Enzymatic resolution of analgesics: δ-hydroxytramadol, ε-hydroxytramadol and O-desmethyltramadol

Hans-Joachim Gais, ${ }^{\text {a,* }}$ Carsten Griebel ${ }^{\text {a }}$ and Helmut Buschmann ${ }^{\mathrm{b}, *}$
${ }^{a}$ Institut für Organische Chemie, Rheinisch-Westfälische Technische Hochschule Aachen, Professor-Pirlet Straße 1, 52056 Aachen, Germany
${ }^{\mathrm{b}}$ Grünenthal GmbH, Abteilung Forschung Synthetische Chemie, Zieglerstraße 6, 52078 Aachen, Germany

Received 25 November 1999; accepted 31 December 1999

Abstract

Efficient enzymatic resolutions of the analgesic δ-hydroxytramadol rac-3 and ε-hydroxytramadol rac-4 have been achieved through pig liver esterase- and Candida rugosa lipase-catalyzed hydrolyses of the corresponding butyrates. The Candida rugosa lipase-catalyzed hydrolysis of O-desmethyltramadol butyrate rac-8a, having a remote aromatic acyloxy group as the only functional group amendable to a hydrolase-catalyzed reaction, proceeded with a good selectivity. © 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

According to the World Health Organization (WHO) ${ }^{1}$ the development of new non-addictive analgesics for the combat of strong pain is highly desirable. ${ }^{2}$ While searching for new analgesics the structure of morphine $\mathbf{1}$ has been widely varied. ${ }^{3-5}$

It was found that even strongly modified analogs such as tramadol 2 (Scheme 1) retain at least some of the typical biological activities of morphine. ${ }^{4}$ Tramadol, which was introduced in 1976 by Grünenthal as an opiate-agonist, has less side-effects than other typical analgesics. ${ }^{3,6}$ It has been recommended by the WHO as an analgesic with a low addiction potential for the treatment of patients with cancer pain. Tramadol is administered as the racemate because both enantiomers exhibit synergistic effects. ${ }^{3,7-10}$ In the search for still better analgesics the lead structure of tramadol was systematically varied. It was found that δ-hydroxytramadol 3 and ε-hydroxytramadol 4 exhibit interesting pharmacological properties. ${ }^{11,12}$ Furthermore, both compounds have turned out to be versatile intermediates for the synthesis of other derivatives of tramadol with strong local analgesic activities. ${ }^{11,12}$ A prerequisite for the further pharmacological evaluation of $\mathbf{3}$ and $\mathbf{4}$ and for their use as starting materials for the synthesis of further analogs is the availability of both enantiomers, in each case on a preparative scale. Because

[^0]of these requirements and the ready availability of $\mathrm{rac}-3$ and rac-4 ${ }^{11-13}$ the attainment of the respective enantiomers by resolution was deemed to be appropriate. To date, the resolution of rac-3 and rac-4 by HPLC on chiral stationary phases or by more classical methods was either successful only on a small scale or failed completely, ${ }^{11,12}$ and an asymmetric synthesis of 2-4 has not been described. Because of previous efficient resolutions of cyclohexanol derivatives using lipases and pig liver esterase (PLE) ${ }^{14,15}$ we considered an enzymatic resolution of rac-3 and rac-4 to be particularly attractive.

1

2

3

4

Scheme 1.

2. Results and discussion

The PLE-Chirazyme E- 1^{16} catalyzed hydrolysis of the butyrate $\mathrm{rac}-5 \cdot \mathrm{HCl}$ at room temperature in aqueous buffer solution at pH 7.0 in the presence of 16% acetone proceeded readily and gave the alcohol 3 with 93% ee in 96% yield ${ }^{17}$ and the ester ent- 5 with 72% ee in 99% yield ($\left.E=59\right)^{18}$ (Scheme 2). The ee value of $\mathbf{3}$ could be increased to $\geq 99 \%$ by recrystallization. In this manner 0.46 mol of $\mathrm{rac}-\mathbf{5} \cdot \mathrm{HCl}$ were resolved in one batch with the same results. Because of sufficiently different $\log P$ values ${ }^{19}$ (Table 1) the separation of $\mathbf{3}$ and ent- $\mathbf{5}$ was conveniently achieved simply by extraction with variations of the solvent and the pH value of the solution.

Scheme 2.
Table 1
$\log P$ (water/cyclohexane) values of rac-3 and rac-5 at different pH values

pH	rac-3	rac-5
7.0	-2.691	0.557
7.4	-2.297	0.946
8.0	-1.724	1.498
10.0	-0.680	2.333
12.0	0.633	2.360

In the above hydrolysis the enzyme was discarded. However, we are confident that an economical multi-mol PLE-catalyzed resolution of $\mathrm{rac}-\mathbf{5} \cdot \mathrm{HCl}$ can be achieved since we have shown previously that in large-scale PLE-catalyzed hydrolyses in water the enzyme can be stabilized by the addition of bovine serum albumin and recovered by membrane filtration with only a minor loss of activity. ${ }^{20}$ In the absence
of the cosolvent acetone the enantioselectivity of the hydrolysis of rac-5. HCl was lower as expressed in an E value of 28. The PLE-Chirazyme E-1-catalyzed hydrolysis of the free base rac-5 in the presence of acetone proceeded with a similar enantioselectivity. However, because of the low solubility of rac-5 in water, scale-up of the resolution of the free base posed problems and its hydrochloride, which has a high solubility in water, was used instead.

Interestingly, the Candida rugosa lipase (CRL)-catalyzed hydrolysis of rac-5 in water in the presence of 10% tert-butanol proceeded with the opposite enantiomeric preference to give, after 28% conversion (24 h), the alcohol ent-3 with 89% ee and the ester 5 with 37% ee ($E=24$) (Scheme 3).

Scheme 3.
The PLE-catalyzed hydrolysis of the butyrate rac-6a in aqueous buffer solution at pH 8.0 in the presence of tert-butanol as cosolvent was as effective as that of its isomer rac-5 and gave, after 40% conversion, the alcohol 4 with 94% ee in 77% yield and the ester ent- $\mathbf{6 a}$ with 86% ee in 79% yield (Scheme 4, Table 2).

