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ABSTRACT: Two new derivatives of the bis(3,5-dimethylpyrazol-1-yl)methane modified
by introduction of organosilyl groups on the central carbon atom, one of which bearing a
chiral fragment, have been easily prepared. We verified the potential utility of these
compounds through the reaction with [Zr(NMe2)4] for the preparation of novel zirconium
complexes in which an ancillary bis(pyrazol-1-yl)methanide acts as a robust monoanionic
tridentate scorpionate in a κ3-NNC chelating mode, forming strained four-membered
heterometallacycles. These κ3-NNC-scorpionate zirconium amides were investigated as
catalysts in combination with tetra-n-butylammonium bromide as cocatalyst for CO2
fixation into five-membered cyclic carbonate products. The study has led to the
development of an efficient zirconium-based bicomponent system for the selective
cycloaddition reaction of CO2 with epoxides. Kinetics investigations confirmed apparent
first-order dependence on the catalyst and cocatalyst concentrations. In addition, this
system displays very broad substrate scope, including mono- and disubstituted substrates, as
well as the challenging biorenewable terpene derived limonene oxide, under mild and solvent-free conditions.

■ INTRODUCTION

Over the past two decades, our research group has pioneered
the modification of the bis(pyrazol-1-yl)methane (bpzm)
molecule through the bridging carbon atom, by adding organic
functional groups to form heteroscorpionate ligands.1 This
procedure has allowed us to design a wide variety of novel
achiral, chiral, and enantiopure NNO,2a NNS,2b NNN,2c and
NNCp2d κ3-scorpionate ligands to prepare very efficient
catalysts for different processes including cyclic carbonates.3

However, the κ3-NNC(sp3) coordination mode based on the
bis(pyrazol-1-yl)methane platform is little known, and only
three examples have been reported in the literature. For
instance, our research group communicated a bimetallic
acetamide neodymium complex that contains a bridging
dianionic bpzm-based heteroscorpionate in this coordination
mode, which was produced through deprotonation of the RN−
H moiety and C−H activation of the bridging methylene
group.4 Additionally, tungsten-based compounds bearing a
bpzm in this coordination fashion, obtained by migration of a
SnAr3 fragment to the metal, were also communicated.5 More
recently, an amide-derivative calcium compound containing
the bpzm in this tridentate mode has been also reported.6

On the other hand, over the past few years our research
group has been intensively working on the valorization of CO2
as an attractive C-1 renewable building block7 since this
unsaturated molecule presents a widespread availability in
nature, low cost, nonhazardous features, lack of color, and
redox activity. In this sense, several chemical applications are

possible for this low reactive molecule, such as the production
of cyclic carbonates (CC’s)8 or polycarbonates (PC’s)9 by
cycloaddition or ring-opening copolymerization (ROCOP) of
CO2 with epoxides, respectively. Of particular interest is the
100% atom-economical synthesis of cyclic carbonates (see
Chart 1), as these organic molecules find numerous application
in industry such as polar aprotic solvents, high boiling solvents,
intermediates in organic synthesis, electrolytes, fuel additives,
and as sustainable reagents.10
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Chart 1. Synthesis of Cyclic Carbonates
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In this context, very active metal-based catalysts have been
reported, with chromium,11 cobalt,12 iron,13 magnesium,14

zinc,14a,15 or aluminum,3,16 as leading metals in this field (see
Chart 2). However, a few examples of efficient group 4 based
systems17 have been successfully developed for the selective
cycloaddition of CO2 to epoxides for cyclic carbonates
production, and particularly, the employment of zirconium-
based catalysts still remains poorly explored18 in this process,
focused exclusively on propylene18a,c,d and styrene18a,c oxide
conversions at relatively demanding reaction conditions (see
Chart 2). Alternatively, efficient metal−coordination frame-
works containing this metal are currently appearing,18e,f

however, these species present very limited channel accessi-
bility to bulkier epoxides, decreasing the range of applicability.
Now, we take the stimulating challenge of designing more

efficient and selective zirconium-based catalysts containing κ3-
NNC(sp3) scorpionates built on the bis(pyrazol-1-yl)methane
ancillary platform, and explore their catalytic behavior in the
coupling reaction of CO2 and epoxides, with a much wider
substrate scope.
We report hereby the preparation of novel zirconium

complexes supported by a strained organosilyl-derived bis(3,5-
dimethylpyrazol-1-yl)methanide in a κ3-NNC coordination
fashion as the first zirconium-based catalysts for the cyclo-

addition of CO2 to epoxides, which display very broad
substrate scope, including terminal, internal, biobased, and a
very challenging biorenewable derivative under mild and
solvent-free conditions.

