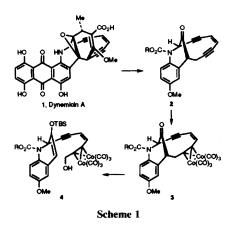
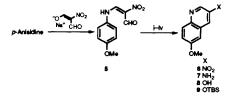
Short Synthesis of the Dynemicin Core Structure: Unusual Bridgehead Enolate Reactivity

Philip Magnus,* David Parry, Theodore Iliadis, Shane A. Eisenbeis and Robin A. Fairhurst

Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA

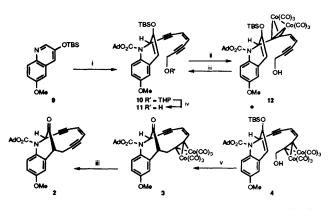

The dynemicin core azabicyclo[7.3.1]enediyne 2 is readily synthesized in five steps from the quinolines 9 or 13; the chemistry of the core enediyne is dominated by its ready enolization.


The unusual structure and potent antitumour activity of dynemicin A 1 have made it a topical subject for synthetic and molecular modelling/recognition studies.[†] As an extension of our research on esperamicin and calicheamicin, we have applied the key η^2 -Co₂(CO)₆-propargyl cation cyclization strategy for the synthesis of cyclic ten-membered ring enediynes to the synthesis of the azabicyclo[7.3.1]enediyne core structure **2**, Scheme 1.¹

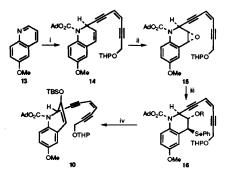
The η^2 -Co₂(CO)₆-propargyl alcohol complex 4 should ionize under electrophilic conditions to give 3, which upon oxidative decomplexation provides an exceptionally short route to the azabicyclo[7.3.1]enediyne 2.

3-Hydroxy-6-methoxyquinoline **8** is not a known compound, and the common methods for synthesizing quinolines are not readily applicable to those with 3-hydroxy substituents.² p-Anisidine hydrochloride was treated with sodium nitromalonaldehyde to give the enamine **5** (>95%). Heating p-anisidine hydrochloride and the enamine **5** in acetic acid in the presence of a catalytic amount of 3,5-dimethylthiophenol gave 3-nitro-6-methoxyquinoline **6** (48%).³ Reduction of **6** using Sn^{II}Cl₂ gave 3-amino-6-methoxyquinoline **7** (86%). Standard diazotization conditions and hydrolysis gave the phenol **8** (95%). Treatment of **8** with *tert*-butyldimethylsilylchloride-imidazole-DMF gave **9** (91%), (Scheme 2).

Treatment of the quinoline 9 with the magnesioacetylide 9a in the presence of 1-adamantyl chloroformate gave, in a completely regiospecific reaction, the dihydroquinoline 10 (75%).⁴ Deprotection of the THP ether to give 11 (89%) was accomplished using the Grieco procedure (pyridinium tosylate-EtOH).⁵ Complexation of 11 with Co₂(CO)₈ in THF gave 4 (59%) along with some complexation at the other acetylene 12 (33%) and traces of bis-complexation. The regioisomers 4



Scheme 2 Reagents and conditions: i, p-MeOC₆H₄NH₃Cl-AcOH-ArSH (cat), reflux, (48%); ii, SnCl₂-HCl (86%); iii, NaNO₂-H₂SO₄ (95%); iv, Bu'Me₂SiCl-DMF (91%)


and 12 could be separated by chromatography over silica gel. The undesired regioisomer 12 can be recycled by ceric ammonium nitrate (CAN) oxidation to give 11 (76%). All attempts to make this complexation more selective did not improve the above ratio. The uncomplexed propargyl alcohol 11, and the η^2 -Co₂(CO)₆-isomer 12 do not cyclize to the dynemicin core structure using the conditions described below.

