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ABSTRACT: Two dinuclear aluminum complexes bearing
dinaphthalene bridging Schiff bases have been synthesized and
investigated as catalysts in ring-opening polymerization (ROP) of
cyclic esters such as rac-lactide (rac-LA) and ε-caprolactone (ε-
CL) and in the copolymerization (ROCOP) of phthalic anhydride
(PA) with cyclohexene oxide (CHO) and limonene oxide (LO).
The polymerizations of cyclic esters were living, producing
polymers with narrow molar mass distributions. Kinetic studies
showed that the polymerizations were first order with respect to
the monomers. Cooperative effects between two metal centers, located in proximal positions, are invoked to rationalize the high
activities toward both monomers, although the rigid backbone of the complexes enhances the reactivity of less encumbered
caprolactone in comparison to lactide. Good activities were achieved also in the copolymerization of phthalic anhydride with
cyclohexene epoxide and with the bioderived limonene oxide.

■ INTRODUCTION

In the last two decades, synthetic aliphatic polyesters, because
of their biodegradability and their efficient barrier properties,
have attracted much interest as materials alternative to the oil-
derived polymers.1−3 The traditional synthetic route to
produce commodity polyesters is the step-growth copolymer-
ization of diols with diacid or diesters.4 However, because of
the drastic reaction conditions, the control degree over the
polymerization process is generally low; thus this method is
not adequate for the production of sophisticated polymeric
architectures. Alternatively, these materials can be synthesized
via ring-opening polymerization (ROP) of cyclic esters.5 This
method offers the advantage of an accurate control over the
structures of the produced polymers,6,7 but the restricted
chemical and structural diversity of available monomers
confines the properties of obtained materials within limited
ranges.
Recently, the alternating ring-opening copolymerization

(ROCOP) of cyclic anhydrides with epoxides has been
emerging as a powerful alternative synthetic strategy to
structurally diverse polyesters.8,9 The accessibility of two
distinct monomer libraries allows for the synthesis of materials
with properties and functionalities not accessible by the strict
ROP of lactones.
In 2014, Williams et al. described the first example of a

single catalyst able to switch between these two distinct
polymerization processes, selectively producing block poly-
esters by a new type of chemoselective control.10 The
possibility to combine ROP and ROCOP into a single

synthetic procedure allows extension to infinity the range of
materials that can be obtained.11−13 For example, polyether−
polyester copolymers13 have been obtained by chemoselective
processes promoted by a single catalytic system.
While a plethora of metal complexes, most of them based on

phenoxy-based ligands,14−22 have been reported as efficient
catalysts for the ROP of cyclic esters,23,24 a much lower
number has been described for the ROCOP of epoxides25 and
anhydrides, and the examples of metal catalysts that are active
in both catalytic processes are even less numerous.26,27

Among these, multinuclear catalysts showed the most
interesting results.28,29 Because of cooperative effects between
reactive centers,30−34 unexpected activities31−33,35−38 and
selectivity35 have been often observed.39−43

In a previous work we reported that dinuclear salen
aluminum complexes are efficient catalysts for the polymer-
ization of cyclic esters and the copolymerization of epoxides
and anhydrides.44−46 These studies revealed that the distance
between the coordinative pockets that host the aluminum
atoms is a crucial parameter to have cooperation between
them. Several papers put in evidence that higher ROP activities
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were found for dialuminum complexes with Al−Al distances in
the range 5.8−6.6 Å.30,32

In this work we extended this study introducing a binaphthyl
rigid bridge between the two imine functionalities with the aim
to force the two reactive centers into coordinative environ-
ments conformationally inflexible at opportune distance from
one another.

■ RESULTS AND DISCUSSION
Synthesis of the Aluminum Complexes. Two salen pro-

ligands were synthesized by condensation of the racemic
(±)-1,1′-bi(2-naphthylamine) with salicyl aldehydes bearing
different substituents (tBu and Br) on the ortho and para
positions of the phenoxy ring. The reactions were performed in
absolute ethanol according to the literature.47 A chiral
proligand was also prepared by using (R)-1,1′-bi(2-naphthyl-
amine).
The reactions between the salen proligands and 2 equiv of

AlMe3 afforded the desired bimetallic aluminum alkyl
complexes [L-Al2Me4] in almost quantitative yields (Scheme
1). The complexes were all soluble in n-hexane, toluene, and
tetrahydrofuran. They were characterized by multinuclear
NMR spectroscopy (1H, 13C, COSY, and NOESY).

