Tadakatsu Mandai,* Tetsuta Oshitari¹

Department of Life Science, Kurashiki University of Science & the Arts, 2640, Nishinoura, Tsurajima, Kurashiki 712-8505, Japan Fax +81(86)4401062; E-mail: ted@chem.kusa.ac.jp

Received 11 December 2008

This paper is dedicated to Professor Jiro Tsuji.

Abstract: A highly practical asymmetric synthesis of oseltamivir has been accomplished in 18 steps from D-mannitol without any chromatographic purification, which features intramolecular aldol condensation of dialdehyde with a 3-pentyl ether moiety in constructing densely functionalized cyclohexene ring of oseltamivir.

Key words: anti-influenza drugs, Tamiflu, chiral pool, dihydroxylations, intramolecular aldol condensation

The growing epidemics of the avian flu virus H5N1 in Southeast Asia often evoke the pandemic life-threatening influenza caused by the mutated forms thereof. Oseltamivir phosphate $(1 \cdot H_3PO_4, Tamiflu^{TM})$,² the potent antiinfluenza neuraminidase inhibitor developed by Gilead Sciences, has been utilized clinically to avert a widespread influenza. However, the current commercial production of **1** depends upon a semisynthesis, starting from less available shikimic acid.³ To circumvent such a supply problem, it would be crucial to develop new routes to **1** relying upon widely available commodity chemicals. Several research groups have contributed to develop the efficient synthetic methods for **1** starting from easily available chemicals^{4,5} through their own original protocols, which prompted us to develop a new access to **1**.

As shown by our retrosynthetic analysis (Scheme 1), we envisioned to construct the densely functionalized cyclohexene framework **A** by an intramolecular aldol condensation of dialdehyde **B** with a 3-pentyl ether moiety, an unprecedented intermediate among the hitherto reported syntheses of $1.^4$

Compound **B** could be obtained by the oxidation of diol **C** with differently protected vicinal amino groups. Toward the efficient preparation for **C**, we envisaged to deliver two amino groups on alkenediol **D** through highly diastereoselective dihydroxylation and ensuing diazide formation. We envisioned that 3-pentyl ether moiety in **D** could be installed by a cyclic acetal cleavage of ester **E** which could be derived from the well-known aldehyde **F**.

First, we embarked on the preparation of diol **8b** (Scheme 2). Aldehyde $2,^6$ easily prepared from D-mannitol, was transformed into allylic alcohol 3^7 in 88% yield by treatment with vinylmagnesium bromide. Upon treatment with triethyl orthoacetate in the presence of a cata-

SYNLETT 2009, No. 5, pp 0783–0786 Advanced online publication: 26.02.2009 DOI: 10.1055/s-0028-1087941; Art ID: U12408ST © Georg Thieme Verlag Stuttgart · New York lytic amount of propionic acid (132 °C, 14 h), **3** underwent facile orthoester Claisen rearrangement⁸ smoothly to give ester 4^9 in 95% yield after distillation. Gratifyingly, subsequent tandem acetal cleavage¹⁰ and ester reduction of **4** were effected successfully with DIBAL-H (5 mol equiv) to afford diol **5a** and its regioisomer **5b** as a 10:1 inseparable mixture in favor of **5a**.

Scheme 1 Retrosynthetic analysis of 1

It is particularly worth noting that the 3-pentyl ether moiety could be installed by this reduction in a highly regioselective manner without use of a strong Lewis acid.^{2c} Protection of the crude diols **5a** and **5b** with 3,4-dihydro-2*H*-pyran (DHP) provided di-THP ether **5c**,¹¹ which, without further purification, was followed by asymmetric dihydroxylation¹² with AD-mix- β to furnish diol **6a** as a sole product.¹³ The crude diol **6a** was converted into dimesylate **6b** (MsCl, pyridine) and subsequent azide formation (NaN₃, DMSO) delivered diazide **7a**, which produced diamine **7b** through hydride reduction¹⁴ (LiAlH₄, THF). To our delight, highly regioselective protection of the vicinal amino groups of **7b** was realized with much