■ RESULTS AND DISCUSSION

Synthesis and Characterization of the Starting
Materials and Complexes. The modification of the
bis(3,5-dimethylpyrazol-1-yl)methane molecule by organosilyl
groups on the central carbon atom was carried out by reaction
of lithium bis(3,5-dimethylpyrazol-1-yl)methanide, prepared in
situ from nBuLi and bis(3,5-dimethylpyrazol-1-yl)methane at
−70 °C, with the corresponding organosilyl chloride to afford
the starting materials bpzsimeH (1),19 bpzsialiH (2), and
bpzsinbH (3) (see Scheme 1a). It should be noted that the use
of 2-(5-norbornen-2-yl)ethylchlorodimethylsilane allowed us
to introduce an organosilyl chiral group in the bridging carbon
atom in the case of 3. The soft treatment of the ligands 1−3
with Zr(NMe2)4 in a 1:1 molar ratio in toluene gave the
complexes [Zr(NMe2)3(κ

3-NNC)] (4−6), through the C−H
activation of the bridging methane group in the ligand, as a
consequence of the silyl group placed in α-position to the
carbon atom Ca. These complexes were isolated as yellow

Chart 2. Representative Bicomponent Complex/TBAB Systems Very Active for the Synthesis of Styrene Carbonate under
Solvent-Free Conditions
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solids in very good yields after the appropriate workup (see
Scheme 1b).
The different compounds were characterized spectroscopi-

cally. The 1H NMR spectra of 1−3 show one singlet for each
of the H4, Me3, Me5 pyrazole protons and for the bridging CHa

(e.g., Figure S1 in the Supporting Information (SI)).
Furthermore, the spectra show signals corresponding to the
R moieties of the scorpionate ligands. The 1H NOESY-1D
experiments enabled the unequivocal assignment of all 1H
resonances, and the assignment of the 13C{H} NMR signals
was carried out on the basis of 1H−13C heteronuclear
correlation (g-HSQC) experiments.
The 1H and 13C {1H} NMR spectra of the zirconium amide

complexes 4 and 5 show a singlet for the pyrazole signals H4,
Me3, and Me5, two singlets corresponding to the amides (a
double integral signal for two amides and a single for another
amide), and finally, a singlet corresponding to the silane
methyls, and the corresponding for R substituent. It should be
noted that the signal of the bridging CHa for compounds 4−6
has disappeared, as a result of the C−H activation bond, and
subsequent coordination of the carbanion C(sp3)a to the
zirconium atom (e.g., Figure S2 in the SI).
On the other hand, it should be mentioned that complex 6

shows different signals for the pyrazole protons H4, Me3, and
Me5, indicating that the pyrazole rings are not equivalent, as a
result of the restricted rotation between the Ca carbon and the
silicon atoms. In addition, 6 shows three different singlets for
the amides, which means that these groups are not exchanged,
and therefore, there is no equivalence between them. The
results are consistent with an octahedral structure resulting
from the κ3-NNC coordination mode of the ligand to the metal
center (see Scheme 1b).
The geometry found in solution was also confirmed in the

solid state by X-ray diffraction analysis of complex 4 (see
Figure 1). Selected bond lengths and angles are listed in Table

1 (crystallographic details are included in Table S1 in the SI).
The structure consists of a scorpionate ligand bonded to the

zirconium atom through the two nitrogen atoms of the
pyrazole rings and the bridging carbon atom Ca in a κ3-NNC
coordination mode. In addition, the zirconium center is
coordinated to three amide ligands. The most interesting
structural feature of 4 is the highly constrained coordination
mode of the scorpionate ligand resulting in the formation of
two novel four-membered heterometallacycles. This coordina-
tion feature is known in metals such as neodymium,4

tungsten,5 and calcium.6

However, to our knowledge, complex 4 represents the first
example of a κ3-NNC coordination mode of a bpzm-based
scorpionate ligand in zirconium. The formation of these
metallacycles causes the metal center to have a very distorted
octahedral environment, with very small angles in the tripod
that the scorpionate forms with the metal. Thus, the N(1)−
Zr(1)−N(3), N(1)−Zr(1)−C(11), and N(3)−Zr(1)−C(11)

Scheme 1. Synthesis of the Modified Bis(3,5-
dimethylpyrazol-1-yl)methane with Organosilyl Groups 1−
3, and Complexes [Zr(NMe2)3(κ

3-NNC)] (4−6)

Figure 1. ORTEP view of [Zr(NMe2)3(bpzsime)] (4). Hydrogen
atoms have been omitted for clarity. Thermal ellipsoids are drawn at
the 30% probability.