In the 1H NMR spectra, the disappearance of the O−H
signal of the proligands and the appearance of sharp singlets in
the high-field region (between δ −1.75 and −0.65 ppm),
assigned to 12 protons of the diasterotopic methyls bound to
Al centers, demonstrated the formation of the desired
complexes. Diagnostic resonances in the low-field region of
protonic spectra include singlets (δ 7.82 and 7.23 ppm) for the
equivalent imine protons. A single set of signals for the two
phenolate and the CHN moieties point to C2-symmetric
structures in solution. All data were consistent with the
presence of two aluminum atoms per ancillary ligand.
To estimate the distance between metals in these bimetallic

species, the minimum energy structure of rac-2 was located by
DFT calculations (computational details are reported in the
Supporting Information). As reported in Figure 1, a distance of
5.27 Å was obtained, a value coherent with the optimal range
of Al−Al distances to have cooperative effects
Polymerization of Lactides. Complexes rac-1, rac-2, and

R-1 were tested as catalysts for the ROP of rac-LA (Scheme 2).
All polymerization reactions were performed at 70 °C in
toluene solution. Representative results are summarized in
Table 1.
Initially, the complex rac-1 was tested as a catalyst in the

ROP of rac-LA showing a very low activity: the quantitative
conversion of the monomer was achieved only after 5 days at
70 °C (run 1, Table 1). The molecular masses of the obtained
polymer showed a monomodal distribution with narrow
dispersity and values coherent with the formation of a single
polymer chain for the catalyst unit.

This poor activity suggested a very slow initiation step
because of the scarce nucleophilicity of the alkyl group as an
initiating group. In fact, when the polymerization of rac-LA was
carried out in the presence of isopropyl alcohol,48 the activity
increased significantly (run 2 of Table 1) and a conversion of
160 equiv of monomer was achieved until 14 h (run 3 of Table
1). In this case the molecular mass values were lower and were
in agreement with the amount of added alcohol. Subsequently,
to evaluate the degree of control over the molecular masses,
different polymerization experiments were performed, chang-
ing the amount of alcohol or the amount of monomer (runs
3−6 of Table 1). In all cases, the molecular masses of the
obtained polymers were in good agreement with the [LA]/
[iPrOH] ratio.
In terms of activity, complex rac-1 showed a high turnover

frequency (TOF) of 11.2 h−1, comparable to that achieved
with a bimetallic complex bearing an n-propyl backbone.44 The
hypothesis of a bimetallic cooperativity may be supported by
comparison with the activities of related phenoxy-imine
aluminum monometallic complexes already reported in the
literature.31 The same activity was showed by the chiral form of
complex R-1 (run 7 of Table 1), while a slightly higher activity
(TOF = 13.4 h−1), was obtained with complex rac-2, in which
electron-withdrawing substituents were introduced on the
phenoxy rings of the ancillary proligand (compare run 8 vs run
9 of Table 1).
The microstructures of the resulting obtained PLAs were

determined by the analysis of the methine regions of the
homonuclear decoupled 1H NMR spectra.49,50 The spectrum
of the poly(rac-LAs) obtained by rac-1 and rac-2 (runs 8 and
9, Table 1) indicated an atactic microstructure with Pm= 57%
(where Pm is the probability of a meso linkage between lactide
units).51 The same tacticity was observed in the case of the
PLA obtained by the chiral complex R-1 (run 7, Table 1).
It is well-known that the alcohol plays a dual role in the ROP

of cyclic esters: it can cause the alcoholysis of the Al−methyl
bonds to form the related alkoxide derivative, and at the same
time, when it is in excess, it can act as a chain transfer agent to
promote an “immortal” process, allowing the production of

Scheme 1. Structures of Complexes rac-1, rac-2, and R-1

Figure 1. Minimum energy structure of rac-2 by DFT calculations.
The Al−Al distance is given in Å. Hydrogens, except for methyls, are
omitted for clarity.

