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The Annonaceous acetogenins are a structurally diverse group 0 OTBDPS
of natural products isolated from the Annonaceae family. Many 0.
members of this family exhibit impressive antitumor activity in
human tumor cell line$.The acetogenins contain a long aliphatic

BnO o]
backbone bearing a terminal butenolide unit and one or more — 4
tetrahydrofuran rings at internal positions of the aliphatic chain. ‘ (o+2] annuiaton | .
The variation of stereochemistry around the THF rings and at the , | ] PhMe,Si” [3+2] annulation -SiMe;Ph
sites bearing additional hydroxyl groups make the acetogenins RO A RO 5
challenging synthetic targets. asimicin (1) 3 5
Numerous elegant and efficient strategies have been reportedrigure 1. Retrosynthetic analysis.
for synthesis of members of the Annonaceous acetogenin farily. i
However, to our knowledge, it is not currently possible to prepare Scheme 1. Synthesis of Aldehyde 11
two (or more) acetogenins with different THF stereochemistry from PhivesSi A~ Bk (1) | e .
common, late-stage intermediates using these previously published M\ Thexanes, THF, 78°C M OMF.50°C 5\/&2
strategies. 6 BF 3Ot HO 5 9%%  TBSO .
The [3+ 2] annulation reaction of allylsilanes and aldehydes in 95%, 92% e.e. 9
the presence of Lewis acids is an important method for the synthesis B"O/\n’ ¢Ho
of substituted tetrahydrofurahsand other five-membered hetero- L 0
cycles® We have demonstrated thAtsilyloxy-substituted allyl- S"fks?;::'z PhMeSi” S°§4’1}’0' bMSo PhMe::SO
silanes undergo [3+ 2] annulation reactions to give either 2,5- 45°C, 93% TBSO 1" 8
transor 2,5<is substituted tetrahydrofurans with excellent selectiv- 10,20:1d.r.

ity depending on the nature of the carbonyl electrophile and the

. . . . . . Scheme 2. Synthesis of Allylsilane 2
Lewis acid that is employed (i.e., use of chelating or nonchelating y Y

OTBDPS 1) TBAF, THF

Lewis acids, respectively)We envisioned that this methodology = ©T™PPS 1) pph,, 1, “ 2) Pd/C, H, oy
could provide the basis for development of a stereochemically t8 OH 5 ppp. chen, 8 ) "3) PIvCL ELN. M
general approach to the Annonaceous acetogenins. 12 S nBuLL I3 THE 14 %o 4) FeClaSi0, Y 15

As a first step toward this goal, we report herein a highly
stereoselective synthesis of asimicit).{ We envisaged that the QTBOPS OTBDPS
bls-tetrahydrofuran core of asimicin could be s_ynthe5|ze_d from two ;; Elzj(z:sor;(')',\ﬂ‘(l;so(:l—l' (\H/é? /;uw) (\Hﬂ/\
sequential chelate-controlled [3- 2] annulation reactions of — 22" e
allylsilanes and appropriately substituted aldehydes (Figure 1). The ~ CHClz 0°C PV 16 B e e orv ° qg
reaction of2 and3, which we expected would be stereochemically oTBDPS
matched under chelate-controlled conditions, is the first case of a 1) TBSCI, imidazole OTBS
broader examination of [3+ 2] annulation reactions of chiral 2)DIBAL, T8C W/K/\
aldehydes and chiral allylsilanes ongoing in our laboratory. %) SOgyh, DMSO

The synthesis of asimicin began by treating commercially OTBDPS
available undecanélwith the E)-y-silylallylborane?, derived from 1) PhMezSi A~ B(lpol, i OA(
(—)-Ipc;BOMe (Scheme 13.This reaction providegs-hydroxy- BFyOE, 78°c (7} TBSO. ore”~°

