. High yields and functional group tolerance are further highlights of this phospha-Wittig approach. Further studies of the phosphinidene and atom transfer reactions of these conveniently prepared phosphinidene-carriers are underway.

We thank the National Science Foundation (CHE-9733412) and the Department of Chemistry (CWRU) for support of this research.

Notes and References

† E-mail: jdp5@po.cwru.edu

[‡] Compound **1a**: ¹H NMR(C₆D₆), δ 7.08 (t, 1 H, J_{HH} 8 Hz), 6.96 (d, 2 H, J_{HH} 8 Hz), 6.90 (s, 4 H), 2.37 (s, 12 H), 2.22 (s, 6 H), 0.58 (dd, 9 H, ² J_{HP} 12 Hz, ³ J_{HPP} 3 Hz). HRMS (EI) m/z calc. for C₂₇H₃₄P₂ 420.2138; found 420.2127. Compound **1a** has also been structurally characterized.³ Compound **1b**: ¹H NMR(C₆D₆), δ 7.42 (s, 2 H), 1.90 (s, 18 H), 1.36 (s, 9 H), 0.69 (d, 9 H, ² J_{HP} 11.5 Hz). HRMS (EI) m/z calc. for C₂₁H₃₈P₂ 352.2451; found 352.2446.

§ Other data for phosphaalkenes: **2a**: mp 162–164 °C; ¹H NMR(C₆D₆), δ 9.00 (d, ²J_{HP} 25.0 Hz, 1 H), 7.21 (t, J_{HH} 8.0 Hz, 1 H), 7.16 (m, 2 H), 7.00 (d, J_{HH} 7.6 Hz, 2 H), 6.78 (s, 4 H), 6.73 (m, 1 H), 2.20 (s, 12 H), 2.07 (s, 6 H); HRMS (EI) *m*/z calc. for C₃₁H₃₁P 434.2165; found 434.2141. **2b**: mp 149–152 °C (lit. 152–153 °C¹⁰); ¹H NMR (C₆D₆), δ 8.19 (d, ²J_{HP} 25.4 Hz, 1 H), 7.64 (d, ⁴J_{HP} 1.2 Hz, 2 H), 7.46 (m, 2 H), 7.00 (m, 3 H), 1.60 (s, 18

View Article Online H), 1.35 (s, 9 H). **3a**: mp 113–115 °C; ¹H NMR(C₆D₆), δ 8.80 (d, ²J_{HP} 24.9 Hz, 1 H), 7.20 (t, J_{HH} 7.6 Hz, 1 H), 6.98 (d, J_{HH} 7.4 Hz, 2 H), 6.83 (m, 2 H), 6.80 (s, 4 H), 6.66 (d, J_{HH} 8.5 Hz, 2 H), 2.18 (s, 12 H), 2.08 (s, 6 H); HRMS (EI) *m/z* calc. for C₃₁H₃₀PCl 468.1776; found 468.1788. **3b**: mp 124–126 °C; ¹H NMR(C₆D₆), δ 7.97 (d, ²J_{HP} 25.1 Hz, 1 H), 7.63 (s, 2 H), 7.13 (m, 2 H), 6.96 (d, J_{HH} 8.6 Hz, 2 H), 1.57 (s, 18 H), 1.35 (s, 9 H); HRMS (EI) *m/z* calc. for C₂₅H₃₄PCl 400.2089; found 400.2086. **4a**: mp 131–132 °C; ¹H NMR(C₆D₆), δ 8.67 (d, ²J_{HP} 24.9 Hz, 1 H), 7.40 (d, J_{HH} 8.6 Hz, 2 H), 7.20 (t, J_{HH} 7.7 Hz, 1 H), 6.96 (d, J_{HH} 7.7 Hz, 2 H), 6.80 (s, 4 H), 6.70 (m, 2 H), 2.14 (s, 12 H), 2.08 (s, 6 H); HRMS (EI) *m/z* calc. for C₃₁H₃₀PNO₂ 479.2016; found 479.2028. **4b**: mp 129–131 °C; ¹H NMR(C₆D₆), δ 7.83 (d, ²J_{HP} 24.8 Hz, 1 H), 7.73 (d, J_{HH} 8.8 Hz, 2 H), 7.62 (s, 2 H), 7.01 (m, 2 H), 1.52 (s, 18 H), 1.35 (s, 9 H); HRMS (EI) *m/z* calc. for C₃₂H₃₄PNO₂ 411.2329; found 411.2329. **5a**: mp 121–122 °C; ¹H NMR(C₆D₆), δ 9.00 (d, ²J_{HP} 24.9 Hz, 1 H), 7.22 (t, J_{HH} 7.6 Hz, 1 H), 7.11