Scheme 2 Reagents and conditions: (a) ref. 6, 61%; (b) vinyImagnesium bromide (1.2 equiv), THF, 0 °C, 1 h, 88%; (c) MeC(OEt)₃ (5.0 equiv), 2% EtCO₂H, 132 °C, 14 h, 95%; (d) DIBAL-H (5.0 equiv), toluene, 0 °C, 2 h, r.t., 3 h; (e) DHP (1.2 equiv), PPTS (2 mol%), CH₂Cl₂, r.t., 24 h; (f) MsNH₂ (1.0 equiv), AD-mix- β (1.4 g/mmol), *t*-BuOH-H₂O, 0 °C, 8 h, r.t., 13 h; (g) MsCl (1.2 equiv), pyridine, 0 °C, 2 h, r.t., 8 h; (h) NaN₃ (4 mol equiv), DMSO, 80 °C, 48 h; (i) LiAlH₄ (1.1 equiv), THF, r.t., overnight; (j) Et₃N, DMAP, PhthNCO₂Et (0.9 equiv each), rHF, 0 °C, 1.5 h, then Ac₂O-pyridine (2.0 equiv each), r.t., 14 h; (k) MeOH, CSA (10 mol%), r.t., 1 h, then recrystallization from toluene, 32% from **4**.

success by the following one-pot procedure. That is, a solution of crude **7b** in THF was reacted with *N*-ethoxy-carbonylphthalimide (PhthNCO₂Et)¹⁵ in the presence of Et_3N and DMAP.

After the monoprotection of the less hindered amino group had been completed (monitored by TLC), the reaction mixture was treated with Ac_2O -pyridine to provide differently protected diamine **8a**. After usual workup, deprotection of THP groups (MeOH, cat. CSA) furnished a crude diol **8b** as a viscous oil. Fortunately, the pure diol **8b**¹⁶ precipitated from toluene (32% overall yield from **4**).

The latter stage of the synthesis is shown in Scheme 3. Oxidation of diol **8b** delivered dialdehyde **9**¹⁷ quantitatively with a combination of TEMPO, KBr, and NaOCl.¹⁸ It should be noted that **9** was found to be free of a possible eight-membered lactone and byproducts caused by epimerization or elimination. Next, an intramolecular

aldol condensation of 9 was successfully accomplished by heating with Bn₂NH·TFA¹⁹ in toluene to provide cyclohexenal 10^{20} as a white solid. Delightedly, the present reaction also proceeded cleanly without formation of any byproducts arising from elimination or aromatization. Then, NaClO₂-mediated oxidation^{4c,21} of **10** provided carboxylic acid 11^{22} in 86% yield. The transformation of 11 into 1 through esterification followed by deprotection required little ingenuity for a noncolumn chromatographic process. For the solution, 11 was reduced with $NaBH_4$ in wet *i*-PrOH²³ to amide $12a^{24}$ in 93% yield, which was esterified with a combination of EtI and K₂CO₃ as a base in DMSO, affording ethyl ester $12b^{25}$ in 85% yield. Finally, 12b was treated with HCl-EtOH at room temperature for 24 hours followed by back extraction with 5% aqueous Na_2CO_3 , giving oseltamivir (1)²⁶ in 83% yield.

Scheme 3 Reagents and conditions: (a) TEMPO (10 mol%), KBr (20 mol%), aq NaOCl, NaHCO₃ (2.4 mol equiv each), $CH_2Cl_2-H_2O$ (2:1), 5 °C, 15 min; (b) Bn_2NH ·TFA (1.1 equiv), toluene, 50 °C, 11 h, 82% for 2 steps; (c) NaClO₂–NaH₂PO₄ (3.0 equiv each), 2-methylbut 2-ene (10 equiv), *t*-BuOH–THF–H₂O (4:1:1), 0 °C, 1 h, r.t., overnight, 86%; (d) NaBH₄ (5.0 mol equiv), *i*-PrOH–H₂O (6:1), r.t., overnight, 93%; (e) K₂CO₃ (1.1 equiv), EtOH–H₂O (5:1), r.t., 40 h, 85%; (f) 4 M HCl in 1,4-dioxane (5.0 equiv), EtOH, r.t., 24 h, then back extraction with 5% aq Na₂CO₃, 83%.

In summary, we have succeeded in developing a new method for the synthesis of oseltamivir (1) from D-mannitol in 18 steps, which involves intramolecular aldol condensation of dialdehyde as the key reaction to construct cyclohexene ring. Furthermore, it would be of high synthetic value for the reason that no column chromatographic purification is required throughout the whole process. We believe this synthetic protocol would contribute to solve supply problem of 1.

Acknowledgment

This work was supported financially in part by the Institute of Nippon Chemiphar Co., Ltd.

