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ABSTRACT: BBr3–chiral phosphoric acid complexes 
were highly effective and practical Lewis acid-assisted 
Brønsted acid (LBA) catalysts for promoting the enanti-
oselective Diels–Alder (DA) reaction of α-substituted 
acroleins and α-CF3 acrylate.  In particular, the DA reac-
tion of α-substituted acroleins with 1,2-dihydropyridines 
gave the corresponding optically active isoquinuclidines 
with high enantioselectivities.  Moreover, transfor-
mations to the key intermediates of indole alkaloids, 
catharanthine and allocatharanthine, are demonstrated. 

Chiral phosphoric acids are highly useful acid–base co-
operative organocatalysts for a variety of asymmetric 
catalyses.1  However, their Brønsted acidity is generally 
not strong enough to activate less-basic aldehydes rather 
than more-basic aldimines.  To overcome this serious 
issue, stronger Brønsted acid catalysts, such as chiral 
BINOL (1,1’-bi-2-naphthol)-derived N-sulfonyl phos-
phoramides,2a N-phosphinyl phosphoramides,2b and di-
sulfonimides2c have been developed.  In sharp contrast, 
we envisioned that the addition of an achiral Lewis acid 
to the chiral phosphoric acid would be highly promising 
since the conjugate acid–base moiety of the phosphoric 
acid is suitable for the Lewis acid-assisted Brønsted acid 
(LBA)3 catalyst system (Scheme 1).  As a great advanta-
ge of this LBA system, we can simply use highly practi-
cal chiral phosphoric acids without serious synthetic 
difficulties.  In particular, we developed here a BBr3- 

Scheme 1. Achiral Lewis acid-assisted chiral phosphoric 
acid catalysts as chiral acid–base cooperative catalysts.  

 

assisted chiral phosphoric acid in situ, which was highly 
effective for the enantioselective Diels–Alder reaction of 
α-substituted acroleins with 1,2-dihydropyridines to 
afford the synthetically useful optically active isoquinu-
clidine scaffold.   

  We initially examined the reaction of methacrolein 3a 
with cyclopentadiene 2a through the use of chiral phos-
phoric acid (R)-1a (5 mol%) and an achiral Lewis acid 
(2.5–10 mol%) in dichloromethane at –78 °C for 3 h 
(Table 1).  The reaction was slow with the use of (R)-1a 
alone at –78 °C or room temperature to afford 4a with 
poor enantioselectivity (entries 1 and 2).  Through pre-
liminary investigations, we found that boron compounds 
were highly effective as achiral Lewis acids for (R)-1a 

Table 1.  Optimization of the Reaction Conditionsa 

 
entry	
 Lewis acid (mol%) yield (%) endo:exo ee (%) of exo-4a	
 

1 – 0 – – 
2b – 51 13:87 –7 
3     B(C6F5)3 (5) 64 10:90 5 
4c     BF3·Et2O (5) 87 3:97 52 
5     BCl3 (5) 88 4:96 62 
6     BBr3 (2.5) 92 3:97 61 
7     BBr3 (5) 99 2:98 89 
8     BBr3 (7.5) 78 2:98 85 
9     BBr3 (10) 64 8:92 18 

10     BI3 (5) 98 7:93 37 
11d     BBr3 (5) 66 10:90 – 

a The reaction was carried out with (R)-1a (5 mol%), Lewis acid (2.5–
10 mol%), 2a (5 equiv), and 3a (1 equiv) in dichloromethane at –
78 °C for 3 h.  b The reaction was conducted at room temperature for 
3 h.   c Et2O was removed in vacuo during catalyst preparation.  d The 
reaction was conducted without (R)-1a. 

O

O
P
O

O

Ar

Ar Activated
Brønsted acid

H3δ+

MLewis acid

!

O

O
P
O

O

Ar

Ar

Lewis base

Brønsted acid

H!

!

+

!