Treatment of the cobalt adduct 4 with triflic anhydride in 2nitropropane containing 2,6-di-*tert*-butyl-4-methylpyridine at -10 °C for 30 min gave 3. Direct oxidative work-up by (CAN) oxidation gave the cyclized enediyne 2 (53%, for the two steps), (Scheme 3).⁶ We have used other chloroformates such as ClCO₂Me, ClCO₂(CH₂)₂Cl, ClCO₂menthyl and ClCO₂cholesteryl for the above sequence. Only the adamantyl carbamate was readily removed under conditions that did not destroy the enediyne.⁷ While the route to the azabicyclo[7.3.1]enediyne core structure 2 is short (5 steps from 9), the 3-silyloxyquinoline 9 is tedious to make, and lacks flexibility for more substituted systems. Consequently, we examined a route from the commercially available 6-methoxyquinoline 13.

Treatment of 13 with the enediyne Grignard reagent MgBrC=C-C=C-C=COTHP 9a in the presence of 1-ada-

Scheme 3 Reagents and conditions: i, AdO_2CCl , 9a; ii, $Co_2(CO)_8$ -THF; iii, $Ce(NH_4)_2(NO_2)_6$ -acetone; iv, pyridinium tosylate-EtOH; v, Tf_2O -2-nitropropane-2,6-di-*tert*-butyl-4-methylpyridine at -10 °C for 30 min. Tf = triflate, Ad = 1-adamantyl.

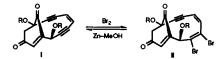
Scheme 4 Reagents: i, AdO_2CCl , 9a; ii, $MCPBA-NaHCO_3-CH_2Cl_2$; iii, PhSeSePh-NaBH₄ then TBSCl-DMF-imidazolc; iv, $MCPBA-NaHCO_3-CH_2Cl_2$, pyridine (50%)

mantyl chloroformate gave the dihydroquinoline 14 (78%). Epoxidation of 14 with *m*-chloroperoxybenzoic acid (MCPBA)-NaHCO₃-CH₂Cl₂ gave the epoxide 15 as a single stereoisomer.‡ The epoxide 15 was opened with (PhSe)₂-NaBH₄ to give 16 (R = H), and the newly generated hydroxy group protected as the TBS derivative 16 (98%, R = TBS).⁸ Oxidation of the selenide 16 (R = TBS) using MCPBA followed by *syn*-elimination gave 10, thus avoiding the synthesis of 9 (Scheme 4).

The adamantyl carbamate was removed by treatment of 2 with trifluoroacetic acid (TFA) in dichloromethane to give the amine 17 (78%).9 Surprisingly, the amine was cleanly brominated (Br₂-CHCl₃) to give 18 (72%). Even exposure of 17 to excess bromine for extended periods of time did not disrupt the enediyne functionality.§ The bridged ketone 2 was readily enolized using LiN(SiMe₃)₂-THF at -78 °C, quenching with PhSeBr gave the bridgehead selenide 19 (92%). The X-ray structure of 2 shows that the bridgehead proton is in the plane of the π orbitals of the carbonyl group, and therefore ideally aligned for enolization. Oxidation of 19 (MCPBA) gave the selenoxide 20 which was sufficiently stable to be isolated. Heating 20 at 40 °C resulted in rearrangement to the selenite ester 21, and eventually the alcohol 22 (50%). If 20 is heated in the presence of the trimethylsilyl enol ether of acetone, the bridgehead acetonyl compound 23 (68%) was formed. These transformations indicate that iminiumquinomethide 20a is formed from 20, and does not lose a proton to form the α,β -unsaturated ketone **20b**. The formation of the iminiumquinomethide intermediate 20a is completely analogous to the chemistry exhibited by dynemicin, and speculated to be an intermediate formed from opening of the epoxide in 1.