References and Notes

- Present address: School of Pharmaceutical Sciences, Teikyo University, 1091-1 Suarashi, Sagamiko, Sagamihara, 229-0195, Japan.
- (2) (a) Kim, C. U.; Lew, W.; Williams, M. A.; Liu, H.; Zhang, L.; Swaminathan, S.; Bischofberger, N.; Chen, M. S.; Mendel, D. B.; Tai, C. Y.; Laver, W. G.; Stevens, R. C. J. Am. Chem. Soc. 1997, 119, 681. (b) Rohloff, J. C.; Kent, K. M.; Postich, M. J.; Becker, M. W.; Chapman, H. H.; Kelly, D. E.; Lew, W.; Louie, M. S.; McGee, L. R.; Prisbe, E. J.; Schultze, L. M.; Yu, R. H.; Zhang, L. J. Org. Chem. 1998, 63, 4545. (c) Federspiel, M.; Fischer, R.; Henning, M.; Mair, H.-J.; Oberhauser, T.; Rimmler, G.; Albiez, T.; Bruhin, J.; Estermann, H.; Gandert, C.; Göckel, V.; Götzö, S.; Hoffmann, U.; Huber, G.; Janatsch, G.; Lauper, S.; Röckel-Stäbler, O.; Trusssardi, R.; Zwahlen, A. G. Org. Process Res. Dev. 1999, 3, 266. (d) Karpf, M.; Trussardi, R. J. Org. Chem. 2001, 66, 2044. (e) Harrington, P. J.; Brown, J. D.; Foderaro, T.; Hughes, R. C. Org. Process Res. Dev. 2004, 8, 86.
- (3) Farina, V.; Brown, J. D. Angew. Chem. Int. Ed. 2006, 45, 7330.
- (4) (a) Yeung, Y.-Y.; Hong, S.; Corey, E. J. J. Am. Chem. Soc. 2006, 128, 6310. (b) Fukuta, Y.; Mita, T.; Fukuda, N.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 6312. (c) Cong, X.; Yao, Z. J. J. Org. Chem. 2006, 71, 5365. (d) Mita, T.; Fukuda, N.; Roca, F. X.; Kanai, M.; Shibasaki, M. Org. Lett. 2007, 9, 259. (e) Yamatsugu, K.; Kamijo, S.; Suto, Y.; Kanai, M.; Shibasaki, M. Tetrahedron Lett. 2007, 48, 1403. (f) Bromfield, K. M.; Graden, H.; Hagberg, D. P.; Olsson, T.; Kann, N. Chem. Commun. 2007, 3183. (g) Satoh, N.; Akiba, T.; Yokoshima, S.; Fukuyama, T. Angew. Chem. Int. Ed. 2007, 46, 5734. (h) Shie, J.-J.; Fang, J.-M.; Wang, S.-Y.; Tsai, K.-C.; Cheng, Y.-S. E.; Yang, A.-S.; Hsiao, S.-C.; Su, C.-Y.; Wong, C.-H. J. Am. Chem. Soc. 2007, 129, 11892. (i) Trost, B. M.; Zhang, T. Angew. Chem. Int. Ed. 2008, 47, 1. (j) Zutter, U.; Iding, H.; Spurr, P.; Wirz, B. J. Org. Chem. 2008, 73, 4895. (k) Shie, J.-J.; Fang, J.-M.; Wong, C.-H. Angew. Chem. Int. Ed. 2008, 47, 5788. (l) Satoh, N.; Akiba, T.; Yokoshima, S.; Fukuyama, T. Tetrahedron 2009, in press. (m) Yamatsugu, K.; Yin, L.; Kamijo, S.; Kimura, Y.; Kanai, M.; Shibasaki, M. Angew. Chem. Int. Ed. 2009, 48, 1070. (n) Ishikawa, H.; Suzuki, T.; Hayashi, Y. Angew. Chem. Int. Ed. 2009, 48, 1304
- (5) for a recent review on the synthesis of oseltamivir (1), see: Shibasaki, M.; Kanai, M. *Eur. J. Org. Chem.* **2008**, 1839; see also ref. 3.
- (6) Schmid, C. R.; Bradley, D. A. Synthesis 1992, 587.
- (7) The optical purity of **3** was determined as follows. The HPLC analysis [Chiralcel OD; $\lambda = 254$ nm; eluent: hexane–EtOH (9:1); flow rate: 1.3 mL/min] of 3,5-dinitrobenzoate of **3** showed the two peaks based on their two diastereomers at $t_{\rm R} = 11.4$ min and 22.3 min, respectively. On the other hand, those of racemic **3**, prepared from glycerol via acetalization, Swern oxidation, and Grignard reaction, showed four peaks at $t_{\rm R} = 11.4$ min, 14.5 min, 18.7 min, and 22.2 min, respectively. This observation surely indicates that **2** and **3** are formed without racemization throughout the sequential reactions.
- (8) Johnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brocksom, T. J.; Li, T.-T.; Faulkner, D. J.; Petersen, M. R. J. Am. Chem. Soc. 1970, 92, 741.
- (9) Compound 4: colorless oil; $[\alpha]_D^{21.6} + 24.0 (c \ 1.23, CHCl_3)$; bp 110–112 °C/6.66·10⁻⁴ bar. ¹H NMR (500 MHz, CDCl₃): $\delta =$ 5.80 (dt, *J* = 15.3, 6.4 Hz, 1 H), 5.48 (dd, *J* = 15.3, 7.9 Hz, 1 H), 4.45 (ddd, *J* = 8.25, 7.95, 6.1 Hz, 1 H), 4.13 (q, *J* = 7.0 Hz, 2 H), 4.10 (dd, *J* = 7.95, 6.1 Hz, 1 H), 3.51 (dd, *J* = 8.25,