Scheme 2. Polymerization of Lactide
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several polymer chains per metal center. To rationalize this
point, the alkoxide aluminum derivative was purposely
synthesized by alcoholysis of alkyl precursor rac-1 with 4
equiv of 2-propanol. The reaction, performed in C6D6 and
monitored by 1H NMR spectroscopy, was revealed to be very
slow. The exhaustive alcoholysis of all the methyl groups was
achieved only after 24 h (see the experimental details in the
Supporting Information). Subsequently the isopropoxide
derivative was tested as a catalyst in the polymerization of
rac-LA under the reaction conditions described in Table 1 (run
10, Table 1). The molecular masses of PLA obtained,
evaluated by NMR analysis and GPC analysis, indicated the
formation of a single polymer chain for the catalyst unit. This
was already observed for a similar bimetallic aluminum
complex bearing an n-propyl bridge between the imine
functionalities because of the high steric encumbrance of the
active sites, in combination with a chelation effect between the
two aluminum centers by the O-lactate propagating species
(see Figure S21 in the Supporting Information).44

These observations suggest that the alcoholysis of the
complex is slow in comparison the propagation rate of the
polymerization reaction; thus, it is reasonable to suppose that,
after the alcoholysis of the first alkyl group of the aluminum
complex rac-1, the polymerization can start and the residual
alcohol acts simply as a chain transfer agent. However, a
monomer-activated ROP mechanism cannot be excluded.
Additional information about the polymerization mechanism

were obtained by kinetic investigations. For complex rac-1,
kinetic studies showed that the polymerization of rac-LA
obeyed first-order kinetics in monomer with instantaneous
initiation and with kapp = 0.148 h−1 (Figure 2).
Polymerization of Heterocyclic Monomers. Complexes

rac-1 and rac-2 were tested as catalysts for the ROP of lactones
such as ε-caprolactone (ε-CL) and β-butyrolactone (β-BL)
and of epoxides such as cyclohexene oxide (CHO) and
propylene oxide (PO)(Scheme 3). All polymerization
reactions were performed under the reaction conditions
optimized for ROP of lactide. Representative results are
summarized in Table 2.
In the ROP of ε-CL (see runs 1 and 2, Table 2), both

complexes showed very high activity. At 70 °C, the turnover
frequency (TOF) was higher than 6000 h−1 for the complex
rac-2.
This activity is significantly higher than those of related

monometallic complexes.18 Considering the well-known scarce
activity of aluminum catalysts, we were delighted to observe a

good activity even at room temperature with a TOF of 106 h−1

(run 3, Table 2). A few other examples have been recently
reported.20,52

These very good activities are due to an efficient cooperation
between the two reactive centers of the dinuclear complexes
enhanced by the rigid architecture of the binaphthyl bridge
that forces the two coordinative pockets in proximal and fixed
positions. Reasonably, this effect is more advantageous for
ROP of caprolactone in comparison to lactide, because of less
encumbrance of the monomer and higher flexibility of the
growing polymer chain.
The polymerization process was generally well controlled, as

evidenced by narrow distributions of the molecular weights
with dispersities lower than 1.18 and by the good agreement
between the experimental molecular masses and the theoretical
values (calculated on the basis of the equivalents of alcohol
added).

Table 1. Polymerization of Lactide Promoted by rac-1, R-1, and rac-2a

run cat. [LA]/[cat.] iPrOH (equiv) time (h) conversn (%) TOF (h−1) Mn
GPC (KDa)b Mn

th (KDa)c Đb

1 rac-1 100 168 100 15.5 14.4 1.18
2 rac-1 100 4 24 97 4.0 3.9d 3.6 nd
3 rac-1 200 4 14 78 11.2 4.8 4.6 1.14
4 rac-1 200 3 24 97 8.0 9.1 9.3 1.13
5 rac-1 200 1 48 99 4.2 26.6 28.8 1.11
6 rac-1 300 3 24 94 12.0 14.0 13.0 1.11
7 R-1 200 4 14 79 11.2 6.0 5.6 1.08
8 rac-1 200 4 10 54 10.8 4.1 3.9 1.03
9 rac-2 200 4 10 68 13.4 6.4 4.9 1.07
10 rac-1 (iOPr) 100 12 97 8.1 14.7 13.2 1.06

aAll reactions were carried out at 70 °C with 10 μmol of cat. in toluene (2 mL). bExperimental Mn (corrected using a factor of 0.58) and Đ values
were determined by GPC analysis in THF using polystyrene standards. cCalculated Mn (KDa) = 144.14([LA]/[iPrOH]) × conversion of LA.
dEstimated by 1H NMR.