Table 1. Selected Bond Lengths [Å] and Angles [deg] for 4

Distances [Å] Angles [deg]

Zr(1)−N(1) 2.386(1) N(1)−Zr(1)−N(3) 79.20(5)
Zr(1)−N(3) 2.391(1) N(1)−Zr(1)−C(11) 56.50(5)
Zr(1)−N(5) 2.071(2) N(2)−C(11)−N(4) 109.53(14)
Zr(1)−N(6) 2.069(2) N(2)−C(11)−Si(1) 119.11(12)
Zr(1)−N(7) 2.079(1) N(2)−C(11)−Zr(1) 89.32(10)
Zr(1)−C(11) 2.594(2) N(3)−Zr(1)−C(11) 56.65(5)
N(2)−C(11) 1.459(2) N(4)−C(11)−Si(1) 124.08(12)
N(4)−C(11) 1.467(2) N(4)−C(11)−Zr(1) 88.77(10)
Si(1)−C(11) 1.857(2) N(5)−Zr(1)−N(7) 94.28(6)

N(6)−Zr(1)−N(5) 100.65(7)
N(6)−Zr(1)−N(7) 104.20(7)
Si(1)−C(11)−Zr(1) 116.39(8)
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angles, which have values of 79.20(5)°, 56.50(5)°, and
56.65(5)°, respectively, are very far toward 90°. The Zr−
amide distances, Zr(1)−N(6), Zr(1)−N(5), and Zr(1)−N(7)
of 2.069(2) Å, 2.071(2) Å, and 2.079(1) Å, respectively, are in
agreement with other zirconium amide complexes previously
described in our group.20

Catalytic Studies for the Cycloaddition of CO2 to
Epoxides for Cyclic Carbonates. Initially, the mononuclear
zirconium complexes 4−6 were tested as catalysts for the
formation of styrene carbonate 8a by the coupling reaction of
CO2 with styrene oxide 7a as a benchmark reaction (see
Scheme 2). The process was assessed at 20 °C and 1 bar of

CO2 pressure and under solvent free conditions for 3, 6, and
24 h in a 1:1 molar ratio for all complexes, using a catalyst
loading of 5% in the presence of tetrabutylammonium bromide
(TBAB), which was selected as an efficient cocatalyst on the
basis of our previous work with analogous scorpionate
complexes, given the optimal balance between nucleophilicity,
coordination ability to the metal, and leaving ability from the
carbonate intermediate species of bromide ion in these
experiments.3,21

The results are presented in Table 2. Styrene oxide
conversion into the styrene carbonate was determined by 1H
NMR at the established time intervals without any further
purification (see Figure S3 in the SI). Expectedly, formation of

polycarbonate was not detected under the aforementioned
conditions (selectivity >99%).21

The trimethylsilyl derivative 4 displayed slightly higher
catalytic activity than the counterparts 5 and 6 (Table 2,
entries 1−3) for the synthesis of 8a. This is probably due to
the analogous nature of the three complexes; however, the
norbornene derivative 6 showed the lowest activity as a result
of the highest sterically hindered organosilyl fragment.
Moreover, a control experiment for 4 revealed no catalytic

activity without the presence of TBAB, whereas the employ-
ment of TBAB in the absence of 4 produced minimal
conversion at 20 °C (5%) and very low conversion at 60 °C
(13%) after 24 h. Additionally, the performance of the
corresponding ancillary protioligand bpzsimeH (1) in complex
4 in the presence of TBAB was also inspected, displaying no
significant conversion (4%) under these conditions (Table 2,
entries 4−7). In addition, we explored the effect of
temperature and pressure for the synthesis of 8a from 7a
employing complex 4/TBAB as the catalytic system, by
working at 60 °C and 10 bar of CO2 pressure. Remarkably,
under these conditions, catalyst and cocatalyst loadings can be
reduced at 0.5 mol % to reach very good conversion in 6 h
(Table 2, entries 8−9).
More interestingly, thermal stability was also successfully