Xδ–
Xδ–

Xδ–

MX3

CHO
+ Lewis acid (2.5–10 mol%)

CH2Cl2, –78 ºC, 3 h

CHO
+

CHO
endo-4a exo-4a

(R)-1a (5 mol%)

2a 3a

O

O
P

O

OH

4-Ph-C6H4

4-Ph-C6H4

Page 1 of 5

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 (entries 3–10).  In particular, BBr3 (entry 7) showed 
higher enantioselectivity than other similar compounds, 
such as B(C6F5)3, BF3·Et2O, BCl3, and BI3.  The amount 
of BBr3 was important, and the use of more or less than 
5 mol% of BBr3 for 5 mol% of (R)-1a decreased the 
yield and/or enantioselectivity (entries 6–9).  The reac-
tion proceeded moderately with the use of 5 mol% of 
BBr3 in the absence of (R)-1a (entry 11).  Therefore, this 
result strongly suggests that the LBA catalyst BBr3–(R)-
1a in situ might show higher catalytic activity than ei-
ther starting component, (R)-1a and BBr3. 

  With the optimized reaction conditions in hand, we 
next examined the scope of α-substituted acroleins 3a–c 
with 2a and cyclohexadiene 2b (Scheme 2).  As a result, 
exo-adduct 4b was obtained with 86% ee as a major 
product with the use of 2a, while endo-adducts 4c–e 
were obtained with 87–94% ee as major products with 
the use of 2b, according to the usual substrate-dependent 
endo/exo-controls.4  Interestingly, the reactivity of the 
substrates strongly influences the optimized molar ratio 
of BBr3 to (R)-1a, and a slightly excess amount of BBr3 
to (R)-1a was effective for more reactive α-
haloacroleins 3b and 3c in place of less reactive 3a to 
achieve high enantioselectivities for 4b, 4d, and 4e.5 

Scheme 2. Reactions of α-Substituted Acroleins. 

 
Products 4, reaction time, yield, and enantioselectivity. 

	
 
a 15 mol% of BBr3 was used.  b 10 mol% of BBr3 was used. 

  In place of 2, less reactive acyclic diene 5 was exam-
ined (eq 1).  Although BBr3–(R)-1a showed low catalyt-
ic activity (16% ee) even under the optimized conditions 
in this case, BBr3–N-sulfonyl phosphoramide (R)-1b 
was much more effective than BBr3–(R)-1a, and endo-6 
was obtained with 89% ee.  Moreover, 7 with an elec-
tron-withdrawing CF3 group was examined in place of 
acroleins (eq 2).  BBr3–(R)-1b gave better results than 
BBr3–(R)-1a,6 and the corresponding endo-8 was ob-
tained as a major product with 93% ee.  Although only 
the specialized acrylate 7 was shown at this stage, the 
enantioselective Diels–Alder reactions of α-substituted 
acrylates with chiral Brønsted acid catalysts might be 
valuable since α-substituted acrylates have not yet been 
used with any conventional chiral Lewis acid catalysts.4,7  

 

 

  We next performed the reaction with 1,2-
dihydropyridine 9a, which can provide synthetically 
useful optically active isoquinuclidines.8  The reactions 
of 9a and acrolein 3e proceeded smoothly with the use 
of BBr3–(R)-1a catalyst, and the key compound 10d for 
the important anti-influenza drug oseltamivir phosphate 
(tamiflu®)9 was obtained in 96% yield with 94% ee 
(Scheme 3).  Rawal previously reported the Lewis acidic 
chiral salen Cr(III)-catalyzed reaction of 9a with 3a, as a 
sole example using α-substituted acrolein, and 10a was 
obtained with 67% ee.8a  Moreover, the MacMillan cata-
lyst 11, which was reported to be an excellent chiral 
secondary amine catalyst for the reaction of 3e by Fuku-
yama,10 could not be used for the reaction of 3a, proba-
bly due to the steric constraints in the iminium interme-
diate 12 (eq 3).  Fortunately, in our Brønsted acid cataly-
sis, not only 3e but also α-substituted acroleins 3a, 3b, 
and 3d could be used successfully, and the corre-
sponding products 10a, 10b, and 10c were obtained with 
92–98% ee, respectively (Scheme 3).  Moreover, the 

Scheme 3. Reactions of 1,2-Dihydropyridines. 

 
Products 10, reaction time, yield, and enantioselectivity. 

	
 
a 10 mol% of BBr3 was used.  b 15 mol% of BBr3 was used. 
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novel compound 10b was readily transformed to the γ-
lactone 13 in 87% yield, and its stereochemistry was 
determined by X-ray analysis (eq 4). 