Scheme 4.
Table 2
Enzymatic hydrolysis of rac-6a

enzyme (U/ml)	conditions	$\mathrm{t}(\mathrm{h})$	conv. (\%)	alcohol	ee (\%)	ester	ee (\%)	E
PLE (2.3)	$t \mathrm{BuOH}(10 \%)$, 6 40 4 94 ent-6a 86 46 CRL (4.6) $\mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 8.0$ $t \mathrm{BuOH}(10 \%)$, 5 49 ent-4 95 $\mathbf{6 a}$ 93	133						
CRL (4.3)	$\mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 7.0$ $t \mathrm{BuOMe}$ $(50 \%), \mathrm{H}_{2} \mathrm{O}$,	6	45	ent-4	≥ 98	$\mathbf{6 a}$	≥ 98	≥ 200
	pH 7.5							

The selectivity of the CRL-catalyzed hydrolysis of rac-6a was even higher than that with PLE, and the hydrolysis proceeded, as in the case of rac-5, with the opposite enantiomer preference (Scheme 5, Table 2). Thus, the CRL-catalyzed hydrolysis of rac-6a in aqueous buffer solution at pH 7.0 with tert-butanol as cosolvent gave, after 49% conversion, the alcohol ent- $\mathbf{4}$ with 95% ee in 83% yield and the ester $\mathbf{6 a}$ with 93% ee in 85% yield. An almost optimal resolution of rac- $\mathbf{6 a}$ with CRL was achieved by carrying out the hydrolysis in an emulsion of water and tert-butyl methyl ether. ${ }^{14,21}$ The CRL-catalyzed hydrolysis of rac-6a under these conditions at room temperature afforded the alcohol ent-4 with $\geq 99 \%$ ee in 79%
yield and the ester $\mathbf{6 a}$ with $\geq 99 \%$ ee in 80% yield. Even the extension of the reaction time to 72 h saw no hydrolysis of $\mathbf{6 a}$.

Scheme 5.
Because of the above results we also studied the CRL-catalyzed transesterification of rac-4 under formation of ent- $\mathbf{6 b}, \mathbf{c}$ and $\mathbf{4}$ in organic solvents (Scheme 6, Table 3).

$+$

Scheme 6.
Table 3
CRL-catalyzed ($37 \mathrm{U} / \mathrm{mg}$) transesterification of rac-4

conditions (equiv.)	$\mathrm{t}(\mathrm{d})$	conv. (\%)	ester	ee (\%)	alcohol	ee (\%)	E
vinyl propionate (5), toluene vinyl acetate (215)	9	48	ent-6c	87	4	68	30
isopropenyl acetate (5.5),	5	56	ent-6b	91	4	97	89
toluene							

A synthetically useful selectivity as expressed in an E value of 30 was obtained with vinyl propionate in toluene. The use of vinyl acetate not only as the acyl donor but also as the solvent saw an increase of the selectivity of the transesterification of $\operatorname{rac}-\mathbf{4}$ to $E=89$. Since, in the above acylation acetaldehyde was liberated, which may have chemically modified the lipase, ${ }^{22,23}$ we used isopropenyl acetate as the acyl donor. The CRL-catalyzed acylation of rac-4 with isopropenyl acetate in toluene proceeded with very high selectivity as expressed in an E value ≥ 200.

Having obtained favorable results in the case of the transesterification of rac-4 we also investigated the CRL-catalyzed transesterification of rac-3, which gave the ester ent-5 and the alcohol $\mathbf{3}$ (Scheme 7, Table 4). However, the acylation of rac-3 was not as selective as that of rac-4. In addition, the rate of the acylation was much lower than that of rac-4.

The absolute configuration of alcohol $\mathbf{3}$ was determined by X-ray crystal structure analysis of the hydrochloride of its $\delta-O-p$-fluorobenyzl ether by using anomalous X-ray scattering and that of $\mathbf{4}$ was assigned on the basis of the observation that $\alpha R, \beta R$-tramadol and all its derivatives prepared thus far showed a positive sign of optical rotation. ${ }^{24}$

rac-3

3

Scheme 7.
Table 4
CRL-catalyzed ($37 \mathrm{U} / \mathrm{mg}$) transesterification of rac-3

conditions (equiv.)	$\mathrm{t}(\mathrm{d})$	conv. (\%)	ester	ee (\%)	alcohol	ee (\%)	E
vinyl acetate (5), toluene	16	18	ent-5	44	3	72	5
vinyl acetate (215)	16	12	ent-5	47	3	48	4
isopropenyl acetate (5.5), toluene	16	25	ent-5	68	3	87	14

Attempts to achieve a PLE-mediated transesterification ${ }^{25,26}$ of rac-3 and rac-4 with vinyl acetate in toluene in the presence of methoxypolyethylene glycol met with no success.

For a resolution of tramadol itself the molecule lacks a functional group suitable for a hydrolasecatalyzed transformation since tertiary alcohols are generally only poor substrates for hydrolases. ${ }^{14}$ However, we expected O-desmethyltramadol ($\mathrm{rac}-7)^{27}$ (Scheme 8), which is a biologically active metabolite of $\mathbf{2},{ }^{10}$ and the corresponding esters $\mathrm{rac}-\mathbf{8}$ to be substrates for hydrolases.

7

8

Scheme 8.
The aromatic alcohol $\mathbf{7}$ and its esters $\mathbf{8}$ are members of a large group of biologically active chiral compounds which all contain, besides a tertiary amino group, an aromatic hydroxy or acyloxy group but no other functional groups suitable for a hydrolase-catalyzed reaction. ${ }^{3,4,6,28}$ Thus, it was hoped that an investigation of the enzymatic transesterification and hydrolysis of rac-7 and rac-8, respectively, would not only yield enantiomerically enriched $\mathbf{2}$ and ent $\mathbf{2}$ but also give information as to the feasibility of using an aromatic hydroxy or acyloxy group for a hydrolase-catalyzed resolution. Although several studies have appeared on the enzymatic hydrolysis of esters of racemic aromatic alcohols ${ }^{29-32}$ we are aware of only two reports dealing with the enzymatic hydrolysis of racemic aromatic esters containing a tertiary amino group. ${ }^{33,34}$

Hydrolysis of rac-8a in aqueous solution in the presence of tert-butanol as cosolvent was studied by using PLE, horse liver esterase (HLE), Pseudomonas cepacia lipase (PCL), CRL, pig pancreas lipase (PPL) and Candida antarctica lipase (CAL) (Scheme 9, Table 5).