Figure 2. Kinetic plot for ROP of rac-LA promoted by rac-1 depicting
a reaction order of unity with respect to monomer concentration. The
pseudo-first-order rate constant is kapp = 0.148 h−1 (R2 = 0.9939).
Reaction conditions: [cat.] = 0.01 M; [LA]/[cat.] = 100; T = 343 K;
0.5 mL of toluene-d8 as solvent.

Scheme 3. Monomers Investigated in This Work
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As expected, kinetics studies, performed at 70 °C, showed
that the polymerization rate had a first-order dependence on
the monomer concentration (Figure 3).53 At room temper-

ature, the reaction showed an induction time of about 90 min
(Figure 4). After this time, as shown by the second stage of the
plot, the conversion of the monomer describes a polymer-
ization that was first order in monomer concentration with a
kapp value of 0.0155 min−1. The existence of an induction

period is due to a slow reaction between the isopropyl alcohol
and the metal complex, in agreement with that observed by an
NMR study of the alcoholysis reaction.
In the ROP of β-BL the activity of complex rac-1 was

extremely low; after 15 h the conversion of only 30 equiv of
monomer was observed (run 4, Table 2). The presence of
isopropoxide chain end groups was observed by NMR analysis
and allowed us to estimate the molecular masses of the
obtained sample (see Figures S7 and S8).
Since the polymerization of epoxides follows a bimetallic

pathway,54,55 we extended the use of these catalysts to the
ROP of epoxides.
In the ROP of cyclohexene oxide (CHO), complex rac-1

showed a very high activity when the reaction was performed
in bulk (run 5, Table 2), while the monomer conversion
dropped dramatically when the reaction was performed in
toluene solution (run 6, Table 2).
The microstructure of the obtained poly(1,2-cyclohexene

oxide) was investigated by 1H and 13C NMR spectroscopy. In
the 1H NMR spectrum, the presence of three peaks (δ 3.52,
3.39, and 3.36 ppm), attributable to syndiotactic (rr),
heterotactic (mr and rm), and isotactic (mm) triads of the
methine protons suggests a stereoirregular microstructure.
Correspondently, three main signals were found in the 13C
NMR spectrum for the methine carbons at δ 80.0, 78.7, and
75.6 ppm.
In the polymerization of propylene oxide (PO), both

catalysts failed to enable isolation of any significant quantity
of polymer, even after prolonged reaction times and perform-
ance of the reactions up to 60 °C. Although there are several
examples of aluminum complexes, especially cationic species,
that are reported as active catalysts for PO polymerization,56

the complexes described did not show any activity.
Copolymerizations of Cyclohexene Oxide with Cyclic

Esters and/or Phthalic Anhydride. Subsequently, complex
rac-1 was tested in the copolymerization of CHO with cyclic
esters.
In the CHO/ε-CL copolymerization, after 10 min, a

complete conversion of ε-CL was achieved but, despite the
high activity observed in the related homopolymerizations, no
reaction of CHO was observed within 2 h (run 1, Table 3).
Similarly, in the copolymerization of CHO with L-LA, a
complete conversion of the cyclic ester was obtained after 18 h.
In both cases, no evidence of incorporation of cyclohexene
oxide in the polyester sequences was observed, i.e., no ether
linkages, or a separate polyether was observed (run 2, Table 3).
These results were in agreement with those previously
obtained by Williams, who revealed that the chemical nature
of the metal−polymer chain end group plays a central role in

Table 2. Polymerizations of Heterocyclic Monomers Promoted by rac-1 and rac-2a

runa cat. mon (equiv) T (°C) iPrOH (equiv) time (min) conversn (%) TOF (h−1) Mn
GPC (KDa)b Mn

th (KDa)c Đb

1 rac-1 ε-CL (500) 70 4 5 88 5280 21.9 14.3 1.13
2 rac-2 ε-CL (500) 70 4 5 100 6000 17.0 14.3 1.12
3 rac-1 ε-CL (500) 25 4 240 85 106 14.4 12.1 1.11
4 rac-1 β-BL (100) 70 4 9000 30 2
5d rac-1 CHO (250) 70 4 10 92 1350 6.2 5.6 1.23
6 rac-1 CHO (250) 25 4 900 85 14 11.3 5.2 1.81

aAll reactions were carried out with 10 μmol of rac-1 in toluene (2 mL). bExperimental Mn (corrected using factor of 0.56 for PCL) and Đ values
were determined by GPC analysis in THF using polystyrene standards. cCalculated Mn (KDa) = MMmonomer × ([Monomer]/[iPrOH]) ×
conversion of monomer. dSolvent free.