proven for catalyst 4 by increasing the reaction temperature up
to 80 °C, reaching almost complete conversion even at lower
catalyst loadings (0.25 mol %) in 6 h (Table 2, entry 10),
reaching a TOF value of 96 h−1 and proving no thermal
degradation of both the highly constrained κ3-NNC-
scorpionate complex 4 and the auxiliary ligand coordinated
to the zirconium center (see Figure 1). Therefore, according to
the results presented in Table 2, complex 4 was selected as the
most efficient catalyst for further investigations under these
experimental conditions.
Considering the good results attained by 4/TBAB, a variety

of terminal substrates were additionally explored to test the
efficiency of this bicomponent system (see Scheme 2),
including alkyl, aryl, and functionalized terminal epoxides
7b−7e at 60 °C and 10 bar of CO2 pressure, with a 10-fold
reduction in catalyst/cocatalyst loading (0.5 mol %) under
solvent-free conditions (see Figures S4−S7 in the SI).
Remarkably, under these conditions excellent conversions
were achieved in only 16 h, including those substrates bearing
alcohol or ether functionalities with phenyl or alkyl chains (see
Figure 2).
In view of the high activity displayed by the bicomponent

system 4/TBAB, we additionally extended the substrate scope
for catalyst 4 and assessed the conversion of internal and
disubstituted epoxides 9a−9d, as well as biobased derived
substrates 11a−11d, into the corresponding cyclic carbonates
10a−10d and 12a−12d, respectively. Although these trans-
formations have received less attention than their monosub-
stituted analogous, intensive progress has been reported in the
very recent years employing iron(II)-, calcium(II)-, and
aluminum(III)-based catalyst systems.22 However, to our
knowledge, no examples employing zirconium-based com-
plexes or zirconium-coordination frameworks as catalyst have
been reported until now.18 Interestingly, the synthesis of cyclic
carbonates 10a−10b from the corresponding internal epoxides
can be conducted using very low loadings (0.5 mol %) of the
binary system 4/TBAB, in 1:1 proportion under mild and
solvent-free conditions (60 °C, 10 bar CO2 pressure) in 16 h
(see Figure 3 and Figures S8−S9 in the SI), reaching high

Scheme 2. Cyclic Carbonate Synthesis Catalyzed by
Complexes [Zr(NMe2)3(κ

3-NNC)] (4−6)

Table 2. Conversion of Epoxide 7a into Styrene Carbonate
8a Using Catalysts 4−6a

Conversion [%]

Entry Catalyst

[Cat.]/
[cocat.]
[mol %]

Temp
[°C]

3 hb

(TOF h−1)c 6 hb 24 hb

1 4 5.0:5.0 25 22 (1.5) 34 67
2 5 5.0:5.0 25 17 (1.1) 31 61
3 6 5.0:5.0 25 15 (1.0) 28 57
4 4 5.0:0 25 0 0 0
5 TBAB 0:5.0 25 0 0 5
6 TBAB 0:5.0 60 3 8 13
7 bpzsimeH 5.0:5.0 25 0 0 4
8 4d 0.5:0.5 60 42 (28.0) 71 100
9 TBABd 0:0.5 60 5 11 16
10 4d 0.25:0.25 80 72 (96.0) 98 −

aReactions carried out at 20 °C and 1 bar of CO2 pressure using 5
mol % of complexes 4−6/5 mol % of TBAB as cocatalyst unless
specified otherwise. bDetermined by 1H NMR spectroscopy of the
crude reaction mixture. cTOF (Turnover frequency) = number of
moles of styrene oxide consumed/(moles of catalyst × time of
polymerization). dReactions carried out at 10 bar of CO2 pressure.
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conversion values, thus showing the efficiency of this system.
In addition, the reaction proceeds with retention of the
epoxide stereochemistry through a double inversion process,23