All enzymes tested exhibited a preference for ent-8a and, thus, gave preferentially the alcohol ent7 and the ester 8a. Table 5 reveals, however, that the enantioselectivities were rather low and not sufficiently high for synthetic purposes. For example, the PLE-catalyzed hydrolysis of rac-8a furnished the enantiomerically pure alcohol ent-7 in only 13% yield after 69% conversion.

All attempts to enhance the selectivity of the PLE-catalyzed hydrolysis of rac-8a and rac-8b by variation of the cosolvent and the pH were unsuccessful as revealed in Table 6.

$\mathbf{a}: \mathrm{R}=\mathrm{Pr}, \mathbf{b}: \mathrm{R}=\mathrm{Me}$

Scheme 9.

Table 5
Enzymatic hydrolysis of $\mathrm{rac}-\mathbf{8} \mathbf{a}^{\mathrm{a}}$

enzyme (U/ml)	conditions t (h)	conv. (\%)	alcohol	ee (\%)	ester	ee (\%)	E
PLE (3.9)	$\begin{aligned} & \hline t \mathrm{BuOH}(10 \%), 2 \\ & \mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 8.0 \end{aligned}$	52	ent-7	76	8a	62	13
HLE (0.3)	$\begin{aligned} & t \mathrm{BuOH}(10 \%), 4 \\ & \mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 8.0 \end{aligned}$	24	$e n t-7$	50	8a	18	4
PCL (15)	$\begin{aligned} & t \mathrm{BuOH}(10 \%), 22 \\ & \mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 7.0 \end{aligned}$	36	$e n t-7$	67	8a	75	10
CRL (2.4)	$\begin{aligned} & t \mathrm{BuOH}(10 \%), 4 \\ & \mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 7.0 \end{aligned}$	56	$e n t-7$	65	8a	58	9
PPL (21)	$\begin{aligned} & t \mathrm{BuOH}(10 \%), 2.5 \\ & \mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 7.0 \end{aligned}$	67	$e n t-7$	78	8a	19	8
CAL (0.8)	$\begin{aligned} & t \mathrm{BuOH}(10 \%), 4 \\ & \mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 7.0 \end{aligned}$	8	ent-7	b	8a	13	b

${ }^{a}$ All reactions where carried out on a 1 mmol scale. ${ }^{\mathrm{b}}$ Not determined.

Table 6
PLE-catalyzed hydrolysis of $\mathrm{rac}-\mathbf{8 a}$ and $\mathrm{rac}-\mathbf{8 b}$

substrate	conditions ${ }^{\text {a }}$	t (min)	conv. (\%)	alcohol	ee (\%)	ester	ee (\%)	E
rac-8a	$\begin{aligned} & \text { acetone (20\%), } \\ & \mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 8.0 \end{aligned}$	5	51	ent-7	11	8a	27	2
rac-8a	$\begin{aligned} & \mathrm{MeOH}(10 \%), \\ & \mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 8.0 \end{aligned}$	30	19	ent-7	81	8a	17	11
$\mathrm{rac}-\mathbf{8 b}$	$\begin{aligned} & t \mathrm{BuOH}(10 \%), \\ & \mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 8.0 \end{aligned}$	40	31	ent-7	74	8b	50	10
rac-8b	$\begin{aligned} & t \mathrm{BuOH}(10 \%), \\ & \mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 7.0 \end{aligned}$	120	36	ent-7	52	8b	35	5

${ }^{\text {a }}$ Ester rac-8b was already hydrolyzed slowly at pH 8.0 in the absence of PLE.

The use of CRL in an emulsion of aqueous phosphate buffer and tert-butyl methyl ether, however, resulted in a significantly higher and synthetically useful selectivity of the hydrolysis of rac-8a to ent$\mathbf{7}$ and 8a (Table 7). With purified CRL the selectivity of the hydrolysis of rac-8a was even higher as expressed in an E value of 34 . In a preparative experiment the ester $\mathbf{8 a}$ was obtained with $\geq 99 \%$ ee in 35% yield after 60% conversion.

A study of the lipase-catalyzed transesterification of alcohol rac-7 (Scheme 10) showed it to be a substrate for the lipases used. However, the enantioselectivities were low (Table 8). The absolute configurations of alcohol $\mathbf{7}$ and esters ent-8b,c were assigned by comparison of their specific rotations with those reported in the literature. ${ }^{10,35-37}$

Table 7
CRL-catalyzed hydrolysis of rac-8a

activity	conditions	$\mathrm{t}(\mathrm{h})$	conv. (\%)	alcohol	ee (\%)	ester	ee (\%)	E
$2.4 \mathrm{U} / \mathrm{mg}$	$t \mathrm{BuOH}(10 \%)$,	5	51	7	85	ent-8a	75	27
$37 \mathrm{H} / \mathrm{mg}$	$\mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 7.0$ $t \mathrm{BuOH}(10 \%)$, $\mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 7.0$	3	33	7	90	ent-8a	58	34

enzyme (U/mg)	conditions (equiv.)	t (d)	conv. (\%)	ester		al	ee (\%)	E
CRL (37)	$\begin{aligned} & \text { vinyl laurate (2), } \\ & \mathrm{Et}_{2} \mathrm{O} \end{aligned}$	14	4	ent-8c	a	7	a	a
CRL (37)	vinyl acetate (5), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	21	66	$e n t-8 \mathrm{~b}$	33	7	26	2
CRL (37)	vinyl acetate (250)	21	36	ent-8b	38	7	21	3
PCL (4)	vinyl acetate (5), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	21	66	$e n t-8 \mathrm{~b}$	33	7	26	2
PPL (300)	vinyl laurate (5), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	28	43	ent-8c	37	7	22	3

${ }^{a}$ Not determined.