Figure 3. Kinetic plot for ROP of ε-CL by rac-1 depicting a reaction
order of unity with respect to monomer concentration. The pseudo-
first-order rate constant is Kapp = 0.245 min−1 (R2 = 0.9903). Reaction
conditions: [rac-1] = 0.01 M; [ε-CL]/[rac-1] = 100; T = 343 K; 0.5
mL of toluene-d8 as solvent.

Figure 4. Kinetic plot for ROP of ε-CL by rac-1 depicting a reaction
order of unity with respect to monomer concentration after the initial
induction period. The pseudo-first-order rate constant is Kapp =
0.0155 min−1 (R2 = 0.985). Reaction conditions: [rac-1] = 0.01 M;
[ε-CL]/[rac-1] = 100; T = 298 K; toluene-d8 as solvent.

Organometallics pubs.acs.org/Organometallics Article

https://dx.doi.org/10.1021/acs.organomet.0c00016
Organometallics XXXX, XXX, XXX−XXX

D

http://pubs.acs.org/doi/suppl/10.1021/acs.organomet.0c00016/suppl_file/om0c00016_si_002.pdf
https://pubs.acs.org/doi/10.1021/acs.organomet.0c00016?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.organomet.0c00016?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.organomet.0c00016?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.organomet.0c00016?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.organomet.0c00016?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.organomet.0c00016?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.organomet.0c00016?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.organomet.0c00016?fig=fig4&ref=pdf
pubs.acs.org/Organometallics?ref=pdf
https://dx.doi.org/10.1021/acs.organomet.0c00016?ref=pdf


controlling the monomer selectivity, from a complex mixture,
during polymerization.10

Subsequently, we explored the catalytic behavior of complex
rac-1 in the ROCOP of CHO with phthalic anhydride (PA).
The copolymerization reaction CHO/PA was performed at
110 °C in toluene solution, in the presence of 1 equiv of
bis(triphenylphosphine)iminium chloride (PPNCl) as cocata-
lyst and with an epoxide/anhydride/catalyst ratio of 100/100/
1. Under these conditions, after 7 h, complex rac-1 produced a
poly(ester-ether), with 81% of ester functionalities (run 3,
Table 3).57

When the amount of cocatalyst was increased, no significant
effect in terms of activity was observed, but the selectivity
improved substantially, producing a polyester with a perfect
alternating structure (run 4, Table 3), even though there was a
significant reduction of the molecular masses probably because
of its behavior as a chain transfer agent. Similar effects were
previously observed by Duchateau.58

Finally, we explored the possibility of promoting a combined
ROP/ROCOP catalysis. A ter-polymerization experiment was
performed in the presence of equal amounts of phthalic
anhydride (PA) and L-LA (50 equiv) and an excess of
cyclohexene oxide (100 equiv) (Scheme 4). For comparison a

ROCOP experiment was performed by using the same
amounts of CHO and PA (runs 5 and 6, Table 3). After 24
h, the diblock copolymer poly(cyclohexene phthalate)-co-
polylactide was obtained, as demonstrated by the 1H NMR and
DOSY analysis (Figures S11 and S12 in the Supporting
Information). As expected, the molecular masses showed a
monomodal distribution and were higher than those obtained
for the control experiment, preserving a low dispersity (Figure
S13 in the Supporting Information).
As previously observed for analogous systems,46 complex

rac-1 showed the ability to selectively promote the
compolymerization of CHO/PA followed by the ROP of
lactide.
Copolymerizations of Limonene Oxide with Cyclic

Esters and/or Phthalic Anhydride. Successively, the
catalytic behavior of complex rac-1 in the ROCOP of
(+)-LO with phthalic anhydride (PA) was explored (Scheme
5). The copolymerization reactions were performed at 110 °C

in 1 mL of to luene , in the presence of b i s -
(triphenylphosphine)iminium chloride (PPNCl) or 4-dime-
thylaminopyridine (DMAP) as a cocatalyst at different
epoxide/anhydride/catalyst/cocatalyst ratios. In order to
improve the molecular weight and the glass transition
temperature (Tg) of the poly(LO-co-PA), a precontact between
the catalyst and cocatalyst was performed.59

The results of the performance of complex rac-1 in the
ROCOP of (+)-LO with phthalic anhydride (PA) and thermal
and molecular properties are reported in Table 4.