7.95 Hz, 1 H), 2.43–2.36 (m, 4 H), 1.68–1.60 (m, 4 H), 1.25 (t, J = 7.0 Hz, 3 H), 0.95–0.88 (m, 6 H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 172.7$, 133.3, 128.5, 113.0, 77.3, 69.9, 60.3, 33.5, 29.9, 29.8, 27.4, 14.2, 8.1, 8.0. HRMS (EI⁺): m/z calcd for C₁₄H₂₄O₄: 256.1675; found: 256.1655.

- (10) A solution of ester 4 in toluene was added dropwise to a solution of DIBAL-H in toluene. As the relevant papers, see: (a) Takano, S.; Akiyama, M.; Sato, S.; Ogasawara, K. *Chem. Lett.* 1983, 1593. (b) Mori, A.; Fujiwara, J.; Maruoka, K.; Yamamoto, H. *Tetrahedron Lett.* 1983, 24, 4581.
- (11) First we prepared a corresponding dibenzyl ether of 5a, which proved to be cleaved in a later azide-formation step affording a complex mixture.
- (12) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K.-S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu, D.; Zhang, X.-L. *J. Org. Chem.* **1992**, *57*, 2768.
- (13) The attempted dihydroxylations with OsO_4/NMO and with AD-mix- α provided a 1:1 to 1:2 mixture of diastereomers with respect to the 3-pentyloxy group.
- (14) Hydrogenolysis (10% Pd/C, EtOAc, r.t., 48 h) of 7a also provided 7b with poor reproducibility probably owing to poisoning by the accumulated contaminations.
- (15) Worster, P. M.; Leznoff, C. C.; McArthur, C. R. J. Org. Chem. 1980, 45, 174.
- (16) Compound **8b**: $[\alpha]_D^{21.5} 19.2$ (*c* 1.07, CHCl₃); mp 142.1– 143.5 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.85–7.70 (m, 4 H), 6.77 (d, *J* = 9.8 Hz, 1 H), 4.77–4.72 (m, 1 H), 4.60–4.54 (m, 1 H), 3.80–3.60 (m, 5 H), 3.25–3.14 (m, 2 H), 2.28–2.18 (m, 1 H), 1.98 (s, 3 H), 1.95–1.86 (m, 1 H), 1.75 (br s, 1 H), 1.55–1.30 (m, 5 H), 1.11–0.98 (m, 2 H), 0.78–0.72 (m, 6 H). ¹³C NMR (125 MHz, CDCl₃): δ = 171.7, 169.2, 134.2, 131.6, 123.3, 79.2, 75.3, 61.8, 60.4, 52.5, 51.1, 29.2, 26.1, 25.5, 25.3, 22.9, 9.39, 9.37. Anal. Calcd for C₂₂H₃₂N₂O₆: C, 62.84, H, 7.67, N, 6.66. Found: C, 62.70, H, 7.85, N, 6.65.
- (17) Dialdehyde 9 was pure enough to be used for the next step. However, it was labile to purification on silica gel column chromatography for combustion analysis, affording a complex mixture involving cyclized products.
- (18) (a) Anelli, P. L.; Biffi, C.; Montanari, F.; Quici, S. J. Org. Chem. 1987, 52, 2559. (b) Anelli, P. L.; Montanari, F.; Quici, S. Org. Synth. 1990, 69, 212. (c) Leanna, M. R.; Sowin, T. J.; Morton, H. E. Tetrahedron Lett. 1992, 33, 5029.
- (19) (a) Corey, E. J.; Danheiser, R. L.; Chandrasekaran, S.; Siret,
 P.; Keck, G. E.; Gras, J.-L. J. Am. Chem. Soc. 1978, 100,
 8031. (b) Snyder, S. A.; Corey, E. J. Tetrahedron Lett. 2006,
 47, 2083.
- (20) Compound 10: obtained as an off-white solid by washing with hot toluene; $[\alpha]_D^{22.5}$ -46.5 (*c* 1.10, CHCl₃); mp 202.3-202.7 °C. ¹H NMR (500 MHz, CDCl₃, data of a mixture of rotamers): $\delta = 9.55$ (s, 0.13 H), 9.53 (s, 0.87 H), 7.86–7.72 (m, 4 H), 6.70 (s, 0.13 H), 6.67 (s, 0.87 H), 5.53 (d, J = 7.6Hz, 0.87 H), 5.26 (d, J = 7.6 Hz, 0.13 H), 4.95–4.90 (m, 0.87 H), 4.75–4.71 (m, 0.87 H), 4.45–4.38 (m, 1.13 H), 4.20–4.18 (m, 0.13 H), 3.46-3.37 (m, 1 H), 3.05-2.98 (m, 1 H), 2.75-2.65 (m, 1 H), 2.05 (s, 0.4 H), 1.78 (s, 2.6 H), 1.60-1.50 (m, 4 H), 1.00–0.85 (m, 6 H). ¹³C NMR (125 Hz, CDCl₃, data of a mixture of rotamers): $\delta = 192.3, 170.3, 168.1, 147.6, 138.8,$ 134.2, 131.6, 128.5, 123.5, 82.5, 74.6, 54.3, 47.8, 26.3, 25.7, 25.5, 23.3, 9.7, 9.4. Anal. Calcd for C₂₂H₂₆N₂O₅: C, 66.32; H, 6.58; N, 7.03. Found: C, 66.15; H, 6.72; N, 7.05. HRMS (FAB⁺): *m/z* calcd for C₂₂H₂₇N₂O₅ [MH⁺]: 399.1920; found: 399.1925
- (21) Gonzalez-Bello, C.; Coggins, J. R.; Hawkins, A. R.; Abell, C. J. Chem. Soc., Perkin Trans. 1 1999, 849.