3. Conclusion

In summary, enzymatic resolution of the hydroxytramadols rac-3 and rac-4 by using PLE and CRL allows for an efficient attainment of both enantiomers in each case. In these hydrolyses PLE and CRL are complementary in synthetic terms because of the opposite enantiomer preference they exhibit. The significant selectivity recorded in the CRL-catalyzed hydrolysis of the butyrate of O-desmethyltramadol is further confirmation that a remote aromatic acyloxy group can be utilized successfully for the resolution of substrates being devoid of other suitable functional groups.

4. Experimental

4.1. General remarks

Chemical shifts are given in ppm relative to $\mathrm{Me}_{4} \mathrm{Si}: \delta=0.00$ as the internal standard. Peaks in the ${ }^{13} \mathrm{C}$ NMR spectra are denoted as ' u ' for carbons with zero or two attached protons or as ' d ' for carbons with one or three attached protons, as determined from the ATP pulse sequence. Enzymatic reactions were run at room temperature and monitored by GC using a CP-Sil-8 column. Enantiomer compositions were
determined by HPLC analysis with Chiralcel OD/OD-H column $(25 \times 0.46 \mathrm{~cm})$ (Baker-Daicel) or by GC analysis with an octakis-(2,3- O-dipentyl-6- O-methyl)- γ-cyclodextrin column ($25 \mathrm{~m} \times 0.25 \mathrm{~mm}$) (Lipodex $\gamma-6-\mathrm{Me})$ (Macherey-Nagel) and a permethylated β-cyclodextrin column ($25 \mathrm{~m} \times 0.25 \mathrm{~mm}$) (CP-Chirasil-Dex-CB) (Chrompack). The carrier gas was hydrogen at 100 kPa . Retention times are given in minutes. Column chromatography was performed with E. Merck silica gel 60 ($230-400 \mathrm{mesh}$). PLE ($150 \mathrm{U} / \mathrm{mg}$, suspension in $\left.3.2 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right)$ and PLE-Chirazyme E-1 (lyophilisate, $40 \mathrm{U} / \mathrm{mg}$) were purchased from Roche Diagnostics. CRL ($2.4 \mathrm{U} / \mathrm{mg}$), PPL, HLE, PCL and CAL (A and B) were purchased from Fluka. Enzymatic reactions were carried out at room temperature.

4.2. Determination of enantiomer composition

GC: rac-3 and rac-4: CP-Chirasil-Dex-CB, split $1: 40,140^{\circ} \mathrm{C}(2 \mathrm{~min}) \rightarrow 160^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{C} / \mathrm{min}\right)(2$ $\min) \rightarrow 180^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{C} / \mathrm{min}\right)(2 \mathrm{~min}) \rightarrow 200^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{C} / \mathrm{min}\right): t_{\mathrm{R}}(3)=24.6, t_{\mathrm{R}}(e n t-3)=25.5, t_{\mathrm{R}}(4)=21.1, t_{\mathrm{R}}$ (ent-4)=21.6 min; rac-5, rac-6a, rac-6b and rac-6c: Lipodex $\gamma-6-\mathrm{Me}$, split $1: 40,100^{\circ} \mathrm{C}(45 \mathrm{~min}) \rightarrow 130^{\circ} \mathrm{C}$ $\left(10^{\circ} \mathrm{C} / \mathrm{min}\right)(15 \mathrm{~min}) \rightarrow 160^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{C} / \mathrm{min}\right)(5 \mathrm{~min}) \rightarrow 200^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{C} / \mathrm{min}\right): t_{\mathrm{R}}($ ent -5$)=71.8, t_{\mathrm{R}}(5)=76.3$, $t_{\mathrm{R}}\left(\right.$ ent-6a)$=189.9, t_{\mathrm{R}}(\mathbf{6 a})=191.6, t_{\mathrm{R}} \quad(\mathbf{6 b})=70.3, t_{\mathrm{R}} \quad($ ent $-\mathbf{6 b})=74.5, t_{\mathrm{R}} \quad(\mathbf{6} \mathbf{c})=171.6, t_{\mathrm{R}} \quad($ ent $-\mathbf{6} \mathbf{c})=175.4 ;$ rac-7, rac-8b and rac-8c: CP-Chirasil-Dex-CB, split $1: 40,100^{\circ} \mathrm{C}(45 \mathrm{~min}) \rightarrow 130^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{C} / \mathrm{min}\right)(15$ $\min) \rightarrow 160^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{C} / \mathrm{min}\right)(5 \mathrm{~min}) \rightarrow 200^{\circ} \mathrm{C}\left(10^{\circ} \mathrm{C} / \mathrm{min}\right): t_{\mathrm{R}}(e n t-7)=74.0, t_{\mathrm{R}}(7)=73.5, t_{\mathrm{R}}(\mathbf{8 b})=68.0, t_{\mathrm{R}}$ $($ ent $-\mathbf{8 b})=68.3, t_{\mathrm{R}}(\mathbf{8 c})=83.2, t_{\mathrm{R}},($ ent-8c $)=84.0$.

HPLC: rac-3 and rac-5: n-hexane: $i \mathrm{PrOH}: \mathrm{Et}_{2} \mathrm{NH}$, $950: 50: 1$, flow rate: $0.75 \mathrm{~mL} / \mathrm{min}$, detection at $273 \mathrm{~nm}: t_{\mathrm{R}}(\mathbf{3})=29.9, t_{\mathrm{R}}($ ent $-\mathbf{3})=33.8, t_{\mathrm{R}} \quad($ ent $-\mathbf{5})=20.9, t_{\mathrm{R}}(\mathbf{5})=14.1 ; \mathrm{rac}-7$, rac-8a and rac-8b: n hexane: $i \operatorname{PrOH}: \mathrm{Et}_{2} \mathrm{NH}$, 970:30:1, flow rate: $0.75 \mathrm{~mL} / \mathrm{min}$, detection at $254 \mathrm{~nm}: t_{\mathrm{R}}\left(\right.$ ent-7) $=26.3, t_{\mathrm{R}}$ $(7)=22.4, t_{\mathrm{R}}(\mathbf{8 a})=12.0, t_{\mathrm{R}}($ ent-8a $)=9.9, t_{\mathrm{R}}(\mathbf{8 b})=12.4, t_{\mathrm{R}}($ ent-8b$)=14.6$.