As reported in the literature for the salen-type catalysts,60

PPNCl gives the best performance in terms of yield as well as
in terms of molecular masses and thermal properties, except for
the ratio catalyst/cocatalyst = 0.5/0.5.
No signals attributable to the ethereal LO−LO bond have

been detected in the 1H NMR spectra, as expected for the
bulky nature of LO.

Table 3. Copolymerization Tests Promoted by rac-1a

run
CHO
(equiv) Mon (equiv)

cocat.
(equiv)

time
(h) T (°C)

conversnCHO
(%)

conversnMon
(%)

ester
(%) Mn

GPC (KDa)b Mn
th (KDa)c Đb

1 CHO (250) ε-CL (500) iPrOH (4) 2 70 >99 12.7 14.3 1.17

2 CHO (250) L-LA (200) iPrOH (4) 24 70 >99 8.3 7.02 1.04

3 CHO (100) PA (100) PPNCl (1) 7 110 >99 75 81 9.6 20.9 1.30
4 CHO (100) PA (100) PPNCl (2) 4 110 55 53 >99 2.6 6.8 1.11
5 CHO (100) PA (50) PPNCl (2) 4 110 51 >99 >99 2.4 6.2 1.17
6 CHO (100) PA/LA (50/50) PPNCl (2) 24 110 53 >99 >99 6.1 9.8 1.44

aAll reactions were carried out with 10 μmol of rac-1, with [rac-1]0/[
iPrOH] = 1/4 in toluene (2 mL). bExperimental Mn (corrected using a factor

of 0.56 for PCL and 0.58 for PLA) and Đ values were determined by GPC analysis in THF using polystyrene standards. cCalculatedMn = [MMCHO
× ([CHO]/[[Cocat]) × conversion of CHO + MMmonomer × ([Monomer]/[[Cocat]) × conversion of monomer].

Scheme 4. ROCOP/ROP from a Mixture of CHO, PA, and
L-LA

Scheme 5. Synthesis of Polyesters from Phthalic Anhydride
(PA) and Limonene Oxide (LO)

Table 4. Copolymerization Results of LO and PA Promoted
by rac-1a

run cocat. cat./cocat. yield (%)d Mn (KDa)
b Đb Tg (°C)

c

1 DMAP 1/1 40.5 6.9 1.19 116
2 PPNCl 1/1 58.9 8.5 1.26 121
3 DMAP 0.5/1 63.6 9.0 1.26 117
4 PPNCl 0.5/1 81.8 9.2 1.28 125
5 DMAP 0.5/0.5 57.8 6.6 1.22 124
6 PPNCl 0.5/0.5 36.2 5.7 1.23 118
7 DMAP 1/2 84.7 7.7 1.21 127
8 PPNCl 1/2 85.6 8.1 1.27 128

aAll reactions were carried out with 10 μmol of rac-1. bExperimental
Mn and Đ values were determined by GPC analysis in THF using
polystyrene standards, precontact step 1 h, polymerization time 48 h,
and an epoxide/anhydride ratio of 250/250, Tg determined by
Differential Scanning Calorimetry (DSC) analysis performed using
cyclic heating and cooling rates of 20 °C per minute and heated from
20 to 200 °C. cThe values of glass transition temperature Tg were
recorded during the second thermal cycle. dThe yield (%) was

calculated as ×+ 100yield(g)
g(LO) g(PA)
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■ CONCLUSIONS

Salen-type frameworks containing dinaphthaleneimine bridge
were selected to prepare dinuclear aluminum complexes to
feature two metal sites allocated in rigid coordinative pockets
at an opportune distance from one another. All complexes,
activated by isopropyl alcohol, promoted controlled homo-
polymerizations of lactide, caprolactone, and cyclohexene
oxide, showing different activities depending on the nature of
the substituents in the phenoxy moieties. The high activities
achieved support the hypothesis of metallic cooperativity that
is more efficient for a monomer with less emcumbrance and/or
a more flexible growing chain. Additionally, such complexes
were revealed to be active in the copolymerization of phthalic
anhydride with cyclohexene oxide and limonene oxide and in
the terpolymerization of these monomers with lactide to
produce diblock polyesters.