NMR(C₆D₆), δ7.83 (d, ²J_{HP} 24.8 Hz, 1 H), 7.73 (d, J_{HH} 8.8 Hz, 2 H), 7.62 (s, 2 H), 7.01 (m, 2 H), 1.52 (s, 18 H), 1.35 (s, 9 H); HRMS (EI) m/z calc. for C25H34PNO2 411.2329; found 411.2329. 5a: mp 121-122 °C; ¹H NMR(\tilde{C}_6D_6), $\delta 9.00$ (d, ${}^{2}J_{HP}$ 24.9 Hz, 1 H), 7.22 (t, J_{HH} 7.6 Hz, 1 H), 7.11 (m, 2 H), 7.02 (d, J_{HH} 7.6 Hz, 2 H), 6.81 (s, 4 H), 6.34 (d, J_{HH} 8.6 Hz, 2 H), 3.04 (s, 3 H), 2.23 (s, 12 H), 2.09 (s, 6 H); HRMS (EI) m/z calc. for C₃₂H₃₃PO 464.2271; found 464.2260. **5b**: mp 164–166 °C; ¹H (C₆D₆): δ 8.20 (d, ²J_{HP} 25.1 Hz, 1 H), 7.66 (d, ⁴J_{HP} 1 Hz, 2 H), 7.41 (m, 2 H), 6.44 (d, J_{HH} 8.4 Hz, 2 H), 3.20 (s, 3 H), 1.64 (s, 18 H), 1.37 (s, 9 H); HRMS (EI) m/z calc. for C26H37PO 396.2584; found 396.2584. 6a: mp 181-183 °C; 1H NMR (C₆D₆): δ 9.06 (d, ²J_{HP} 24.4 Hz, 1 H), 7.22 (m, 3 Ĥ), 7.04 (d, J_{HH} 7.6 Hz, 2 H), 6.82 (s, 4 H), 6.09 (d, J_{HH} 8.8 Hz, 2 H), 2.27 (s, 12 H), 2.22 (s, 6 H), 2.10 (s, 6 H); HRMS (EI) m/z calc. for C33H36PN 477.2588; found 477.2596. **7a**: mp 159–161 °C; ¹H NMR (C₆D₆), δ 8.73 (d, ²J_{HP} 24.9 Hz, 1 H), 7.21 (t, J_{HH} 7.7 Hz, 1 H), 6.97 (d, J_{HH} 7.4 Hz, 2 H), 6.82 (s, 4 H), 2.19 (s, 12 H), 2.06 (s, 6 H); HRMS (EI) m'_{z} calc. for C₃₁H₂₆PF₅ 524.1694; found 524.1704. **7b**: mp 130–133 °C; ¹H NMR (C₆D₆), δ 7.94 (d, ²J_{HP} 24.8 Hz, 1 H), 7.63 (d, J_{HP} 1.0 Hz, 2 H), 1.58 (s, 18 H), 1.32 (s, 9 H); HRMS (EI) m/z calc. for C25H30PF5 456.2007; found 456.2010. 8a: mp 104-106 °C; 1H (C₆D₆), δ8.77 (d, ²J_{HP} 24.2 Hz, 1 H), 7.20 (t, J_{HH} 7.7 Hz, 1 H), 6.96 (d, J_{HH} 8.1 Hz, 2 H), 6.84 (s, 4 H), 4.15 (m, 2 H), 3.89 (m, 2 H), 3.73 (d, J 0.5 Hz, 5 H), 2.21 (s, 12 H), 2.14 (s, 6 H); HRMS (EI) m/z calc. for $C_{35}H_{35}PFe$ 542.1817; found 542.1837. 9a: mp 127-129 °C; ¹H NMR (C₆D₆), δ8.37 (d, ²J_{HP} 25.1 Hz, 1 H), 7.18 (t, J_{HH} 7.6 Hz, 1 H), 6.97 (d, J_{HH} 8.1 Hz, 2 H), 6.83 (s, 4 H), 2.16 (s, 12 H), 2.15 (s, 6 H), 0.79 (d, ⁴J_{HH} 1.9 Hz, 9 H); HRMS (EI) m/z calc. for C₂₉H₃₅P 414.2479; found 414.2474.

- 1 M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu and T. Higuchi, J. Am. Chem. Soc., 1981, 103, 4587.
- 2 L. Weber, Chem. Rev., 1992, 92, 1839.
- 3 E. Urnezius, S. Shah, G. P. Yap and J. D. Protasiewicz, manuscript in preparation.
- 4 In, Multiple Bonds and Low Coordination in Phosphorus Chemistry, ed. M. Regitz and O. J. Schere, Thieme Verlag, Stuttgart, 1990.
- 5 D. G. Gilheany, *Chem. Rev.*, 1994, **94**, 1339; P. V. Sudhakar and K. Lammertsma, *J. Am. Chem. Soc.*, 1991, **113**, 1899.
- 6 T. L. Breen and D. W. Stephan, J. Am. Chem. Soc., 1995, 117, 11 914; Organometallics, 1996, 15, 4223; 1997, 16, 365.
- 7 C. C. Cummins, R. R. Schrock and W. M. Davis, *Angew. Chem., Int. Ed. Engl.*, 1993, **32**, 756.
- 8 P. Le Floch, A. Marinetti, L. Ricard and F. Mathey, J. Am. Chem. Soc., 1990, **112**, 2407; P. Le Floch and F. Mathey, *Synlett.*, 1990, 171; P. Floch and F. Mathey, *Synlett.*, 1991, 743.
- 9 E. Urnezius and J. D. Protasiewicz, Main Group Chem., 1996, 1, 369.
- M. Yoshifuji, K. Toyota and N. Inamoto, *Tetrahedron Lett.*, 1985, 26, 1727.
- 11 A. H. Cowley, N. C. Norman and M. Pakulski, *Inorg. Synth.*, 1990, 27, 235.
- 12 C. N. Smit, T. A. van der Knaap and F. Bickelhaupt, *Tetrahedron Lett.*, 1983, 24, 2031.
- 13 A. B. Burg, and W. Mahler, J. Am. Chem. Soc., 1961, 83, 2388.
- 14 A. H. Cowley and M. C. Cushner, Inorg. Chem., 1980, 19, 515.
- 15 K. Issleib, H. Schmidt and E. Leibring, Z. Chem., 1986, 26, 406.

Received in Bloomington, IN, USA; 14th April 1998; 8/02722F