4.3. Butyric acid (\pm)-(1RS,2SR,4SR)-3-dimethylaminomethyl-4-hydroxy-4-(3-methoxyphenyl)cyclohexyl ester (rac-5) and butyric acid (\pm)-(1RS,3SR,4SR)-4-dimethylaminomethyl-3-hydroxy-3-(3-methoxyphenyl)cyclohexyl ester rac- $6 \boldsymbol{a}$

Potassium tert-butoxide (20 mmol) was added carefully at room temperature to a suspension of rac- $\mathbf{3} \cdot \mathrm{HCl}(\mathrm{rac}-\mathbf{4} \cdot \mathrm{HCl})(8 \mathrm{mmol})$ in THF $(27 \mathrm{ml})$ and the mixture was stirred until the reaction was completed. Subsequently, butyryl chloride (12 mmol) in THF (2.5 ml) was added and the mixture was stirred overnight at room temperature. The reaction mixture was poured into saturated aqueous NaHCO_{3} and stirred for 12 h . The organic layer was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The ester rac-5 (rac-6a) was purified by chromatography (diisopropyl ether:methanol, 1:1), whereby eventually the remaining alcohol was recovered.

Compound rac-5: 79\% yield; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.3(\mathrm{~m}, 1 \mathrm{H}), 7.1(\mathrm{~s}, 1 \mathrm{H}), 7.0(\mathrm{~m}, 1 \mathrm{H})$, $6.8(\mathrm{~m}, 1 \mathrm{H}), 4.8(\mathrm{~m}, 1 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 2.4(\mathrm{dd}, 1 \mathrm{H}, J=4, J=14 \mathrm{~Hz}), 2.3-1.6(\mathrm{~m}, 20 \mathrm{H}), 1.0(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz}) ;$ ${ }^{13} \mathrm{C}$ NMR (75.4 MHz, CDCl_{3}): $\delta 173.1$ (u), 159.4 (u), 150.4 (u), 129.0 (d), 117.0 (d), 111.5 (d), 110.7 (d), 75.7 (u), 72.9 (d), 60.9 (u), 55.1 (d), 47.7 (d), 43.0 (d), $39.0(u), 36.5(u), 32.9(u), 27.5(u), 18.5(u)$, 13.6 (d).

Compound rac-6a: 81% yield; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.3(\mathrm{~m}, 1 \mathrm{H}), 7.2(\mathrm{~s}, 1 \mathrm{H}), 7.1(\mathrm{~m}, 1 \mathrm{H})$, $6.8(\mathrm{~m}, 1 \mathrm{H}), 5.2(\mathrm{~m}, 1 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 2.4(\mathrm{dd}, 1 \mathrm{H}, J=4, J=14 \mathrm{~Hz}), 2.3-1.5(\mathrm{~m}, 19 \mathrm{H}), 1.4(\mathrm{~m}, 1 \mathrm{H}), 0.9$ (t, 3H, J=8 Hz); ${ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.7$ (u), 159.4 (u), 150.1 (u), 129.0 (d), 117.0 (d), 111.5 (d), 110.7 (d), 78.0 (u), 70.6 (d), 60.5 (u), 55.1 (d), 47.7 (d), 46.0 (u), 44.1 (d), 36.4 (u), 32.2 (u), 25.9 (u), 18.5 (u), 13.6 (d).
4.4. Butyric acid (\pm)-(1RS,2RS)-3-(2-dimethylaminomethyl-1-hydroxycyclohexyl)phenyl ester rac-8a and acetic acid $(\pm)-(1$ RS, 2 RS $)$-3-(2-dimethylaminomethyl-1-hydroxycyclohexyl)phenyl ester rac- $8 \boldsymbol{b}$

A solution of sodium hydroxide $(40 \%, 2 \mathrm{ml})$ was added at room temperature to a suspension of rac$7 \cdot \mathrm{HCl}(15 \mathrm{mmol})$ in water (8 ml). The aqueous layer was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give rac-7. Alcohol rac-7 (8 mmol) was mixed at room temperature with a solution of butyric anhydride (acetic anhydride) (9.6 $\mathrm{mmol})$ and pyridine $(0.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$. After stirring the mixture at room temperature until the completion of the acylation (48 h), it was poured into saturated aqueous NaHCO_{3} and stirred for 12 h. The organic layer was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give rac-8a (rac-8b).

Compound rac-8a: 94% yield; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.3(\mathrm{~m}, 1 \mathrm{H}), 7.2(\mathrm{~s}, 1 \mathrm{H}), 6.9(\mathrm{~m}, 2 \mathrm{H})$, $2.5(\mathrm{t}, 2 \mathrm{H}, J=5 \mathrm{~Hz}), 2.4(\mathrm{dd}, 1 \mathrm{H}, J=4, J=13 \mathrm{~Hz}), 2.1-1.4(\mathrm{~m}, 17 \mathrm{H}), 1.4-1.2(\mathrm{~m}, 1 \mathrm{H}), 1.0(\mathrm{t}, 3 \mathrm{H}, J=5 \mathrm{~Hz}) ;$ ${ }^{13} \mathrm{C}$ NMR (75.4 MHz, CDCl_{3}): $\delta 172.1$ (u), 152.2 (u), 150.8 (u), 128.8 (d), 122.2 (d), 119.0 (d), 118.6 (d), 76.9 (u), 61.5 (u), 47.7 (d), 44.7 (d), 41.3 (u), 36.2 (u), 27.9 (u), 26.8 (u), 22.2 (u), 18.4 (u), 13.7 (d).