■ EXPERIMENTAL SECTION
General Considerations. All manipulations of air- and/or water-

sensitive compounds were carried out under a dry nitrogen
atmosphere using a Braun Labmaster glovebox or standard Schlenk
line techniques. Glassware and vials used in the polymerization were
dried in an oven at 120 °C overnight and exposed three times to
vacuum−nitrogen cycles.
Reagents and Solvents. Benzene, hexane, and toluene (Sigma-

Aldrich) were distilled under nitrogen over sodium benzophenone.
The aluminum precursor AlMe3 was purchased from Aldrich and was
used as received. Deuterated solvents were dried over molecular
sieves. ε-Caprolactone, cyclohexene oxide were purchased from
Aldrich, freshly distilled from CaH2 under nitrogen, and degassed
thoroughly by freeze−vacuum−thaw cycles prior to use. rac-lactide
and L-lactide were purchased from Aldrich, dried in vacuo over P2O5
for 72 h, and stored afterward at −20 °C in a glovebox. PPNCl was
dissolved in dichloromethane and precipitated with diethyl ether
twice. DMAP was cristallizated by toluene. All other chemicals were
commercially available and were used as received unless stated
otherwise.
NMR Analysis. The NMR spectra were recorded on Bruker

Advance 300, 400, and 600 MHz spectrometers at 25 °C, unless
stated otherwise. Chemical shifts (δ) are expressed as parts per
million and coupling constants (J) in hertz. 1H NMR spectra are
referenced using the residual solvent peak at δ 7.16 for C6D6 and δ
7.27 for CDCl3.

13C NMR spectra are referenced using the residual
solvent peak at δ 128.06 for C6D6 and δ 77.23 for CDCl3.
Synthesis of Proligands rac-L1 and rac-L2. Both proligands

were synthesized by modifying a procedure previously reported in the
literature.61 In a 100 mL two-neck round-bottom flask equipped with
a reflux condenser, to a stirred solution containing rac-1.1′-
binaphthyl-2,2′-diamine (0.510 g, 1.76 mmol) in ethanol (50 mL)
was added 2 equiv (3.54 mmol) of the opportune aldehyde (3,5-di-
tert-butyl-2-hydroxybenzaldehyde, 0.825 g; 3,5-dibromo-2-hydroxy-
benzaldehyde, 0.991 g). The solution was stirred at reflux for 12 h.
The solid products were isolated by filtration and washed with fresh
ethanol. Yields: 86% for rac-L1 and 84% for rac-L2.
rac-L1. 1H NMR (300 MHz, C6D6, 298 K): δ 13.23 (s, 2H), 8.31

(s, 2H), 7.88 (d, J = 8.5 Hz, 2H), 7.81 (d, J = 8.1 Hz, 2H), 7.52 (d, J =
8.3 Hz, 2H), 7.39 (d, J = 2.1 Hz, 2H),7.24 (d, J = 8.6 Hz, 2H), 7.20
(t, J = 7.8 Hz, 2 H), 7.02 (t, J = 6.9 Hz, 2H), 6.88 (d, J = 2.2 Hz, 2H),
1.40 (s, 18H), 1.23 (s, 18H). 13C NMR (100 MHz, C6D6, 298 K): δ
163.2, 158.9, 144.3, 139.9, 136.9, 133.9, 133.0, 130.1, 129.8, 127.3,
127.1, 126.9, 126.0, 118.9, 117.7, 35.2, 34.1, 31.6, 29.5.
rac-L2. 1H NMR (300 MHz, C6D6, 298 K): δ 13.12 (s, 2H), 7.75

(s, 2H), 7.84 (d, J = 8.5 Hz, 2H), 7.73 (d, J = 8.1 Hz, 2H), 7.29 (d, J =
8.3 Hz, 2H), 7.24(d, J = 2.1 Hz, 2H),7.23 (d, J = 8.6 Hz, 2H), 7.14 (t,
J = 7.8 Hz, 2 H), 6.98 (t, J = 6.9 Hz, 2H), 6.55 (d, J = 2.1 Hz, 2H).
13C NMR (100 MHz, C6D6, 298 K): δ 164.2, 157.3, 144.2, 139.5,

137.9, 132.7, 133.0, 130.7, 129.8, 127.3, 127.1, 126.3, 125.0, 118.4,
115.5.