Synlett 2009, No. 5, 783-786 © Thieme Stuttgart · New York

LETTER

(22) Evaporation of the volatiles and addition of a large excess of H_2O to the residue provided an off-white solid, which was collected by filtration and washed successively with H_2O and MeOt-Bu.

Compound **11**: obtained as a white solid (mp >280 °C) with poor solubility in organic solvents such as MeOH or CHCl₃: $[\alpha]_D^{25}$ –58.4 (*c* 0.54, DMSO). ¹H NMR (500 MHz, DMSO*d*₆): δ = 12.6 (br s, 1 H), 7.92–7.80 (m, 4 H), 6.69 (s, 1 H), 4.38–4.20 (m, 3 H), 3.42–3.10 (m, 2 H), 2.63–2.50 (m, 1 H), 1.50–1.32 (m, 4 H), 0.86 (t, *J* = 7.3 Hz, 3 H), 0.75 (t, *J* = 7.3 Hz, 3 H). ¹³C NMR (125 Hz, DMSO-*d*₆): δ = 169.1, 167.6, 167.0, 137.5, 134.3, 129.0, 123.0, 81.0, 74.7, 51.5, 48.9, 26.6, 25.8, 25.1, 22.4, 9.5, 8.9. Anal. Calcd for C₂₂H₂₆N₂O₆: C, 63.76; H, 6.32; N, 6.76. Found: C, 63.76; H, 6.45; N, 6.71.