which led to the exclusive formation of the cis-isomer for the
cyclohexene oxide, with a selectivity higher than 99%. In the
case of cyclopentene oxide, only the cis-isomer is thermody-
namically allowed.24 Very good conversions were also observed
for the disubstituted cyclic carbonates 10c−10d; however, an
increase in catalyst loading (0.75−2.5 mol %) and reaction
conditions (70−80 °C, respectively, 20 bar CO2 pressure) was
necessary (see Figure 3 and Figures S10−S11 in the SI), in
agreement with the higher steric hinderance of the substituents
in these substrates. Moreover, we turned our attention to the
synthesis of biobased cyclic carbonates 12a−12d, given their
potential use as a nontoxic feedstock to produce nonisocyanate
poly(hydroxy)urethanes (NIPUs).25 To our delight, excellent
conversion was obtained in the synthesis of the biobased furan-
derived cyclic carbonate 12a after 16 h at 60 °C and 10 bar of
CO2 pressure, employing identical equimolecular catalyst/
cocatalyst loading (0.5 mol %) to that used for the terminal
epoxides 8a−8e. As a result, we were encouraged to extend this
study to transform other biobased diepoxide derivatives based
on the fumaryl, succinil, and glutaryl building blocks, 11b−
11d. We were also delighted to find that cyclic carbonates
12b−12d were obtained in quantitative yields under identical
conditions to those for 12a, also using only 0.5 mol % of the
bicomponent system 4/TBAB (see Figure 3 and Figures S12−
S15 in the SI).
More interestingly, we finally endeavored the production of

another biorenewable cyclic carbonate obtained from
limonene, a highly substituted monocyclic unsaturated terpene
derived from biomass.26 Thus, the commercially available (R)-
(+)-limonene oxide 13 (a mixture of cis/trans isomers 43:57)
was efficiently transformed (56%), into the trisubstituted
bicyclic terpene limonene carbonate 14 by a combination of
2.5 mol % of complex 4 and 2.5 mol % of TBAB at 80 °C and
20 bar of CO2 pressure for 24 h, with high stereoselectivity to
the trans-limonene carbonate (cis/trans = 6/94) (see Figure 3
and Figure S16 in the SI).
Interestingly, the employment of the norbornene derivative

complex 6 resulted in a slight increase in stereoselectivity to
the trans-carbonate (>99%) under otherwise identical
conditions, but an expected reduction in conversion was also
observed (48%), as a consequence of the sterically hindered
chiral fragment in the scorpionate ligand (see Figure 3 and
Figure S17 in the SI). To our knowledge, the combination of 4
and TBAB constitutes the first zirconium-based bicomponent
system for the efficient cycloaddition of CO2 to a wide variety
of epoxides, as described above.
Finally, considering that the system 4/TBAB resulted in

being very active in the synthesis of cyclic carbonates 8a−8e,
10a−10d, 12a−12d, and 14 with retention of the epoxide
stereochemistry, a plausible mechanism for cyclic carbonate
production catalyzed by this bicomponent zirconium-based
system is presented in Figure 4. This mechanism follows a
monometallic binary pathway considering that the kinetic
investigations employing complex 4 and Bu4NBr revealed an
apparent first-order dependence on the catalyst and cocatalyst
concentrations (see full study in Figures S18−S19 and Tables
S2−S3 in the SI), which also agrees with those previously
proposed for analog mononuclear scorpionate-based com-
plexes27 used for coupling CO2 and epoxides into cyclic
carbonates. Unfortunately, all attempts to follow this catalytic

Figure 2. Synthesis of cyclic carbonates 8a−8e from epoxides 7a−7e
using 0.5 mol % of the system complex 4/TBAB at 60 °C and 10 bar
of CO2 pressure for 16 h. (a) Conversion and selectivity were
determined by 1H NMR. (b) Isolated yield after column
chromatography.

Figure 3. Synthesis of cyclic carbonates 10a−10d, 12a−12d, and 14
from epoxides 9a−9d, 11a−11d, and 13, respectively, using
equimolecular amounts of the system 4/TBAB at 60 °C and 10 bar
CO2 pressure for 16 h, unless specified otherwise. (a) Conversion and
selectivity were determined by 1H NMR. (b) Isolated yield after
column chromatography.
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process in CDCl3 or CD2Cl2 produced degradation of complex
4 possibly as a consequence of protic traces in solution,
whereas the use of thf-d8 or C6D6 did not afford enough
solubility to the TBAB. The proposal is consistent with the
initial coordination of the epoxide to the zirconium center,
with expansion of the coordination sphere, as recently reported
in analog octahedral zirconium-based catalysts,28 subsequent
nucleophilic attack of the bromide to the less sterically
hindered carbon atom of the epoxide, CO2 insertion into the
Zr−O bond, and final ring closing of the cyclic carbonate with
stereochemistry retention.