(S)-glyceraldehyde
acetonide (13)

allylsilane 8 in 95% yield and 92% ee. Protection of the hydroxyl 2>TBSC',;f;i/‘:aZ°'ev DEF, 50 °C
group of8 as a TBS ether was accomplished by treatment with
TBS—CI and imidazole in DMF at 50°C for several day& (prepared by monosilylation of 1,10-decanediol) to the primary
Subjecting the protected allylsilar2to the [3+ 2] annulation iodide in high yield (Scheme 2). Treatment of the iodide with £Ph
reaction witho-benzyloxyacetaldehydd)in the presence of Sngl and subsequent Wittig reaction witB){glyceraldehyde acetonide
—45 °C afforded the 2,%ranstetrahydrofurarilOin 93% yield 1312 afforded14. Deprotection of the TBDPS ether, hydrogenation
and >20:1 diastereoselectivity. Conversion 1@ to aldehydell of the double bond, reprotection of the primary hydroxyl group as
was achieved by reductive removal of the benzyl group in the a pivaloate ester, and cleavage of the acetonide afforded.8iol
presence of Pd(OHRand subsequent oxidation of the alcohol with  Tosylation of the primary hydroxyl group was accomplished using
SG; pyridine and DMSO in ChCl,.11 the method of Martinelli and co-workers (B8nO, TsCI)3
The synthesis of the highly functionalized allylsilaBewhich Treatment of the monotosylate with,&0O; in MeOH provided
contains functionality necessary for installing the butenolide at a epoxidel6, which was subsequently treated with lithium acetylide
later stage of the synthesis, was initiated by conversioridf 17 to give 184 Protection of the resulting secondary hydroxyl,
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Scheme 3. [3+2]-Annulation Reaction of 2 and 3
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Scheme 4. Completion of the Asimicin Total Synthesis
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reductive cleavage of the pivaloate group (DIBAL78 °C), and
Parikh—Doering oxidation of the primary alcohol then provided
aldehydel9. Finally, treatment ofLl9 with the chiraly-silylallyl-
borane reagent at —78 °C afforded the expected-hydroxy-
allylsilane. Protection of the resulting hydroxyl group as a TBS
ether was accomplished in acceptable yields by treatment with
excess TBSCI and imidazole in diethyl formamide (DEF) at ca. 50
°C for 5-6 days!®

Treatment of allylsilan® with 2 equiv of aldehyd& mediated
by SnC}, (1 equiv) afforded the bis-tetrahydrofur@@ as a single
diastereomer in 80% yield (Scheme 3). The high selectivity of this
reaction is attributed to the matched facial selectivity of the chiral
allylsilane and the Sn@ichelated chiral aldehyde in the favored
synsynclinal transition state21.7.1> Significant amounts of an
allylation byproduct were obtained when the {32] annulation
reaction was performed at temperatures belo¥CQsee Sl), and
drastically reduced yields 020 were obtained if the starting
concentration oR was less than 0.2 M.

Removal of the two € SiPhMe substituents fron20 proved
to be challenging. Initial attempts at protiodesilylation 28 by
treatment with TBAF, K@u, and 18-crown-6 in wet DMSO (a
modification of Hudrlik’s conditions, with TBAF added to deprotect
the promixal TBS ether$}® provided modest yields of tetra@b.
However, this procedure proved to be nonreproducible, could not
be scaled up, and frequently gave very low yields 23
Alternatively, treatment 020 with TBAF in a 1:1 mixture of THF
and DMF gave clean, reproducible cleavage of tfe&pSi bonds
and deprotection of the four TBS ethérdn this way, tetraol?2
was obtained in 5560% yield from20 (Scheme 4). Finally, the
butenolide ring was installed using a procedure developed by
Marshall and co-worker® Thus, per-trifluoroacetylation 022
followed by Pd(0)-catalyzed hydroxycarbonylation, Ag(l)-promoted
cyclization of the resulting allenyl carboxylic acid, and then

deprotection of the three trifluoroacetate esters by treatment with
KCN in MeOH provided synthetici)-asimicin. The spectroscopic
properties of synthetic asimicin were in excellent agreement with
literature data (see Supporting Information).

In summary, we have developed a convergent strategy for
synthesis of asimicin that features two highly stereoselective chelate-
controlled [3+ 2] annulation reactions that set all of the stereo-
chemistry of the bis-tetrahydrofuran unit. Efforts to extend this
strategy to other members of the acetogenin family are in progress
and will be reported in due course.
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