Compound rac-8b: 99% yield; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.3(\mathrm{~m}, 3 \mathrm{H}), 6.9(\mathrm{~m}, 1 \mathrm{H}), 2.4(\mathrm{dd}, 1 \mathrm{H}$, $J=4, J=14 \mathrm{~Hz}), 2.3(\mathrm{~s}, 3 \mathrm{H}), 2.2-1.5(\mathrm{~m}, 16 \mathrm{H}), 1.4-1.3(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75.4 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 169.3$ (u), 152.0 (u), 150.5 (u), 128.7 (d), 122.2 (d), 118.9 (d), 118.4 (d), 77.0 (u), 61.5 (u), 47.7 (d), 45.0 (d), 41.3 (u), $27.9(\mathrm{u}), 26.8(\mathrm{u}), 22.2(\mathrm{u}), 21.1(\mathrm{~d})$.

4.5. Hydrolysis of rac-5•HCl with PLE

Aqueous phosphate buffer solution ($\mathrm{pH} 7.0,1.54 \mathrm{~L}$), acetone $(0.36 \mathrm{~L})$ and the hydrochloride of the ester $\mathrm{rac}-5(178 \mathrm{~g}, 0.46 \mathrm{~mol})$ were combined and stirred for 10 min . Subsequently, PLE-Chirazyme E-1 $(1.54 \mathrm{~g})$ and aqueous NaHCO_{3} solution $(370 \mathrm{~mL})$ were added to the mixture at room temperature. The pH value of the solution at the beginning of the hydrolysis was 7.5 . After the reaction stopped ($15 \mathrm{~h}, \mathrm{pH} 7.0$) the aqueous buffer solution was extracted first with diisopropyl ether (1 L) and subsequently with diethyl ether (1 L). The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give ent-5 $(79.4 \mathrm{~g}, 99 \%)$ with 72% ee $\left([\alpha]_{\mathrm{D}}{ }^{22}-12.0(c 1.02, \mathrm{MeOH})\right)$. The aqueous layer was separated from the remaining solvent and adjusted to pH 10 by the addition of aqueous $2 \mathrm{M} \mathrm{NaHCO}_{3}$ solution. Subsequently, the mixture was extracted with ethyl acetate. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give $3(62.0 \mathrm{~g}, 96 \%)$ with 93% ee $\left([\alpha]_{\mathrm{D}}{ }^{22}+36.5(c 1.06, \mathrm{MeOH})\right.$).

4.6. Hydrolysis of rac- $\mathbf{6} \boldsymbol{a}$ with PLE

The ester rac-6a ($349 \mathrm{mg}, 1 \mathrm{mmol}$) dissolved in $t \mathrm{BuOH}(4 \mathrm{~mL})$ was added to the aqueous phosphate buffer solution ($36 \mathrm{~mL}, \mathrm{pH} 8$). Subsequently, PLE ($1 \mathrm{mg}, 183 \mathrm{U}$) was added and the mixture was efficiently stirred at room temperature while the pH value was held constant at 8.0 by the addition of 1 M sodium hydroxide with a pH -stat autotitrator. After the reaction stopped (6 h) the mixture was extracted continuously with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ for 15 h . The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Chromatography (MeOH :diisopropyl ether, $1: 1$) of the residue gave $4(107.4 \mathrm{mg}, 77 \%)$ with 94% ee $\left([\alpha]_{\mathrm{D}}{ }^{22}+21.7(c 0.80, \mathrm{MeOH})\right)$ and ent-6 $(137.8 \mathrm{mg}, 79 \%)$ with 86% ee $\left([\alpha]_{\mathrm{D}}{ }^{22}-6.0(c 0.81\right.$, $\mathrm{MeOH})$).

4.7. Hydrolysis of rac- $\mathbf{6} \boldsymbol{a}$ with $C R L$

A solution of rac-6a ($349 \mathrm{mg}, 1 \mathrm{mmol}$) in $t \mathrm{BuOMe}(26 \mathrm{~mL})$ was added to an aqueous phosphate buffer solution ($\mathrm{pH} 7.5,26 \mathrm{~mL}$). Subsequently, CRL ($6 \mathrm{mg}, 220 \mathrm{U}$) was added and the mixture was efficiently stirred at room temperature while the pH value was held constant at 7.5 by the addition of 1 M
sodium hydroxide with a pH -stat autotitrator. After the reaction stopped (6 h), the mixture was extracted continuously with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ for 15 h . The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Chromatography (MeOH :diisopropyl ether, 1:1) of the residue gave ent-4 (110.2 $\mathrm{mg}, 79 \%$) with $\geq 99 \%$ ee $\left([\alpha]_{\mathrm{D}}{ }^{22}-29.5(c 1.01, \mathrm{MeOH})\right)$ and $\mathbf{6 a}(139.6 \mathrm{mg}, 80 \%)$ with $\geq 99 \%$ ee $\left([\alpha]_{\mathrm{D}}{ }^{22}+7.5(c 0.74\right.$, $\mathrm{MeOH})$).

Caution: peroxide free diisopropyl ether was used, and before concentration of the diisopropyl ether solution the absence of peroxides was secured by a test with potassium iodide.

4.8. Transesterification of rac-4

With vinyl propionate: alcohol rac-4 ($70 \mathrm{mg}, 0.25 \mathrm{mmol}$) and vinyl propionate ($125 \mathrm{mg}, 1.25 \mathrm{mmol}$) were dissolved in toluene (5 mL). Subsequently, CRL ($5 \mathrm{mg}, 185 \mathrm{U}$) was added and the reaction mixture was stirred at room temperature. The reaction was stopped at 48% conversion (9 days) by silica gel filtration. GC analysis of a sample from the mixture showed the presence of ent-6c with 87% ee and of $\mathbf{4}$ with 68% ee.