■ CONCLUSIONS
We have designed a simple strategy for the preparation of a
novel family of zirconium complexes containing organosilyl
derived bis(pyrazol-1-yl)methanides that act as robust
monoanionic κ3-NNC scorpionate ligands. X-ray diffraction
analysis indicated that these species are very strained, forming
four-membered heterometallacycles in the molecule.
These κ3-NNC-scorpionate zirconium amides in the

presence of a cocatalyst showed to be effective catalysts for
CO2 fixation into five-membered cyclic carbonates. The study
allowed the development of a new zirconium-based system
consisting of a combination of the complex 4 and TBAB,
which resulted in being efficient and selective for the
cycloaddition of CO2 to epoxides in good to excellent yields.
Kinetic studies revealed apparent first-order dependence on
the catalyst and cocatalyst concentrations. Furthermore, this
bicomponent system displayed very broad substrate scope,
including terminal, internal, and disubstituted substrates, as
well as the challenging biorenewable terpene derived limonene
oxide, under mild and solvent-free conditions. The presence of
a chiral fragment in complex 6 exerted a slight stereoselective
trans-influence for limonene oxide.

■ EXPERIMENTAL SECTION
General Procedures. Reactions for the synthesis of complexes

were performed using Schlenk techniques or a glovebox under an
atmosphere of dry nitrogen. Solvents were predried over sodium wire
and distilled under nitrogen from sodium (toluene and n-hexane)
sodium-benzophenone (THF). Deuterated solvents were stored over
activated 4 Å molecular sieves and degassed by several freeze−thaw
cycles. The starting materials allyl(chloro)dimethylsilane and 2-(5-
norbornen-2-yl)ethylchlorodimethylsilane, Zr(NMe2)4, and nBuLi
were used as purchased (Aldrich). The compounds bdmpzm
[bdmpzm = bis(3,5-dimethylpyrazol-1-yl)methane]29 and bpzsimeH
(1)19 were prepared as previously reported. (R)-(+)-Limonene oxide
(cis and trans mixture) was distilled from calcium hydride under
vacuum. The remaining epoxide substrates were used as received
unless specified otherwise (Aldrich, Across). CO2 (99,99%) was
commercially obtained and used without further purification.

Instruments and Measurements. NMR spectra were recorded
on a Bruker Advance Neo 500 (1H NMR 500 MHz and 13C NMR
125 MHz) spectrometer and were referenced to the residual
deuterated solvent signal. The NOESY-1D spectra were recorded
with the following acquisition parameters: irradiation time 2 s and
number of scans 256 using standard VARIAN-FT software. 2D NMR
spectra were acquired using the same software and processed using an
IPC-Sun computer. Microanalyses were performed with a PerkinElm-
er 2400 CHN analyzer.

Preparation of Compounds 2−6. Synthesis of bpzsialiH (2). In
a 250 mL Schlenk tube, bdmpzm (2.00 g, 9.79 mmol) was dissolved
in dry THF (70 mL) and cooled to −70 °C. A 1.6 M solution of
nBuLi (6.12 mL, 9.79 mmol) in hexane was added, and the suspension
was stirred for 1 h. The reaction mixture was warmed to −20 °C, and
the resulting yellow suspension was treated with a solution of
allyl(chloro)dimethylsilane (1.48 mL, 9.79 mmol) in dry THF (20
mL), after which the solution was stirred for 30 min. The reaction
mixture was warmed to room temperature and was stirred for an
additional hour. The solvent was removed under reduced pressure,
and the residual solid was extracted in hexane (70 mL) to give a
yellow solid of 2. Yield: (2.72 g, 92%). Anal. Calcd for C16H26N4Si: C,
63.53; H, 8.66; N, 18.52. Found: C, 63.49; H, 8.63; N, 18.50. 1H
NMR (C6D6, 297 K), δ 6.02 (s, 1H, CHa), 5.78 (m, 1H, −CH2−
CHCH2), 5.63 (s, 2H, H

4), 4.88 (m, 2H, −CH2−CHCH2), 2.14
(s, 6H, Me3), 1.87 (m, 1H, −CH2−CHCH2), 1.81 (s, 6H, Me5),
0.35 (s, 6H, SiMe2).