  To demonstrate the synthetic utility of our catalytic 
system, we performed a formal total synthesis of (+)-
catharanthine, which is an important indole alkaloid that 
forms vinblastine, which has high antitumor activities 
(Scheme 4).11  After Diels–Alder product 10b was re-
duced to the alcohol with NaBH4, epoxidation under 
basic conditions gave 14.  Treatment of 14 with aqueous 
ammonia and subsequent oxidation with sodium perio-
date gave the ketone 15.  Acetalization of 15 with 
(Me3SiOCH2)2/Me3SiOTf and subsequent transesterifi-
cation provided the desired key compound 1612 without 
a loss of optical purity.  These easy high-yield transfor-
mations in six steps from 10b to 16 might be attractive 
as a concise synthesis of (+)-catharanthine. 

Scheme 4. Formal Total Synthesis of (+)-Catharanthine. 

 
  Moreover, we performed a transformation to the key 
intermediate of (+)-allocatharanthine, which is another 
component of vinblastine (Scheme 5).13  Actually, the 
enantioselective Diels–Alder reactions of alkyl-
substituted 1,2-dihydropyridines are still limited with the 
use of 3e.8f  As a great advantage of our catalytic system, 
the Diels–Alder reaction of 9b with 3b gave the desired 
10e as a major product with the use of BBr3–(S)-1a.  
Aldehyde 10e was transformed to ester 17 and subse-
quent transesterification provided ester 18.  After N-
decarbomethoxylation of 18, condensation with 3-
indoleacetic acid gave the desired key intermediate 1914. 

  Finally, we turn our attention to mechanistic aspects.  
To identify a possible P=O···BBr3 structure without the 
generation of HBr15, we performed a 31P NMR analysis 
of a 1:1 molar ratio of (R)-1a and BBr3 in dichloro-
methane (eq 5).  As a result, a new signal, indicating 

Scheme 5.  Formal Total Synthesis of (+)-Allocatharanthine. 

 
BBr3–(R)-1a, was observed as a major peak at –6.0 ppm 
at –78 °C, which was shifted from the original peak of 
(R)-1a at 2.4 ppm (eq 5, also see the SI with 11B NMR).  
In contrast, the catalyst obtained by preparation at room 
temperature gave many new peaks at +5 to –25 ppm, 
which might be attributed to boronphosphonate deriva-
tives 20 after the release of HBr (eq 6, also see the SI 
with 11B NMR).  Actually, the release of HBr at room 
temperature was confirmed by the generation of 22 from 
1-methyl-1-cyclohexene 2116 as a HBr-scavenger (eq 7, 
also see the SI).  Moreover, the reaction between 2a and 
3a with the use of 20 and 21 provided 4a with low enan-
tioselectivity (eq 6).  In contrast, upon the addition of 21 
to BBr3–(R)-1a, which was prepared at –78 °C in ad-
vance, the enantioselectivity was essentially the same 
(eq 5 v.s. Table 1, entry 7).  This result suggests that ad-
ventitious HBr, which would induce an uncatalyzed re-
action, might not be generated in situ at –78 °C.  By the 
LBA-strategy for phosphoric acids, which is different 
from the design of metal phosphates as bifunctional 
Lewis acid catalysts,1c,17 powerful Brønsted acid cata-
lysts can be easily obtained in situ (See the SI for 1H 
NMR for PO2H). 

 
  A possible structure of the BBr3–1a–3b complex was 
considered based on theoretical calculations (See the SI 
in detail).  In the optimized geometry, the P=O moiety of 
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(R)-1a coordinates to BBr3 and the C=O moiety of 3b 
coordinates to the proton of phosphoric acid (see the SI).  
Moreover, two hydrogen bonds for 3b, such as Br···H–
C=O and Br···H–C=C, were observed.  These hydrogen 
bonding interactions show that the base function of the 
LBA shifts from the original P=O moiety to the terminal 
Br moiety, and thus the BBr3–(R)-1a complex would 
also act as an acid–base cooperative catalyst. 

Figure 1. B3LYP/6-31G*-Optimized Geometry of BBr3–
(R)-1a–3b Complex 

 
  In summary, we have developed BBr3-assisted chiral 
phosphoric acids as highly effective LBA catalysts.  In 
particular, the enantioselective Diels–Alder reactions of 
α-substituted acroleins with 1,2-dihydropyridines pro-
ceeded, and synthetically useful optically active inter-
mediates for bioactive indole alkaloids were obtained. 
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