With vinyl acetate: alcohol rac-4 ($70 \mathrm{mg}, 0.25 \mathrm{mmol}$) was dissolved in vinyl acetate ($5 \mathrm{~mL}, 54 \mathrm{mmol}$) and CRL ($5 \mathrm{mg}, 185 \mathrm{U}$) was added under the above conditions. The reaction was stopped at 56% conversion (7 days) by silica gel filtration. GC analysis of a sample from the reaction mixture showed the presence of ent-6b with 91% ee and of $\mathbf{4}$ with 97% ee.

With isopropenyl acetate: transesterification of alcohol rac-4 ($70 \mathrm{mg}, 0.25 \mathrm{mmol}$) with isopropenyl acetate $(145 \mathrm{mg}, 1.5 \mathrm{mmol})$ in the presence of CRL $(5 \mathrm{mg}, 185 \mathrm{U})$ in toluene $(5 \mathrm{~mL})$ under the above conditions was stopped at 34% conversion (5 days) by silica gel filtration. GC analysis of a sample from the reaction mixture showed the presence of ent- $\mathbf{6 b}$ with 99% ee and of $\mathbf{4}$ with 60% ee.

4.9. Transesterification of rac-7

With CRL: alcohol rac-7 ($62 \mathrm{mg}, 0.25 \mathrm{mmol}$) and vinyl acetate ($108 \mathrm{mg}, 1.25 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. Subsequently, CRL ($30 \mathrm{mg}, 72 \mathrm{U}$) was added and the reaction mixture was stirred at room temperature. The reaction was stopped at 66% conversion (21 days) by silica gel filtration. GC analysis of a sample from the reaction mixture showed the presence of $\mathbf{7}$ with 21% ee and of ent-8b with 38% ee.

With PCL: reaction of rac-7 ($62 \mathrm{mg}, 0.25 \mathrm{mmol}$) with vinyl acetate ($108 \mathrm{mg}, 1.25 \mathrm{mmol}$) in the presence of PCL ($15 \mathrm{mg}, 600 \mathrm{U}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ under the above conditions was stopped at 66% conversion (21 days) by silica gel filtration. GC analysis of a sample from the reaction mixture showed the presence of 7 with 26% ee and of ent-8b with 33% ee.

With PPL: reaction of rac-7 ($62 \mathrm{mg}, 0.25 \mathrm{mmol}$) with vinyl laurate ($280 \mathrm{mg}, 1.25 \mathrm{mmol}$) in the presence of PPL ($100 \mathrm{mg}, 1600 \mathrm{U}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ under the above conditions was stopped at 43% conversion (28 days) by silica gel filtration. GC analysis of a sample from the reaction mixture showed the presence of $\mathbf{7}$ with 22% ee and of ent- $\mathbf{8 b}$ with 37% ee.

With CRL: alcohol rac-7 ($62 \mathrm{mg}, 0.25 \mathrm{mmol}$) was dissolved in vinyl acetate ($5.8 \mathrm{~mL}, 63 \mathrm{mmol}$) and CRL ($30 \mathrm{mg}, 72 \mathrm{U}$) was added under the above conditions. The reaction was stopped at 36% conversion (21 days) by silica gel filtration. GC analysis of a sample from the reaction mixture showed the presence of 7 with 21% ee and of ent-8b with 38% ee.

4.10. Hydrolysis of rac-8a with CRL

The hydrolysis of rac-8a ($316 \mathrm{mg}, 1 \mathrm{mmol}$) in $t \mathrm{BuOMe}(20 \mathrm{~mL})$ and aqueous phosphate buffer (pH 7.0 , 20 mL) in the presence of CRL ($3 \mathrm{mg}, 111 \mathrm{U}$) under the above conditions (see Section 4.7) was stopped
at 33% conversion (3 h) by continuous extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ for 15 h . Chromatography (ethyl acetate: $\mathrm{MeOH}, 3: 1)$ of the residue gave ent-7 $(76 \mathrm{mg}, 90 \%)$ with 90% ee $\left([\alpha]_{\mathrm{D}}{ }^{22}-30.6(c 1.10, \mathrm{MeOH})\right)$ and 8a (203 mg, 92\%) with 58% ee $\left([\alpha]_{\mathrm{D}}{ }^{22}+10.4(c 0.87, \mathrm{MeOH})\right)$.

Acknowledgements

Financial support of this work by the Deutsche Forschungsgemeinschaft (transferbereich 11) is gratefully acknowledged.

References

1. Cancer Pain Relief; WHO: Geneva. 1986.
2. Ventafridda, V.; Tamburini, M.; Caraceni, A.; de Conno, F.; Naldi, F. Cancer 1987, $59,851$.
3. Casey, A. F.; Parfitt, R. T. Opioid Analgesics; Plenum Press: New York, 1986.
4. Zens, M.; Jurna, I. Lehrbuch der Schmerztherapie; Wissenschaftl. Verlagsgesellschaft: Stuttgart, 1993.
5. Williams, M.; Kowaluk, E. A.; Arneric, P. J. Med. Chem. 1999, 42, 1481.
6. Mutschler, E. Arzneimittelwirkungen: Lehrbuch der Pharmakologie und Toxikologie; Wissenschaftl. Verlagsgesellschaft: Stuttgart, 1996.
7. Flohé, L.; Friderichs, E. Arz.-Forsch. (Drug Res. II) 1978, 28, 99.
8. Frankus, V. E.; Friderichs, E.; Kim, S.; Osterloh, G. Arz.-Forsch. (Drug Res. II) 1978, $28,114$.
9. Raffa, R. B.; Friderichs, E.; Reimann, W.; Shank, R. P.; Codd, E. E.; Vaught, J. L.; Jacoby, H. I.; Selve, N. J. Pharmacol. Exp. Ther. 1993, 267, 331.
10. Lintz, W.; Erlaçin, S.; Frankus, E.; Uragg, H. Arz.-Forsch. (Drug Res. II) 1981, 1, 1932.
11. Graudums, I.; Winter, W.; Frankus, E. DE 19547766A1, 20.12.1995; Chem. Abstr. 1997, 127, 121560 g.
12. Buschmann, H.; Strassburger, W.; Norma, S.; Friderichs, E. EP 0753506B1, 22.6.1996; Chem. Abstr. 1997, 126, 171384 c.
13. The diastereomerically pure alcohols rac-3 and rac-4 were synthesized as indicated below from ketones \mathbf{I} and \mathbf{V}, respectively, via Mannich reaction, Grignard reaction and reduction by using crystallization or chromatography for diastereomer separation. ${ }^{11,12}$