13C {1H} NMR (C6D6, 297 K), δ 146.5 (C3),
139.3 (C5), 134.3 (−CH2−CHCH2), 113.5 (−CH2−CHCH2),
106.1 (C4), 66.9 (Ca), 22.7 (−CH2−CHCH2), 13.3 (Me3), 10.4
(Me5), −3.2 (SiMe2).

Synthesis of bpzsinbH (3). The synthesis of 3 was carried out in an
identical manner to 2, using bdmpzm (2.00 g, 9.79 mmol), 1.6 M
solution of nBuLi (6.12 mL, 9.79 mmol) in hexane and 2-(5-
norbornen-2-yl)ethylchlorodimethylsilane (2.12 mL, 9.79 mmol), to
give 3 as a yellow solid. Yield: (3.33 g, 89%). Anal. Calcd for
C22H34N4Si: C, 69.06; H, 8.96; N, 14.64. Found: C, 69.01; H, 8.82;
N, 14.69. 1H NMR (C6D6, 297 K), δ 6.07 (dd,

3JH−H = 10.9 Hz, 3JH−H
= 6.2 Hz, 1H, Hd), 6.06 (s, 1H, CHa), 5.92 (dd, 3JH−H = 10.9 Hz,
3JH−H = 6.2 Hz, 1H, He), 5.65 (s, 2H, H4), 2.76 (s, 1H, Hf), 2.66 (s,
1H, Hc), 2.19 (s, 6H, Me3), 1.89 (m, 1H, Hb), 1.84 (s, 6H, Me5),
1.50, 0.52 (m, 2H, Hh), 1.15 (m, 2H, Si−CH2−CH2−), 0.90 (m, 2H,
Hg), 0.39, 0.37 (s, 6H, SiMe2), 0.22 (t, 2H,

3JH−H = 7.1 Hz, Si−CH2−
CH2−). 13C {1H} NMR (C6D6, 297 K), δ 146.3 (C3), 139.3 (C5),
136.7 (Cd), 132.2 (Ce), 106.1 (C4), 67.6 (Ca), 49.5 (Cf), 45.0 (Cc),
42.6 (Cb), 32.3 (Ch), 28.5 (Si−CH2−CH2−), 13.9 (Cg), 13.4 (Me3),
10.5 (Me5), −2.7 (Si−CH2−CH2−), −2.8 (SiMe2).

Synthesis of [Zr(NMe2)3(bpzsime)] (4). In a 250 mL Schlenk tube,
bpzsimeH (1.0 g, 3.62 mmol) was dissolved in dry toluene (60 mL).
A solution of Zr(NMe2)4 (0.97 g, 3.62 mmol) in toluene (30 mL) was
added, and the mixture was stirred during 12 h at room temperature.
The solvent was evaporated to dryness under reduced pressure to
yield a yellow product. The product was washed with n-hexane (1 ×
25 mL) to give compound 4 as a yellow solid. Crystals suitable for X-
ray diffraction were obtained by recrystallization from toluene at −26

Figure 4. Plausible mechanism for the conversion of epoxides and
CO2 into cyclic carbonates catalyzed by the system 4/TBAB.
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°C. Yield: (1.62 g, 90%). Anal. Calcd for C20H41N7SiZr: C, 48.15; H,
8.28; N, 19.65. Found: C, 48.19; H, 8.35; N, 19.75. 1H NMR (C6D6,
297 K), δ 5.49 (s, 2H, H4), 3.29 [s, 12H, Zr(NMe2)3], 3.13 [s, 6H,
Zr(NMe2)3], 2.11 (s, 6H, Me3), 2.00 (s, 6H, Me5), 0.26 (s, 9H,
SiMe3).

