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Abstract: Convergent syntheses of the title compounds involve: a bis-THF-subunit preparation via 

Sharpless' double asymmetric dihydroxylation and subsequent asymmetric epoxidation; preparation of the 

C ( 4 )-hydr oxybutenolide-containing subunit using a Stille butenolide synthesis; P dL mediated coupling of 

these vinyl iodide and alkyne subunits; and selective Wilkinson reduction of the resulting enyne. 

(+)-Asimicin (1) and (+)-bullatacin (2)--bis-tetrahydrofuranyl, 4-hydroxylated, Annonaceous 

acetogenins--represent two of the structurally most complex and biologically potent members of this 

abundant family of antitumor and pesticidal natural products. 2 (+)-Bullatacin possesses remarkable levels 

both of cytotoxicity against many human tumor cell lines, a feature shared by a number of the 4- 

hydroxylated acetogenins,2b, e and of promising in vivo antitumor activity. 3a (+)-Bullatacin 3a-c and (+)- 

asimicin 3d interfere with mitochondrial electron transport processes by interaction with complex I. 

The relative configurations within the bis-THF portions of asimicin 4 and bullatacin 5 were deduced 6 by 

application of the IH NMR chemical shift correlation method developed for uvaricin, 6b the first 

Annonaceous acetogenin. Details of the entire relative and absolute stereostructure of (+)-asimicin (1) and 

(+)-bullatacin (2) were unraveled only recently following extensive analysis of Mosher esters of the natural 

products. 7 While three syntheses of bis-THF Annonaceous acetogenins or their stereoisomers have been 

described, 8 the majority of efforts to date have focused on the simpler mono-THF acetogenin targets. 9 Only 

two of the previously synthesized molecules have contained the C(4)-hydroxyl groupSb,c~a structural 

feature that considerably increases the difficulty of the task. The syntheses described here of the subunits 3 

(or 4) and 5 are considerably more efficient than those previously reported. 
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Preparation of the bis-THF-containing building blocks 3 and 4 is outlined in Scheme 1. In the early 

stage it follows the elegant strategy of Keinan 9d who constructed the two carbon longer homolog of lactone 

9. Thus, double asymmetric dihydroxylation 9d,i0 of the E, E-diene 6 (made by the doubly iterative 

Claisen/Johnson rearrangement of undecanal) provided a crystalline triol lactone that was protected as the 

acetonide 7 (72%). Tosylation and methanolysis gave epoxide 8 (91%), which underwent Lewis acid 

catalyzed cyclization to lactone 9 (63%) following hydrolytic workup. Protection of the hydroxyl group as 

its t-butyldimethylsilyl (TBS) ether and standard processing of the lactone gave the chain-extended allylic 

alcohol 10 (66%). This diol was a suitable substrate for Sharpless asymmetric epoxidation provided that a 

relatively large amount (50 mol%) of Ti(IV) catalyst was used. The intermediate epoxide spontaneously 

cyclized to the bis-THF diol 11 (87%, based upon recovered starting material at ~50% conversion). 

Selective silylation of the primary alcohol as its t-butyldiphenylsilyl (TBDPS) ether and tosylation of the 

lone hydroxyl group in 12 (86%) gave 13 (98%). Desilylation of 13 with excess TBAF (the TBDPS was 

removed faster than the TBS ether!) cleanly gave the cyclized epoxy alcohol 14 (88%). 
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Intermediate 14 contains the same configuration at all stereogenic centers as (+)-asimicin (1); the 

configuration at [C(24)] is opposite to that required for (+)-bullatacin (2); 14 represents the point of 

divergence for preparation of subunits 3 and 4. The epoxide in 14 was smoothly opened with TMS-C~-C-Li 

(2.8 equiv) in the presence of BF3.OEt21] followed by TMS removal to provide the terminal alkyne 3 (70 

%). Mitsunobu inversion of the carbinol center in 14 required the use ofp-nitrobenzoic acid. ]2 Acetylide 

opening of the inverted p-nitrobenzoate ester derivative of 14 (2.0 equiv of TMS-C=-C-Li) and methanolysis 

to remove both the TMS and PNB groups provided the C(24)-epimeric key intermediate 4 (34 %). 

Preparation of the enantiomerically pure butenolide 5 is outlined in Scheme 2.13 Crystalline triol 16 
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was produced in -80%ee (tris-MTPA IH NMR analysis) from 1,7-octadiene (15) by selective 

hydroboration of one olefin and asymmetric dihydroxylation 1° of the remaining alkene. Recrystallization 

gave material of high optical purity (tris-MTPA analysis) in 64% overall yield. In an efficient one-pot 

procedure 14 the triol 16 was processed into the optically pure epoxyacetal 17 (86%). Opening of this 

epoxide with the lithium acetylide 18, derived from optically pure 3-butyn-2-ol, 13 followed by reprotection 

of a portion of liberated aldehyde gave the homopropargylic alcohol 19 (88%). Silylation of the eventual 

C(4) hydroxyl group and selective removal of the TBS ether in 20 produced the propargylic alcohol 21 

(80%). REDAL reduction and iodine treatment gave a Z-vinyl iodide that was readily carbonylated under 

Stille conditions 15 to produce the butenolide 22 (83%). Hydrolysis of the acetal and generation of the 

terminal vinyl iodide 16 (~4:1 E:Z ratio) completed the preparation of subunit 5 (72%). 
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Pd°-Catalyzed coupling of alkyne 3 (or 4) with vinyl iodide 5 gave the enyne 23 (or 24) in 79% (or 

82%) yield. Preliminary model studies and recent precedent ]7.% established the viability of selective 

reduction of a conjugated enyne in the presence of the more hindered butenolide alkene. Enyne 23 was 

hydrogenated with Wilkinson's catalyst in carefully deoxygenated benzene and desilylated to give (+)- 

asimicin (1, mp 68-68.5 °C, 75%). Similar treatment of 24 provided (+)-bullatacin (2, mp 68.5-69 °C, 

74%). Each of the synthetic samples gave 1H and 13C NMR and HRMS spectra consistent with those from 

the natural material; the specific rotations for I and 2 were [et]D T = +14.7 o (c = 0.31, CHCI3) and [0t]~ T = 
25 o +12.8 ° [c = 0.26, CHC13, lit. 5 [et]578 = +13.0 (c = 0.004, CHCI3)], respectively. This synthesis represents 

the most efficient to date of the structurally complex, bis-tetrahydrofuranyl acetogenins. 
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