14. For reviews, see: (a) Gais, H.-J. Hydrolysis and Formation of $C-O$-Bonds in Enzyme Catalysis in Organic Synthesis; Drauz, K.; Waldmann, H., Eds.; VCH: Weinheim, 1995; Vol. I, p. 165. (b) Bornscheuer, U. T.; Kazlauskas, R. J. Hydrolases in Organic Synthesis; Wiley-VCH: Weinheim, 1999. (c) Roberts, S. M. Biocatalysts for Fine Chemical Synthesis; Wiley: Chichester, 1999.
15. For some pertinent examples, see: (a) Esser, P.; Buschmann, H.; Meyer-Stork, M.; Scharf, H.-D. Angew. Chem. 1992, 104, 1254; Angew. Chem., Int. Ed. Engl. 1992, 31, 1190. (b) Commins, D. L.; Salvador, J. M. J. Org. Chem. 1993, 58, 4656. (c) Stead, P.; Marley, H.; Mahmoudian, M.; Webb, G.; Noble, D.; Ip, Y. T.; Piga, E.; Rossi, T.; Roberts, S. M.; Dawson, M. J. Tetrahedron: Asymmetry 1996, 7, 2247. (d) Fukazawa, T.; Shimoji, Y.; Hashimoto, T. Tetrahedron: Asymmetry 1996, 7,
16. (e) Carpenter, B. E.; Hunt, I. R.; Keay, B. A. Tetrahedron: Asymmetry 1996, 7, 3107. (f) Barz, M.; Herdtweck, E.; Thiel, W. R. Tetrahedron: Asymmetry 1996, 7, 1717. (g) Crotti, P.; Di Bussolo, V.; Favero, L.; Minutolo, F.; Pineschi, M. Tetrahedron: Asymmetry 1996, 7, 1347. (h) Noheda, P.; Garciá, G.; Pozuelo, M. C.; Herredón, B. Tetrahedron: Asymmetry 1996, 7, 2801. (i) Sakagami, H.; Samiza, K.; Kamibubo, T.; Ogasawara, K. Synlett 1996, 163. (j) Maestro, A.; Astorga, C.; Gotor, V. Tetrahedron: Asymmetry 1997, 8, 3153. (k) Forró, E.; Fülöp, F. Tetrahedron: Asymmetry 1999, 10, 1985. (1) Sarakinos, G.; Corey, E. J. Org. Lett. 1999, 1, 1741.
17. PLE consists of different isoenzyme fractions (Ref. 14a), and PLE-Chirazyme E-1 is an enriched isoenzyme mixture.
18. For all enzymatic resolutions described in this paper the yields given are based on one enantiomer.
19. For a definition of the E value, see: Chen, C.-S.; Sih, C. J. Angew. Chem. 1989, 101, 711; Angew. Chem., Int. Ed. Engl. 1989, 28, 695.
20. Reichardt, C. Solvents and Solvent Effects in Organic Chemistry; VCH: Weinheim, 1988.
21. Riefling, B. F.; Brümmer, W. K.; Gais, H.-J. NATO ASI Series C, 1986, 178, 347.
22. Gais, H.-J.; Hemmerle, H.; Kossek, S. Synthesis 1992, 169.
23. Kita, Y.; Takebe, Y.; Murata, K.; Naka, T.; Akai, S. Tetrahedron Lett. 1996, 37, 7369.
24. Weber, H. K.; Zuegg, J.; Faber, K.; Pleiss, J. J. Mol. Catal. B: Enzymatic 1997, 3, 331.
25. Grünenthal GmbH , unpublished results.
26. Ruppert, S.; Gais, H.-J. Tetrahedron: Asymmetry 1997, 8, 3657.
27. Jungen, M.; Gais, H.-J. Tetrahedron: Asymmetry 1999, 10, 3747.
28. Alcohol rac-7 was prepared by demethylation of rac-2 with diisobutylaluminum hydride: Buschmann, H.; Jansen, P.; Winter, W.; Strassburger, W.; Graudums, I.; Friderich, E. DE 19601744, 14.12.95; Chem. Abstr. 1997, 127, 190519.
29. Hesse, M. Alkaloide; Wiley-VCH: Weinheim, 1999.
30. Fujimoto, Y.; Iwadate, N.; Ikekawa, N. J. Chem. Soc., Chem. Commun. 1985, 1333.
31. Wu, S.-H.; Zhang, L.-Q.; Chen, C.-S.; Girdaukas, G.; Sih, C. J. Tetrahedron Lett. 1985, 26, 4323.
32. Inagaki, M.; Hiratake, J.; Nisioka, T.; Oda, J. Agric. Biol. Chem. 1989, 7, 1879.
33. Kazlauskas, R. J. J. Am. Chem. Soc. 1989, 111, 4953.
34. Hoshino, O.; Tanahashi, R.; Okada, M.; Akita, H.; Oishi, T. Tetrahedron: Asymmetry 1993, 4, 933.
35. Hoshino, O.; Fuchino, H.; Kikuchi, M. Heterocycles 1994, 39, 553.
36. Hennies, H. H.; Friderichs, E.; Schneider, J. Arz.-Forsch. (Drug Res. II) 1988, 7, 877.
37. Elsing, B.; Blaschke, G. J. Chromatogr. Biomed. Appl. 1993, 2, 223.
38. Driessen, B.; Reimann, W.; Giertz, H. Br. J. Pharmacol. 1993, 3, 806.

[^0]: * Corresponding authors. Fax: (0)241 8888 665; e-mail: gais@rwth-aachen.de (H.-J. Gais); fax: (0)241 569 2627; e-mail: helmut.buschmann@grunenthal.com (H. Buschmann)