13C {1H} NMR (C6D6, 297 K), δ 146.2 (C3), 140.9 (C5),
105.6 (C4), 65.1 (Ca), 44.4, 42.9 [Zr(NMe2)3], 12.3 (Me3), 11.3
(Me5), 1.2 (SiMe3).
Synthesis of [Zr(NMe2)3(bpzsiali)] (5). The synthesis of 5 was

carried out in an identical manner to 4, using bpzsialiH (1.0 g, 3.31
mmol) and Zr(NMe2)4 (0.88 g, 3.31 mmol), obtained 5 as a yellow
solid. Yield: (1.58 g, 91%). Anal. Calcd for C22H43N7SiZr: C, 50.34;
H, 8.26; N, 18.68. Found: C, 50.35; H, 8.41; N, 18.61. 1H NMR
(C6D6, 297 K), δ 5.78 (m, 1H, −CH2−CH=CH2), 5.46 (s, 2H, H4),
4.94 (m, 2H, −CH2−CHCH2), 3.27 [s, 12H, Zr(NMe2)3], 3.12 [s,
6H, Zr(NMe2)3], 2.15 (m, 1H, −CH2−CHCH2), 2.09 (s, 6H,
Me3), 1.99 (s, 6H, Me5), 0.31 (s, 6H, SiMe2).

13C {1H} NMR (C6D6,
297 K), δ 146.3 (C3), 140.9 (C5), 136.1 (−CH2−CHCH2), 112.6
(−CH2−CHCH2), 105.7 (C

4), 65.5 (Ca), 44.6, 43.7 [Zr(NMe2)3],
24.9 (−CH2−CHCH2), 12.2 (Me3), 11.9 (Me5), −0.6 (SiMe2).
Synthesis of [Zr(NMe2)3(bpzsinb)] (6). The synthesis of 6 was

carried out in an identical manner to 4, using bpzsinbH (1.0 g, 2.61
mmol) and Zr(NMe2)4 (0.70 g, 2.61 mmol), obtained 6 as a yellow
solid. Yield: (1.43 g, 91%). Anal. Calcd for C28H51N7SiZr: C, 55.58;
H, 8.50; N, 16.20. Found: C, 55.35; H, 8.62; N, 16.11. 1H NMR
(C6D6, 297 K), δ 6.11 (dd,

3JH−H = 10.9 Hz, 3JH−H = 6.2 Hz, 1H, Hd),
5.99 (dd, 3JH−H = 10.9 Hz, 3JH−H = 6.2 Hz, 1H, He), 5.50, 5.49 (s, 2H,
H4,4’), 3.29 [s, 6 H, Zr(NMe2)3], 3.17 [s, 6 H, Zr(NMe2)3], 3.16 [s, 6
H, Zr(NMe2)3], 2.88 (s, 1H, Hf), 2.68 (s, 1H, Hc), 2.13, 2.12 (s, 6H,
Me3,3′), 2.05 (m, 1H, Hb), 2.04 (s, 6H, Me5,5′), 1.50, 0.59 (m, 2H,
Hh), 1.17 (m, 2H, Si−CH2−CH2−), 0.90 (m, 2H, Hg), 0.27, 0.26 (s,
6H, SiMe2), 0.14 (t, 3JH−H = 7.1 Hz, 2H, Si−CH2−CH2−). 13C {1H}
NMR (C6D6, 297 K), δ 146.3 (C3), 141.2 (C5), 136.9 (Cd), 132.6
(Ce), 105.8, 105,6 (C4,4’), 66.3 (Ca), 49.6 (Cf), 45.3 (Cc), 44.8, 44.6,
43.8 [Zr(NMe2)3], 42.8 (C

b), 32.6 (Ch), 29.6 (Si−CH2−CH2−), 13.4
(Cg), 12.2, 12,1 (Me3,3′), 11.4, 11.2 (Me5,5′), −2.7 (Si−CH2−CH2−),
−0.2, −0.4 (SiMe2).
Crystallographic Refinement and Structure Solution. Suit-

able crystals of 4 were grown from toluene. Intensity data were
collected at 230 K on a Bruker X8 APEX II CCD-based
diffractometer, equipped with a graphite monochromatic Mo Kα
radiation source (λ = 0.71073 Å). Data were integrated using
SAINT,30 and an absorption correction was performed with the
program SADABS.31 The structures were solved by direct methods
using the WINGX package32 and refined by full-matrix least-squares
methods based on F2.
Final R(F), wR(F2), and goodness-of-fit agreement factors, details

on the data collection, and analysis can be found in Table S1. CCDC
2002543 contains the supplementary crystallographic data for this
paper.
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28933, Madrid, Spain; orcid.org/0000-0001-6021-0649

Ana M. Rodríguez − Universidad de Castilla-La Mancha,
Departamento de Quiḿica Inorgańica, Orgańica y Bioquiḿica-
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