- (23) Osby, J. O.; Martin, M. G.; Ganem, B. *Tetrahedron Lett.* 1984, 25, 2093.
- (24) Crude **12a** deposited efficiently on dilution of the reaction mixture with a large excess of diluted HCl. Filtration and washing with water provided pure **12a** as a white solid: $[\alpha]_D^{22.8}$ –79.2 (*c* 1.07, CHCl₃–MeOH = 4:1); mp 180.4–180.8 °C. ¹H NMR (500 MHz, CD₃OD): δ = 7.43–7.23 (m, 4 H), 6.73 (br s, 1 H), 4.75–4.50 (m, 2 H), 4.25–3.80 (m, 3 H), 3.37–3.33 (m, 1 H), 2.73–2.65 (m, 1 H), 2.33–2.27 (m, 1 H), 1.50–1.35 (m, 4 H), 0.86–0.77 (m, 6 H). ¹³C NMR (125 Hz, CD₃OD): δ = 173.9, 172.0, 169.4, 140.9, 139.1, 136.3, 131.7, 130.7, 129.8, 128.7, 128.6, 83.8, 77.3, 63.5, 55.9, 31.5, 27.3, 26.8, 23.0, 9.9, 9.6. Anal. Calcd for C₂₂H₃₀N₂O₆: C, 63.14; H, 7.23; N, 6.69. Found: C, 62.89; H, 7.37; N, 6.73.
- (25) Dilution of the reaction mixture with a large excess of water deposited a white solid, which was washed successively with

H₂O and MeO*t*-Bu to give unmingled **12b** as a white solid: [α]_D^{23.0} –48.0 (*c* 1.11, CHCl₃); mp 209.3–210 °C. ¹H NMR (500 MHz, CDCl₃): δ = 7.43–7.23 (m, 4 H), 6.73 (br s, 1 H), 4.75–4.50 (m, 2 H), 4.25–3.80 (m, 3 H), 3.37–3.33 (m, 1 H), 2.73–2.65 (m, 1 H), 2.33–2.27 (m, 1 H), 1.50–1.35 (m, 4 H), 0.86–0.77 (m, 6 H). ¹³C NMR (125 Hz, CDCl₃): δ = 171.5, 169.9, 165.9, 139.8, 137.8, 135.1, 131.2, 130.7, 129.1, 128.1, 127.9, 82.2, 75.7, 64.4, 60.9, 54.3, 48.7, 30.5, 26.2, 25.6, 22.8, 14.1, 9.6, 9.2. Anal. Calcd for C₂₄H₃₄N₂O₆: C, 64.55; H, 7.67; N, 6.27. Found: C, 64.25; H, 8.03; N, 6.21.

(26) Oseltamivir (1), obtained as a white semi-solid: $[\alpha]_D^{25.0}$ – 55.8 (c 2.05, CHCl₃). ¹H NMR (500 MHz, CDCl₃): $\delta = 6.79$ (br s, 1 H), 5.48 (d, J = 7.6 Hz, 1 H), 4.25–4.18 (m, 3 H), 3.55-3.48 (m, 1 H), 3.38-3.32 (m, 1 H), 3.27-3.20 (m, 1 H), 2.75 (dd, J = 17.9, 5.2 Hz, 1 H), 2.19–2.11 (m, 1 H), 2.04 (s, 3 H), 1.60–1.47 (m, 6 H), 1.29 (t, J = 7.1 Hz, 3 H), 0.95–0.88 (m, 6 H). ¹³C NMR (125 Hz, CDCl₃): δ = 170.9, 166.3, 137.5, 129.5, 81.6, 74.8, 60.8, 58.9, 49.2, 33.6, 26.2, 25.7, 23.6, 14.2, 9.5, 9.3. ¹H NMR and ¹³C NMR spectra and optical rotation value were in full accordance with those of the authentic sample obtained through a basic extraction (sat. aq NaHCO₃-5% aq Na₂CO₃-CHCl₃) from commercial Tamiflu: $[\alpha]_D^{23.0}$ – 56.1 (*c* 1.24, CHCl₃). ¹H NMR (500 MHz, $CDCl_3$): $\delta = 6.79$ (br s, 1 H), 5.79 (d, J = 7.95 Hz, 1 H), 4.26-4.17 (m, 3 H), 3.57-3.49 (m, 1 H), 3.38-3.32 (m, 1 H), 3.26-3.18 (m, 1 H), 2.75 (dd, J = 17.9, 4.9 Hz, 1 H), 2.18-2.10 (m, 11 H), 2.04 (s, 3 H), 1.66-1.60 (m, 2 H), 1.56-1.47 (m, 4 H), 1.29 (t, J = 7.0 Hz, 3 H), 0.95–0.87 (m, 6 H). ¹³C NMR (125 Hz, $CDCl_3$): $\delta = 170.9, 166.3, 137.5, 129.5, 81.6, 74.8, 60.8,$ 59.0, 49.2, 33.6, 26.2, 25.7, 23.6, 14.2, 9.5, 9.3.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.