Scheme 5 Reagents and conditions: i, $CF_3CO_2H-CH_2Cl_2$ (78%); ii, Br_2-CHCl_3 (72%); iii, $LiN(SiMe_3)_2-THF-PhSeBr$, -78 °C (92%); iv, MCPBA-CH_2Cl_2, 78 °C; v, CH_2Cl_2 25-40 °C (21 and 22, 50%); vi, acetone-SiMe_3 enol ether-TMSOTf, 0 °C (23, 51%); vii, $LiN-(SiMe_3)_2-THF-(PhCOO)_2$, -78 °C (24, 55%)

In summary, the route to 2 takes five steps from 9 and 9a and proceeds in an overall 15% yield. This provides sufficient quantities for the more meaningful *in vivo* screening.


The National Science Foundation, National Institutes of Health and Bristol–Myers Squibb are thanked for financial support.

Received, 15th March 1994; Com. 4/01559B

Footnotes

† See refs. 1 of preceding paper.

‡ If the epoxidation of 14 with MCPBA is carried out without NaHCO₃, a mixture (1:1) of stereoisomeric epoxides is formed. § This result is in contrast to the reactivity exhibited in the esperamicin series. The compound i reacted with bromine to give ii (unknown vinyl bromide stereochemistry), which regenerated i when treated with Zn-MeOH (unpublished work).

References

- P. Magnus and S. M. Fortt, J. Chem. Soc., Chem. Commun., 1991, 544; P. Magnus, The Use of η²-Co₂(CO)₆-Acetylene Complexes for the Synthesis of Enediyne Antitumor Antibiotics, Organometallic Reagents in Organic Synthesis, ch. 1, Academic Press, New York, 1994, p. 1; P. Magnus, Tetrahedron Symp., 1994, 50, 1397; P. Magnus, P. Carter, J. Elliott, R. Lewis, J. Harling, T. Pitterna, W. E. Bauta and S. Fortt, J. Am. Chem. Soc., 1992, 114, 2544; P. Magnus, R. Lewis and F. Bennett, J. Am. Chem. Soc., 1992, 114, 2560.
- 2 A. Weissberg and E. C. Taylor, The Chemistry of Heterocyclic Compounds, Quinoline, Parts I-III; vol. 32, ed. G. Jones, Interscience Publications, Wiley, London, 1977; H. C. Van der Plas and T. Yamaguchi, Recl. Trav. Chim. Pays-Bas, 1977, 96, 89; I. Cho, L. Gong and J. M. Muchowski, J. Org. Chem., 1991, 56, 7288; P. Stanetty, H. Koller and Mihovilovic, J. Org. Chem., 1992, 57, 6833; Z. Arnold, Collect. Czech. Chem. Commun., 1973, 38, 1168; D. Lloyd and H. McNab, Angew. Chem., Int. Ed. Engl., 1976, 15, 459.
- 3 F. C. Uhle and W. A. Jacobs, J. Org. Chem., 1945, 10, 76; J. S. Morley and J. S. C. Simpson, J. Chem. Soc., 1948, 2024; P. E. Fanta, Organic Syntheses, 1963, Coll. Vol. 4, p. 844.
- 4 R. Yamaguchi, Y. Nakazono and M. Kawanisi, *Tetrahedron Lett.*, 1983, 24, 1801.
- 5 N. Miyashita, A. Yoshikoshi and P. A. Grieco, J. Org. Chem., 1977, 42, 3772.
- 6 The structure of **2** was confirmed by X-ray crystallography, V. M. Lynch, T. Iliadis, R. Fairhurst, P. Magnus and B. E. Davis, *Acta Crystallog., Sect. C*, submitted.
- 7 W. L. Haas, E. V. Krumkalns and K. Gerson, J. Am. Chem. Soc., 1966, 88, 1988. The cholesteryl carbamate derivative of 2 could be deprotected by treatment with TFA to give 17, but it required much more severe conditions than the adamantyl carbamate.
- 8 D. Liotta, W. Markiewicz and H. Santiesteban, *Tetrahedron Lett*, 1977, 4365.
- 9 The amine 17 exhibited both in vitro and in vivo antitumour activity, P. Magnus and S. A. Eisenbeis, J. Am. Chem. Soc. 1993, 115, 12627.