Synthesis of Proligand R-L1. The synthetic procedure was the
same as that described for the related chiral proligand rac-L1, but the
chiral diamine was used. To (R)-1,1′-binaphthyl-2.2′-diamine (505
mg, 1.76 mmol) in ethanol (50 mL) was added 3,5-di-tert-butyl-2-
hydroxybenzaldehyde (833 mg, 3.52 mmol). The solution was stirred
at reflux for 12 h. The solid product was isolated by filtration and
washed with fresh ethanol. Yield: 89%. [α]D25 = −432.28.

Complex rac-1. To a stirred solution containing AlMe3 (0.083 g,
1.1 mmol) in benzene (2 mL) was added dropwise a solution of the
proligand precursor rac-L1 (0.400 g, 0.56 mmol) in benzene (4 mL).
The solution was stirred for 3 h at room temperature. The solvent was
removed under vacuum, forming a pale yellow solid in almost
quantitative yield (96%). 1H NMR (300 MHz, C6D6, 298 K): δ 7.82
(s, 2H, CHN), 7.63 (d, J = 2.4 Hz, 2H, ArH), 7.51 (d, J = 8.4 Hz,
2H, ArH), 7.43 (d, J = 8.7 Hz, 2H, ArH), 7.28 (d, J = 8.4 Hz, 2H,
ArH), 7.24 (d, J = 8.7 Hz, 2H, ArH), 7.14 (t, J = 7.4 Hz, 2H, ArH),
7.01 (t, J = 7.1 Hz, 2H, ArH), 6.36 (d, J = 2.4 Hz, 2H, ArH), 1.54 (s,
18H, t-Bu), 1.23 (s, 18H, t-Bu), −0.45 (s, 6H, Al−CH3), −0.75 (s,
6H, Al-CH3).

13C NMR (100 MHz, C6D6, 298 K): δ 173.7, 163.0,
144.7, 140.8, 139.2, 134.9, 133.2, 132.7, 131.0, 130.1, 126.6, 125.4,
124.2, 119.6 (Ar or ArCNH), 35.5 (C(CH3)3), 34.0 (C(CH3)3), 31.4
(CH3), 29.7 (CH3), −9.1 (Al−CH3). Anal. Calcd for C54H66Al2N2O2
(%): C, 78.23; H, 8.02; N, 3.38. Found: C, 78.44; H, 7.97; N, 3.30.

Complex R-1. To a stirred solution containing AlMe3 (0.044 g,
0.54 mmol) in benzene (2 mL) was added dropwise a solution of the
proligand precursor R-L1 (0.193 g, 0.27 mmol) in benzene (4 mL).
The solution was stirred for 3 h at room temperature. The solvent was
removed under vacuum, forming a pale yellow solid in almost
quantitative yield (94%). The NMR characterization was reported for
the complex rac-1. Anal. Calcd for C54H66Al2N2O2: C, 78.23; H, 8.02;
N, 3.38. Found: C, 78.13; H, 7.94; N, 3.41.

Complex rac-2. To a stirred solution containing AlMe3 (0.050 g,
0.62 mmol) in benzene (2 mL) was added dropwise a solution of the
proligand precursor rac-L1 (0.250 g, 0.31 mmol) in benzene (4 mL).
The solution was stirred for 3 h at room temperature. The solvent was
removed under vacuum, forming a pale yellow solid in almost
quantitative yield (97%). 1H NMR (400 MHz, C6D6, 298 K): δ 7.56
(d, J = 2.3 Hz, 2H), 7.51 (d, J = 8.8 Hz, 2H), 7.43 (d, J = 8.8 Hz, 2H),
7.23 (s, 2H), 7.10 (t, J = 7.0 Hz, 2H), 7.09 (d, J = 8.6 Hz, 2H) 6.90 (t,
J = 7.1 Hz, 2H), 6.89 (d, J = 8.6 Hz, 2H), 6.58 (d, J = 2.3 Hz, 2H),
−0.67 (s, 6H), −1.25 (s, 6H). 13C NMR (75 MHz, C6D6, 298 K): δ
143.0, 142.7, 136.2, 134.3, 132.7, 131.4, 128.4, 128.3, 128.2, 128.,
127.2, 127.1, 124.8, 123.3, 120.6, 120.6, 117.6, 108.9. Anal. Calcd for
C38H30Al2Br4N2O2: C, 49.60; H, 3.29; N, 3.04. Found: C, 49.65; H,
3.32; N, 3.10.
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